mirror of
https://github.com/opencv/opencv.git
synced 2024-12-06 02:29:14 +08:00
761 lines
22 KiB
C++
761 lines
22 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
|
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// @Authors
|
|
// Fangfang Bai, fangfang@multicorewareinc.com
|
|
// Jin Ma, jin@multicorewareinc.com
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors as is and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
#include "perf_precomp.hpp"
|
|
|
|
using namespace perf;
|
|
using std::tr1::tuple;
|
|
using std::tr1::get;
|
|
|
|
///////////// equalizeHist ////////////////////////
|
|
|
|
typedef TestBaseWithParam<Size> EqualizeHistFixture;
|
|
|
|
OCL_PERF_TEST_P(EqualizeHistFixture, EqualizeHist, OCL_TEST_SIZES)
|
|
{
|
|
const Size srcSize = GetParam();
|
|
const double eps = 1 + DBL_EPSILON;
|
|
|
|
Mat src(srcSize, CV_8UC1), dst(srcSize, CV_8UC1);
|
|
declare.in(src, WARMUP_RNG).out(dst);
|
|
|
|
if (RUN_OCL_IMPL)
|
|
{
|
|
ocl::oclMat oclSrc(src), oclDst(srcSize, src.type());
|
|
|
|
OCL_TEST_CYCLE() cv::ocl::equalizeHist(oclSrc, oclDst);
|
|
|
|
oclDst.download(dst);
|
|
|
|
SANITY_CHECK(dst, eps);
|
|
}
|
|
else if (RUN_PLAIN_IMPL)
|
|
{
|
|
TEST_CYCLE() cv::equalizeHist(src, dst);
|
|
|
|
SANITY_CHECK(dst, eps);
|
|
}
|
|
else
|
|
OCL_PERF_ELSE
|
|
}
|
|
|
|
///////////// CalcHist ////////////////////////
|
|
|
|
typedef TestBaseWithParam<Size> CalcHistFixture;
|
|
|
|
OCL_PERF_TEST_P(CalcHistFixture, CalcHist, OCL_TEST_SIZES)
|
|
{
|
|
const Size srcSize = GetParam();
|
|
const std::vector<int> channels(1, 0);
|
|
std::vector<float> ranges(2);
|
|
std::vector<int> histSize(1, 256);
|
|
ranges[0] = 0;
|
|
ranges[1] = 256;
|
|
|
|
Mat src(srcSize, CV_8UC1), dst(srcSize, CV_32FC1);
|
|
declare.in(src, WARMUP_RNG).out(dst);
|
|
|
|
if (RUN_OCL_IMPL)
|
|
{
|
|
ocl::oclMat oclSrc(src), oclDst(srcSize, CV_32SC1);
|
|
|
|
OCL_TEST_CYCLE() cv::ocl::calcHist(oclSrc, oclDst);
|
|
|
|
oclDst.download(dst);
|
|
SANITY_CHECK(dst);
|
|
}
|
|
else if (RUN_PLAIN_IMPL)
|
|
{
|
|
TEST_CYCLE() cv::calcHist(std::vector<Mat>(1, src), channels,
|
|
noArray(), dst, histSize, ranges, false);
|
|
|
|
dst.convertTo(dst, CV_32S);
|
|
dst = dst.reshape(1, 1);
|
|
|
|
SANITY_CHECK(dst);
|
|
}
|
|
else
|
|
OCL_PERF_ELSE
|
|
}
|
|
|
|
/////////// CopyMakeBorder //////////////////////
|
|
|
|
CV_ENUM(Border, BORDER_CONSTANT, BORDER_REPLICATE, BORDER_REFLECT, BORDER_WRAP, BORDER_REFLECT_101)
|
|
|
|
typedef tuple<Size, MatType, Border> CopyMakeBorderParamType;
|
|
typedef TestBaseWithParam<CopyMakeBorderParamType> CopyMakeBorderFixture;
|
|
|
|
OCL_PERF_TEST_P(CopyMakeBorderFixture, CopyMakeBorder,
|
|
::testing::Combine(OCL_TEST_SIZES, OCL_TEST_TYPES, Border::all()))
|
|
{
|
|
const CopyMakeBorderParamType params = GetParam();
|
|
const Size srcSize = get<0>(params);
|
|
const int type = get<1>(params), borderType = get<2>(params);
|
|
|
|
Mat src(srcSize, type), dst;
|
|
const Size dstSize = srcSize + Size(12, 12);
|
|
dst.create(dstSize, type);
|
|
declare.in(src, WARMUP_RNG).out(dst);
|
|
|
|
if (RUN_OCL_IMPL)
|
|
{
|
|
ocl::oclMat oclSrc(src), oclDst(dstSize, type);
|
|
|
|
OCL_TEST_CYCLE() cv::ocl::copyMakeBorder(oclSrc, oclDst, 7, 5, 5, 7, borderType, cv::Scalar(1.0));
|
|
|
|
oclDst.download(dst);
|
|
|
|
SANITY_CHECK(dst);
|
|
}
|
|
else if (RUN_PLAIN_IMPL)
|
|
{
|
|
TEST_CYCLE() cv::copyMakeBorder(src, dst, 7, 5, 5, 7, borderType, cv::Scalar(1.0));
|
|
|
|
SANITY_CHECK(dst);
|
|
}
|
|
else
|
|
OCL_PERF_ELSE
|
|
}
|
|
|
|
///////////// cornerMinEigenVal ////////////////////////
|
|
|
|
typedef Size_MatType CornerMinEigenValFixture;
|
|
|
|
OCL_PERF_TEST_P(CornerMinEigenValFixture, CornerMinEigenVal,
|
|
::testing::Combine(OCL_TEST_SIZES, OCL_PERF_ENUM(CV_8UC1, CV_32FC1)))
|
|
{
|
|
const Size_MatType_t params = GetParam();
|
|
const Size srcSize = get<0>(params);
|
|
const int type = get<1>(params), borderType = BORDER_REFLECT;
|
|
const int blockSize = 7, apertureSize = 1 + 2 * 3;
|
|
|
|
Mat src(srcSize, type), dst(srcSize, CV_32FC1);
|
|
declare.in(src, WARMUP_RNG).out(dst);
|
|
|
|
const int depth = CV_MAT_DEPTH(type);
|
|
const ERROR_TYPE errorType = depth == CV_8U ? ERROR_ABSOLUTE : ERROR_RELATIVE;
|
|
|
|
if (RUN_OCL_IMPL)
|
|
{
|
|
ocl::oclMat oclSrc(src), oclDst(srcSize, CV_32FC1);
|
|
|
|
OCL_TEST_CYCLE() cv::ocl::cornerMinEigenVal(oclSrc, oclDst, blockSize, apertureSize, borderType);
|
|
|
|
oclDst.download(dst);
|
|
|
|
SANITY_CHECK(dst, 1e-6, errorType);
|
|
}
|
|
else if (RUN_PLAIN_IMPL)
|
|
{
|
|
TEST_CYCLE() cv::cornerMinEigenVal(src, dst, blockSize, apertureSize, borderType);
|
|
|
|
SANITY_CHECK(dst, 1e-6, errorType);
|
|
}
|
|
else
|
|
OCL_PERF_ELSE
|
|
}
|
|
|
|
///////////// cornerHarris ////////////////////////
|
|
|
|
typedef Size_MatType CornerHarrisFixture;
|
|
|
|
OCL_PERF_TEST_P(CornerHarrisFixture, CornerHarris,
|
|
::testing::Combine(OCL_TEST_SIZES, OCL_PERF_ENUM(CV_8UC1, CV_32FC1)))
|
|
{
|
|
const Size_MatType_t params = GetParam();
|
|
const Size srcSize = get<0>(params);
|
|
const int type = get<1>(params), borderType = BORDER_REFLECT;
|
|
|
|
Mat src(srcSize, type), dst(srcSize, CV_32FC1);
|
|
randu(src, 0, 1);
|
|
declare.in(src).out(dst);
|
|
|
|
if (RUN_OCL_IMPL)
|
|
{
|
|
ocl::oclMat oclSrc(src), oclDst(srcSize, CV_32FC1);
|
|
|
|
OCL_TEST_CYCLE() cv::ocl::cornerHarris(oclSrc, oclDst, 5, 7, 0.1, borderType);
|
|
|
|
oclDst.download(dst);
|
|
|
|
SANITY_CHECK(dst, 3e-5);
|
|
}
|
|
else if (RUN_PLAIN_IMPL)
|
|
{
|
|
TEST_CYCLE() cv::cornerHarris(src, dst, 5, 7, 0.1, borderType);
|
|
|
|
SANITY_CHECK(dst, 3e-5);
|
|
}
|
|
else
|
|
OCL_PERF_ELSE
|
|
}
|
|
|
|
///////////// integral ////////////////////////
|
|
|
|
typedef tuple<Size, MatDepth> IntegralParams;
|
|
typedef TestBaseWithParam<IntegralParams> IntegralFixture;
|
|
|
|
OCL_PERF_TEST_P(IntegralFixture, DISABLED_Integral1, ::testing::Combine(OCL_TEST_SIZES, OCL_PERF_ENUM(CV_32S, CV_32F)))
|
|
{
|
|
const IntegralParams params = GetParam();
|
|
const Size srcSize = get<0>(params);
|
|
const int sdepth = get<1>(params);
|
|
|
|
Mat src(srcSize, CV_8UC1), dst;
|
|
declare.in(src, WARMUP_RNG);
|
|
|
|
if (RUN_OCL_IMPL)
|
|
{
|
|
ocl::oclMat oclSrc(src), oclDst;
|
|
|
|
// OCL_TEST_CYCLE() cv::ocl::integral(oclSrc, oclDst, sdepth);
|
|
|
|
oclDst.download(dst);
|
|
|
|
SANITY_CHECK(dst, 1e-6, ERROR_RELATIVE);
|
|
}
|
|
else if (RUN_PLAIN_IMPL)
|
|
{
|
|
TEST_CYCLE() cv::integral(src, dst, sdepth);
|
|
|
|
SANITY_CHECK(dst, 1e-6, ERROR_RELATIVE);
|
|
}
|
|
else
|
|
OCL_PERF_ELSE
|
|
}
|
|
|
|
///////////// threshold////////////////////////
|
|
|
|
CV_ENUM(ThreshType, THRESH_BINARY, THRESH_BINARY_INV, THRESH_TRUNC, THRESH_TOZERO_INV)
|
|
|
|
typedef tuple<Size, MatType, ThreshType> ThreshParams;
|
|
typedef TestBaseWithParam<ThreshParams> ThreshFixture;
|
|
|
|
OCL_PERF_TEST_P(ThreshFixture, Threshold,
|
|
::testing::Combine(OCL_TEST_SIZES, OCL_TEST_TYPES, ThreshType::all()))
|
|
{
|
|
const ThreshParams params = GetParam();
|
|
const Size srcSize = get<0>(params);
|
|
const int srcType = get<1>(params);
|
|
const int threshType = get<2>(params);
|
|
const double maxValue = 220.0, threshold = 50;
|
|
|
|
Mat src(srcSize, srcType), dst(srcSize, srcType);
|
|
randu(src, 0, 100);
|
|
declare.in(src).out(dst);
|
|
|
|
if (RUN_OCL_IMPL)
|
|
{
|
|
ocl::oclMat oclSrc(src), oclDst(srcSize, CV_8U);
|
|
|
|
OCL_TEST_CYCLE() cv::ocl::threshold(oclSrc, oclDst, threshold, maxValue, threshType);
|
|
|
|
oclDst.download(dst);
|
|
|
|
SANITY_CHECK(dst);
|
|
}
|
|
else if (RUN_PLAIN_IMPL)
|
|
{
|
|
TEST_CYCLE() cv::threshold(src, dst, threshold, maxValue, threshType);
|
|
|
|
SANITY_CHECK(dst);
|
|
}
|
|
else
|
|
OCL_PERF_ELSE
|
|
}
|
|
|
|
///////////// meanShiftFiltering////////////////////////
|
|
|
|
typedef struct _COOR
|
|
{
|
|
short x;
|
|
short y;
|
|
} COOR;
|
|
|
|
static COOR do_meanShift(int x0, int y0, uchar *sptr, uchar *dptr, int sstep, cv::Size size, int sp, int sr, int maxIter, float eps, int *tab)
|
|
{
|
|
|
|
int isr2 = sr * sr;
|
|
int c0, c1, c2, c3;
|
|
int iter;
|
|
uchar *ptr = NULL;
|
|
uchar *pstart = NULL;
|
|
int revx = 0, revy = 0;
|
|
c0 = sptr[0];
|
|
c1 = sptr[1];
|
|
c2 = sptr[2];
|
|
c3 = sptr[3];
|
|
// iterate meanshift procedure
|
|
for(iter = 0; iter < maxIter; iter++ )
|
|
{
|
|
int count = 0;
|
|
int s0 = 0, s1 = 0, s2 = 0, sx = 0, sy = 0;
|
|
|
|
//mean shift: process pixels in window (p-sigmaSp)x(p+sigmaSp)
|
|
int minx = x0 - sp;
|
|
int miny = y0 - sp;
|
|
int maxx = x0 + sp;
|
|
int maxy = y0 + sp;
|
|
|
|
//deal with the image boundary
|
|
if(minx < 0) minx = 0;
|
|
if(miny < 0) miny = 0;
|
|
if(maxx >= size.width) maxx = size.width - 1;
|
|
if(maxy >= size.height) maxy = size.height - 1;
|
|
if(iter == 0)
|
|
{
|
|
pstart = sptr;
|
|
}
|
|
else
|
|
{
|
|
pstart = pstart + revy * sstep + (revx << 2); //point to the new position
|
|
}
|
|
ptr = pstart;
|
|
ptr = ptr + (miny - y0) * sstep + ((minx - x0) << 2); //point to the start in the row
|
|
|
|
for( int y = miny; y <= maxy; y++, ptr += sstep - ((maxx - minx + 1) << 2))
|
|
{
|
|
int rowCount = 0;
|
|
int x = minx;
|
|
#if CV_ENABLE_UNROLLED
|
|
for( ; x + 4 <= maxx; x += 4, ptr += 16)
|
|
{
|
|
int t0, t1, t2;
|
|
t0 = ptr[0], t1 = ptr[1], t2 = ptr[2];
|
|
if(tab[t0 - c0 + 255] + tab[t1 - c1 + 255] + tab[t2 - c2 + 255] <= isr2)
|
|
{
|
|
s0 += t0;
|
|
s1 += t1;
|
|
s2 += t2;
|
|
sx += x;
|
|
rowCount++;
|
|
}
|
|
t0 = ptr[4], t1 = ptr[5], t2 = ptr[6];
|
|
if(tab[t0 - c0 + 255] + tab[t1 - c1 + 255] + tab[t2 - c2 + 255] <= isr2)
|
|
{
|
|
s0 += t0;
|
|
s1 += t1;
|
|
s2 += t2;
|
|
sx += x + 1;
|
|
rowCount++;
|
|
}
|
|
t0 = ptr[8], t1 = ptr[9], t2 = ptr[10];
|
|
if(tab[t0 - c0 + 255] + tab[t1 - c1 + 255] + tab[t2 - c2 + 255] <= isr2)
|
|
{
|
|
s0 += t0;
|
|
s1 += t1;
|
|
s2 += t2;
|
|
sx += x + 2;
|
|
rowCount++;
|
|
}
|
|
t0 = ptr[12], t1 = ptr[13], t2 = ptr[14];
|
|
if(tab[t0 - c0 + 255] + tab[t1 - c1 + 255] + tab[t2 - c2 + 255] <= isr2)
|
|
{
|
|
s0 += t0;
|
|
s1 += t1;
|
|
s2 += t2;
|
|
sx += x + 3;
|
|
rowCount++;
|
|
}
|
|
}
|
|
#endif
|
|
for(; x <= maxx; x++, ptr += 4)
|
|
{
|
|
int t0 = ptr[0], t1 = ptr[1], t2 = ptr[2];
|
|
if(tab[t0 - c0 + 255] + tab[t1 - c1 + 255] + tab[t2 - c2 + 255] <= isr2)
|
|
{
|
|
s0 += t0;
|
|
s1 += t1;
|
|
s2 += t2;
|
|
sx += x;
|
|
rowCount++;
|
|
}
|
|
}
|
|
if(rowCount == 0)
|
|
continue;
|
|
count += rowCount;
|
|
sy += y * rowCount;
|
|
}
|
|
|
|
if( count == 0 )
|
|
break;
|
|
|
|
int x1 = sx / count;
|
|
int y1 = sy / count;
|
|
s0 = s0 / count;
|
|
s1 = s1 / count;
|
|
s2 = s2 / count;
|
|
|
|
bool stopFlag = (x0 == x1 && y0 == y1) || (abs(x1 - x0) + abs(y1 - y0) +
|
|
tab[s0 - c0 + 255] + tab[s1 - c1 + 255] + tab[s2 - c2 + 255] <= eps);
|
|
|
|
//revise the pointer corresponding to the new (y0,x0)
|
|
revx = x1 - x0;
|
|
revy = y1 - y0;
|
|
|
|
x0 = x1;
|
|
y0 = y1;
|
|
c0 = s0;
|
|
c1 = s1;
|
|
c2 = s2;
|
|
|
|
if( stopFlag )
|
|
break;
|
|
} //for iter
|
|
|
|
dptr[0] = (uchar)c0;
|
|
dptr[1] = (uchar)c1;
|
|
dptr[2] = (uchar)c2;
|
|
dptr[3] = (uchar)c3;
|
|
|
|
COOR coor;
|
|
coor.x = static_cast<short>(x0);
|
|
coor.y = static_cast<short>(y0);
|
|
return coor;
|
|
}
|
|
|
|
static void meanShiftFiltering_(const Mat &src_roi, Mat &dst_roi, int sp, int sr, cv::TermCriteria crit)
|
|
{
|
|
if( src_roi.empty() )
|
|
CV_Error( CV_StsBadArg, "The input image is empty" );
|
|
|
|
if( src_roi.depth() != CV_8U || src_roi.channels() != 4 )
|
|
CV_Error( CV_StsUnsupportedFormat, "Only 8-bit, 4-channel images are supported" );
|
|
|
|
dst_roi.create(src_roi.size(), src_roi.type());
|
|
|
|
CV_Assert( (src_roi.cols == dst_roi.cols) && (src_roi.rows == dst_roi.rows) );
|
|
CV_Assert( !(dst_roi.step & 0x3) );
|
|
|
|
if( !(crit.type & cv::TermCriteria::MAX_ITER) )
|
|
crit.maxCount = 5;
|
|
int maxIter = std::min(std::max(crit.maxCount, 1), 100);
|
|
float eps;
|
|
if( !(crit.type & cv::TermCriteria::EPS) )
|
|
eps = 1.f;
|
|
eps = (float)std::max(crit.epsilon, 0.0);
|
|
|
|
int tab[512];
|
|
for(int i = 0; i < 512; i++)
|
|
tab[i] = (i - 255) * (i - 255);
|
|
uchar *sptr = src_roi.data;
|
|
uchar *dptr = dst_roi.data;
|
|
int sstep = (int)src_roi.step;
|
|
int dstep = (int)dst_roi.step;
|
|
cv::Size size = src_roi.size();
|
|
|
|
for(int i = 0; i < size.height; i++, sptr += sstep - (size.width << 2),
|
|
dptr += dstep - (size.width << 2))
|
|
{
|
|
for(int j = 0; j < size.width; j++, sptr += 4, dptr += 4)
|
|
{
|
|
do_meanShift(j, i, sptr, dptr, sstep, size, sp, sr, maxIter, eps, tab);
|
|
}
|
|
}
|
|
}
|
|
|
|
typedef TestBaseWithParam<Size> MeanShiftFilteringFixture;
|
|
|
|
PERF_TEST_P(MeanShiftFilteringFixture, MeanShiftFiltering,
|
|
OCL_TYPICAL_MAT_SIZES)
|
|
{
|
|
const Size srcSize = GetParam();
|
|
const int sp = 5, sr = 6;
|
|
cv::TermCriteria crit(cv::TermCriteria::COUNT + cv::TermCriteria::EPS, 5, 1);
|
|
|
|
Mat src(srcSize, CV_8UC4), dst(srcSize, CV_8UC4);
|
|
declare.in(src, WARMUP_RNG).out(dst);
|
|
|
|
if (RUN_PLAIN_IMPL)
|
|
{
|
|
TEST_CYCLE() meanShiftFiltering_(src, dst, sp, sr, crit);
|
|
|
|
SANITY_CHECK(dst);
|
|
}
|
|
else if (RUN_OCL_IMPL)
|
|
{
|
|
ocl::oclMat oclSrc(src), oclDst(srcSize, CV_8UC4);
|
|
|
|
OCL_TEST_CYCLE() ocl::meanShiftFiltering(oclSrc, oclDst, sp, sr, crit);
|
|
|
|
oclDst.download(dst);
|
|
|
|
SANITY_CHECK(dst);
|
|
}
|
|
else
|
|
OCL_PERF_ELSE
|
|
}
|
|
|
|
static void meanShiftProc_(const Mat &src_roi, Mat &dst_roi, Mat &dstCoor_roi, int sp, int sr, cv::TermCriteria crit)
|
|
{
|
|
if (src_roi.empty())
|
|
{
|
|
CV_Error(CV_StsBadArg, "The input image is empty");
|
|
}
|
|
if (src_roi.depth() != CV_8U || src_roi.channels() != 4)
|
|
{
|
|
CV_Error(CV_StsUnsupportedFormat, "Only 8-bit, 4-channel images are supported");
|
|
}
|
|
|
|
dst_roi.create(src_roi.size(), src_roi.type());
|
|
dstCoor_roi.create(src_roi.size(), CV_16SC2);
|
|
|
|
CV_Assert((src_roi.cols == dst_roi.cols) && (src_roi.rows == dst_roi.rows) &&
|
|
(src_roi.cols == dstCoor_roi.cols) && (src_roi.rows == dstCoor_roi.rows));
|
|
CV_Assert(!(dstCoor_roi.step & 0x3));
|
|
|
|
if (!(crit.type & cv::TermCriteria::MAX_ITER))
|
|
{
|
|
crit.maxCount = 5;
|
|
}
|
|
|
|
int maxIter = std::min(std::max(crit.maxCount, 1), 100);
|
|
float eps;
|
|
|
|
if (!(crit.type & cv::TermCriteria::EPS))
|
|
{
|
|
eps = 1.f;
|
|
}
|
|
|
|
eps = (float)std::max(crit.epsilon, 0.0);
|
|
|
|
int tab[512];
|
|
|
|
for (int i = 0; i < 512; i++)
|
|
{
|
|
tab[i] = (i - 255) * (i - 255);
|
|
}
|
|
|
|
uchar *sptr = src_roi.data;
|
|
uchar *dptr = dst_roi.data;
|
|
short *dCoorptr = (short *)dstCoor_roi.data;
|
|
int sstep = (int)src_roi.step;
|
|
int dstep = (int)dst_roi.step;
|
|
int dCoorstep = (int)dstCoor_roi.step >> 1;
|
|
cv::Size size = src_roi.size();
|
|
|
|
for (int i = 0; i < size.height; i++, sptr += sstep - (size.width << 2),
|
|
dptr += dstep - (size.width << 2), dCoorptr += dCoorstep - (size.width << 1))
|
|
{
|
|
for (int j = 0; j < size.width; j++, sptr += 4, dptr += 4, dCoorptr += 2)
|
|
{
|
|
*((COOR *)dCoorptr) = do_meanShift(j, i, sptr, dptr, sstep, size, sp, sr, maxIter, eps, tab);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
typedef TestBaseWithParam<Size> MeanShiftProcFixture;
|
|
|
|
PERF_TEST_P(MeanShiftProcFixture, MeanShiftProc,
|
|
OCL_TYPICAL_MAT_SIZES)
|
|
{
|
|
const Size srcSize = GetParam();
|
|
TermCriteria crit(TermCriteria::COUNT + TermCriteria::EPS, 5, 1);
|
|
|
|
Mat src(srcSize, CV_8UC4), dst1(srcSize, CV_8UC4),
|
|
dst2(srcSize, CV_16SC2);
|
|
declare.in(src, WARMUP_RNG).out(dst1, dst2);
|
|
|
|
if (RUN_PLAIN_IMPL)
|
|
{
|
|
TEST_CYCLE() meanShiftProc_(src, dst1, dst2, 5, 6, crit);
|
|
|
|
SANITY_CHECK(dst1);
|
|
SANITY_CHECK(dst2);
|
|
}
|
|
else if (RUN_OCL_IMPL)
|
|
{
|
|
ocl::oclMat oclSrc(src), oclDst1(srcSize, CV_8UC4),
|
|
oclDst2(srcSize, CV_16SC2);
|
|
|
|
OCL_TEST_CYCLE() ocl::meanShiftProc(oclSrc, oclDst1, oclDst2, 5, 6, crit);
|
|
|
|
oclDst1.download(dst1);
|
|
oclDst2.download(dst2);
|
|
|
|
SANITY_CHECK(dst1);
|
|
SANITY_CHECK(dst2);
|
|
}
|
|
else
|
|
OCL_PERF_ELSE
|
|
}
|
|
|
|
///////////// CLAHE ////////////////////////
|
|
|
|
typedef TestBaseWithParam<Size> CLAHEFixture;
|
|
|
|
OCL_PERF_TEST_P(CLAHEFixture, CLAHE, OCL_TEST_SIZES)
|
|
{
|
|
const Size srcSize = GetParam();
|
|
|
|
Mat src(srcSize, CV_8UC1), dst;
|
|
const double clipLimit = 40.0;
|
|
declare.in(src, WARMUP_RNG);
|
|
|
|
if (RUN_OCL_IMPL)
|
|
{
|
|
ocl::oclMat oclSrc(src), oclDst;
|
|
cv::Ptr<cv::CLAHE> oclClahe = cv::ocl::createCLAHE(clipLimit);
|
|
|
|
OCL_TEST_CYCLE() oclClahe->apply(oclSrc, oclDst);
|
|
|
|
oclDst.download(dst);
|
|
|
|
SANITY_CHECK(dst);
|
|
}
|
|
else if (RUN_PLAIN_IMPL)
|
|
{
|
|
cv::Ptr<cv::CLAHE> clahe = cv::createCLAHE(clipLimit);
|
|
TEST_CYCLE() clahe->apply(src, dst);
|
|
|
|
SANITY_CHECK(dst);
|
|
}
|
|
else
|
|
OCL_PERF_ELSE
|
|
}
|
|
|
|
///////////// ColumnSum////////////////////////
|
|
|
|
typedef TestBaseWithParam<Size> ColumnSumFixture;
|
|
|
|
static void columnSumPerfTest(const Mat & src, Mat & dst)
|
|
{
|
|
for (int j = 0; j < src.cols; j++)
|
|
dst.at<float>(0, j) = src.at<float>(0, j);
|
|
|
|
for (int i = 1; i < src.rows; ++i)
|
|
for (int j = 0; j < src.cols; ++j)
|
|
dst.at<float>(i, j) = dst.at<float>(i - 1 , j) + src.at<float>(i , j);
|
|
}
|
|
|
|
PERF_TEST_P(ColumnSumFixture, ColumnSum, OCL_TYPICAL_MAT_SIZES)
|
|
{
|
|
const Size srcSize = GetParam();
|
|
|
|
Mat src(srcSize, CV_32FC1), dst(srcSize, CV_32FC1);
|
|
declare.in(src, WARMUP_RNG).out(dst);
|
|
|
|
if (RUN_OCL_IMPL)
|
|
{
|
|
ocl::oclMat oclSrc(src), oclDst(srcSize, CV_32FC1);
|
|
|
|
OCL_TEST_CYCLE() cv::ocl::columnSum(oclSrc, oclDst);
|
|
|
|
oclDst.download(dst);
|
|
|
|
SANITY_CHECK(dst);
|
|
}
|
|
else if (RUN_PLAIN_IMPL)
|
|
{
|
|
TEST_CYCLE() columnSumPerfTest(src, dst);
|
|
|
|
SANITY_CHECK(dst);
|
|
}
|
|
else
|
|
OCL_PERF_ELSE
|
|
}
|
|
|
|
//////////////////////////////distanceToCenters////////////////////////////////////////////////
|
|
|
|
CV_ENUM(DistType, NORM_L1, NORM_L2SQR)
|
|
|
|
typedef tuple<Size, DistType> DistanceToCentersParams;
|
|
typedef TestBaseWithParam<DistanceToCentersParams> DistanceToCentersFixture;
|
|
|
|
static void distanceToCentersPerfTest(Mat& src, Mat& centers, Mat& dists, Mat& labels, int distType)
|
|
{
|
|
Mat batch_dists;
|
|
cv::batchDistance(src, centers, batch_dists, CV_32FC1, noArray(), distType);
|
|
|
|
std::vector<float> dists_v;
|
|
std::vector<int> labels_v;
|
|
|
|
for (int i = 0; i < batch_dists.rows; i++)
|
|
{
|
|
Mat r = batch_dists.row(i);
|
|
double mVal;
|
|
Point mLoc;
|
|
|
|
minMaxLoc(r, &mVal, NULL, &mLoc, NULL);
|
|
dists_v.push_back(static_cast<float>(mVal));
|
|
labels_v.push_back(mLoc.x);
|
|
}
|
|
|
|
Mat(dists_v).copyTo(dists);
|
|
Mat(labels_v).copyTo(labels);
|
|
}
|
|
|
|
PERF_TEST_P(DistanceToCentersFixture, DistanceToCenters, ::testing::Combine(::testing::Values(cv::Size(256,256), cv::Size(512,512)), DistType::all()) )
|
|
{
|
|
const DistanceToCentersParams params = GetParam();
|
|
Size size = get<0>(params);
|
|
int distType = get<1>(params);
|
|
|
|
Mat src(size, CV_32FC1), centers(size, CV_32FC1);
|
|
Mat dists(src.rows, 1, CV_32FC1), labels(src.rows, 1, CV_32SC1);
|
|
|
|
declare.in(src, centers, WARMUP_RNG).out(dists, labels);
|
|
|
|
if (RUN_OCL_IMPL)
|
|
{
|
|
ocl::oclMat ocl_src(src), ocl_centers(centers);
|
|
|
|
OCL_TEST_CYCLE() ocl::distanceToCenters(ocl_src, ocl_centers, dists, labels, distType);
|
|
|
|
SANITY_CHECK(dists, 1e-6, ERROR_RELATIVE);
|
|
SANITY_CHECK(labels);
|
|
}
|
|
else if (RUN_PLAIN_IMPL)
|
|
{
|
|
TEST_CYCLE() distanceToCentersPerfTest(src, centers, dists, labels, distType);
|
|
|
|
SANITY_CHECK(dists, 1e-6, ERROR_RELATIVE);
|
|
SANITY_CHECK(labels);
|
|
}
|
|
else
|
|
OCL_PERF_ELSE
|
|
}
|