mirror of
https://github.com/opencv/opencv.git
synced 2025-01-22 01:13:11 +08:00
e837d69f8f
OPENCV_IPP env var now allows to select IPP architecture level for IPP9+; IPP initialization logic was unified across modules;
888 lines
33 KiB
C++
888 lines
33 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// Intel License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2014, Itseez, Inc, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
#include "opencl_kernels_imgproc.hpp"
|
|
|
|
/****************************************************************************************\
|
|
Sobel & Scharr Derivative Filters
|
|
\****************************************************************************************/
|
|
|
|
namespace cv
|
|
{
|
|
|
|
static void getScharrKernels( OutputArray _kx, OutputArray _ky,
|
|
int dx, int dy, bool normalize, int ktype )
|
|
{
|
|
const int ksize = 3;
|
|
|
|
CV_Assert( ktype == CV_32F || ktype == CV_64F );
|
|
_kx.create(ksize, 1, ktype, -1, true);
|
|
_ky.create(ksize, 1, ktype, -1, true);
|
|
Mat kx = _kx.getMat();
|
|
Mat ky = _ky.getMat();
|
|
|
|
CV_Assert( dx >= 0 && dy >= 0 && dx+dy == 1 );
|
|
|
|
for( int k = 0; k < 2; k++ )
|
|
{
|
|
Mat* kernel = k == 0 ? &kx : &ky;
|
|
int order = k == 0 ? dx : dy;
|
|
int kerI[3];
|
|
|
|
if( order == 0 )
|
|
kerI[0] = 3, kerI[1] = 10, kerI[2] = 3;
|
|
else if( order == 1 )
|
|
kerI[0] = -1, kerI[1] = 0, kerI[2] = 1;
|
|
|
|
Mat temp(kernel->rows, kernel->cols, CV_32S, &kerI[0]);
|
|
double scale = !normalize || order == 1 ? 1. : 1./32;
|
|
temp.convertTo(*kernel, ktype, scale);
|
|
}
|
|
}
|
|
|
|
|
|
static void getSobelKernels( OutputArray _kx, OutputArray _ky,
|
|
int dx, int dy, int _ksize, bool normalize, int ktype )
|
|
{
|
|
int i, j, ksizeX = _ksize, ksizeY = _ksize;
|
|
if( ksizeX == 1 && dx > 0 )
|
|
ksizeX = 3;
|
|
if( ksizeY == 1 && dy > 0 )
|
|
ksizeY = 3;
|
|
|
|
CV_Assert( ktype == CV_32F || ktype == CV_64F );
|
|
|
|
_kx.create(ksizeX, 1, ktype, -1, true);
|
|
_ky.create(ksizeY, 1, ktype, -1, true);
|
|
Mat kx = _kx.getMat();
|
|
Mat ky = _ky.getMat();
|
|
|
|
if( _ksize % 2 == 0 || _ksize > 31 )
|
|
CV_Error( CV_StsOutOfRange, "The kernel size must be odd and not larger than 31" );
|
|
std::vector<int> kerI(std::max(ksizeX, ksizeY) + 1);
|
|
|
|
CV_Assert( dx >= 0 && dy >= 0 && dx+dy > 0 );
|
|
|
|
for( int k = 0; k < 2; k++ )
|
|
{
|
|
Mat* kernel = k == 0 ? &kx : &ky;
|
|
int order = k == 0 ? dx : dy;
|
|
int ksize = k == 0 ? ksizeX : ksizeY;
|
|
|
|
CV_Assert( ksize > order );
|
|
|
|
if( ksize == 1 )
|
|
kerI[0] = 1;
|
|
else if( ksize == 3 )
|
|
{
|
|
if( order == 0 )
|
|
kerI[0] = 1, kerI[1] = 2, kerI[2] = 1;
|
|
else if( order == 1 )
|
|
kerI[0] = -1, kerI[1] = 0, kerI[2] = 1;
|
|
else
|
|
kerI[0] = 1, kerI[1] = -2, kerI[2] = 1;
|
|
}
|
|
else
|
|
{
|
|
int oldval, newval;
|
|
kerI[0] = 1;
|
|
for( i = 0; i < ksize; i++ )
|
|
kerI[i+1] = 0;
|
|
|
|
for( i = 0; i < ksize - order - 1; i++ )
|
|
{
|
|
oldval = kerI[0];
|
|
for( j = 1; j <= ksize; j++ )
|
|
{
|
|
newval = kerI[j]+kerI[j-1];
|
|
kerI[j-1] = oldval;
|
|
oldval = newval;
|
|
}
|
|
}
|
|
|
|
for( i = 0; i < order; i++ )
|
|
{
|
|
oldval = -kerI[0];
|
|
for( j = 1; j <= ksize; j++ )
|
|
{
|
|
newval = kerI[j-1] - kerI[j];
|
|
kerI[j-1] = oldval;
|
|
oldval = newval;
|
|
}
|
|
}
|
|
}
|
|
|
|
Mat temp(kernel->rows, kernel->cols, CV_32S, &kerI[0]);
|
|
double scale = !normalize ? 1. : 1./(1 << (ksize-order-1));
|
|
temp.convertTo(*kernel, ktype, scale);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
void cv::getDerivKernels( OutputArray kx, OutputArray ky, int dx, int dy,
|
|
int ksize, bool normalize, int ktype )
|
|
{
|
|
if( ksize <= 0 )
|
|
getScharrKernels( kx, ky, dx, dy, normalize, ktype );
|
|
else
|
|
getSobelKernels( kx, ky, dx, dy, ksize, normalize, ktype );
|
|
}
|
|
|
|
|
|
cv::Ptr<cv::FilterEngine> cv::createDerivFilter(int srcType, int dstType,
|
|
int dx, int dy, int ksize, int borderType )
|
|
{
|
|
Mat kx, ky;
|
|
getDerivKernels( kx, ky, dx, dy, ksize, false, CV_32F );
|
|
return createSeparableLinearFilter(srcType, dstType,
|
|
kx, ky, Point(-1,-1), 0, borderType );
|
|
}
|
|
|
|
#ifdef HAVE_IPP
|
|
namespace cv
|
|
{
|
|
static bool IPPDerivScharr(InputArray _src, OutputArray _dst, int ddepth, int dx, int dy, double scale, double delta, int borderType)
|
|
{
|
|
#if IPP_VERSION_X100 >= 810
|
|
if ((0 > dx) || (0 > dy) || (1 != dx + dy))
|
|
return false;
|
|
if (fabs(delta) > FLT_EPSILON)
|
|
return false;
|
|
|
|
IppiBorderType ippiBorderType = ippiGetBorderType(borderType & (~BORDER_ISOLATED));
|
|
if ((int)ippiBorderType < 0)
|
|
return false;
|
|
|
|
int stype = _src.type(), sdepth = CV_MAT_DEPTH(stype), cn = CV_MAT_CN(stype);
|
|
if (ddepth < 0)
|
|
ddepth = sdepth;
|
|
int dtype = CV_MAKETYPE(ddepth, cn);
|
|
|
|
Mat src = _src.getMat();
|
|
if (0 == (BORDER_ISOLATED & borderType))
|
|
{
|
|
Size size; Point offset;
|
|
src.locateROI(size, offset);
|
|
if (0 < offset.x)
|
|
ippiBorderType = (IppiBorderType)(ippiBorderType | ippBorderInMemLeft);
|
|
if (0 < offset.y)
|
|
ippiBorderType = (IppiBorderType)(ippiBorderType | ippBorderInMemTop);
|
|
if (offset.x + src.cols < size.width)
|
|
ippiBorderType = (IppiBorderType)(ippiBorderType | ippBorderInMemRight);
|
|
if (offset.y + src.rows < size.height)
|
|
ippiBorderType = (IppiBorderType)(ippiBorderType | ippBorderInMemBottom);
|
|
}
|
|
|
|
bool horz = (0 == dx) && (1 == dy);
|
|
IppiSize roiSize = {src.cols, src.rows};
|
|
|
|
_dst.create( _src.size(), dtype);
|
|
Mat dst = _dst.getMat();
|
|
IppStatus sts = ippStsErr;
|
|
if ((CV_8U == stype) && (CV_16S == dtype))
|
|
{
|
|
int bufferSize = 0; Ipp8u *pBuffer;
|
|
if (horz)
|
|
{
|
|
if (0 > ippiFilterScharrHorizMaskBorderGetBufferSize(roiSize, ippMskSize3x3, ipp8u, ipp16s, 1, &bufferSize))
|
|
return false;
|
|
pBuffer = ippsMalloc_8u(bufferSize);
|
|
if (NULL == pBuffer)
|
|
return false;
|
|
sts = ippiFilterScharrHorizMaskBorder_8u16s_C1R(src.ptr(), (int)src.step, dst.ptr<Ipp16s>(), (int)dst.step, roiSize, ippMskSize3x3, ippiBorderType, 0, pBuffer);
|
|
}
|
|
else
|
|
{
|
|
if (0 > ippiFilterScharrVertMaskBorderGetBufferSize(roiSize, ippMskSize3x3, ipp8u, ipp16s, 1, &bufferSize))
|
|
return false;
|
|
pBuffer = ippsMalloc_8u(bufferSize);
|
|
if (NULL == pBuffer)
|
|
return false;
|
|
sts = ippiFilterScharrVertMaskBorder_8u16s_C1R(src.ptr(), (int)src.step, dst.ptr<Ipp16s>(), (int)dst.step, roiSize, ippMskSize3x3, ippiBorderType, 0, pBuffer);
|
|
}
|
|
ippsFree(pBuffer);
|
|
}
|
|
else if ((CV_16S == stype) && (CV_16S == dtype))
|
|
{
|
|
int bufferSize = 0; Ipp8u *pBuffer;
|
|
if (horz)
|
|
{
|
|
if (0 > ippiFilterScharrHorizMaskBorderGetBufferSize(roiSize, ippMskSize3x3, ipp16s, ipp16s, 1, &bufferSize))
|
|
return false;
|
|
pBuffer = ippsMalloc_8u(bufferSize);
|
|
if (NULL == pBuffer)
|
|
return false;
|
|
sts = ippiFilterScharrHorizMaskBorder_16s_C1R(src.ptr<Ipp16s>(), (int)src.step, dst.ptr<Ipp16s>(), (int)dst.step, roiSize, ippMskSize3x3, ippiBorderType, 0, pBuffer);
|
|
}
|
|
else
|
|
{
|
|
if (0 > ippiFilterScharrVertMaskBorderGetBufferSize(roiSize, ippMskSize3x3, ipp16s, ipp16s, 1, &bufferSize))
|
|
return false;
|
|
pBuffer = ippsMalloc_8u(bufferSize);
|
|
if (NULL == pBuffer)
|
|
return false;
|
|
sts = ippiFilterScharrVertMaskBorder_16s_C1R(src.ptr<Ipp16s>(), (int)src.step, dst.ptr<Ipp16s>(), (int)dst.step, roiSize, ippMskSize3x3, ippiBorderType, 0, pBuffer);
|
|
}
|
|
ippsFree(pBuffer);
|
|
}
|
|
else if ((CV_32F == stype) && (CV_32F == dtype))
|
|
{
|
|
int bufferSize = 0; Ipp8u *pBuffer;
|
|
if (horz)
|
|
{
|
|
if (0 > ippiFilterScharrHorizMaskBorderGetBufferSize(roiSize, ippMskSize3x3, ipp32f, ipp32f, 1, &bufferSize))
|
|
return false;
|
|
pBuffer = ippsMalloc_8u(bufferSize);
|
|
if (NULL == pBuffer)
|
|
return false;
|
|
sts = ippiFilterScharrHorizMaskBorder_32f_C1R(src.ptr<Ipp32f>(), (int)src.step, dst.ptr<Ipp32f>(), (int)dst.step, roiSize, ippMskSize3x3, ippiBorderType, 0, pBuffer);
|
|
}
|
|
else
|
|
{
|
|
if (0 > ippiFilterScharrVertMaskBorderGetBufferSize(roiSize, ippMskSize3x3, ipp32f, ipp32f, 1, &bufferSize))
|
|
return false;
|
|
pBuffer = ippsMalloc_8u(bufferSize);
|
|
if (NULL == pBuffer)
|
|
return false;
|
|
sts = ippiFilterScharrVertMaskBorder_32f_C1R(src.ptr<Ipp32f>(), (int)src.step, dst.ptr<Ipp32f>(), (int)dst.step, roiSize, ippMskSize3x3, ippiBorderType, 0, pBuffer);
|
|
}
|
|
ippsFree(pBuffer);
|
|
if (sts < 0)
|
|
return false;;
|
|
|
|
if (FLT_EPSILON < fabs(scale - 1.0))
|
|
sts = ippiMulC_32f_C1R(dst.ptr<Ipp32f>(), (int)dst.step, (Ipp32f)scale, dst.ptr<Ipp32f>(), (int)dst.step, roiSize);
|
|
}
|
|
return (0 <= sts);
|
|
#else
|
|
CV_UNUSED(_src); CV_UNUSED(_dst); CV_UNUSED(ddepth); CV_UNUSED(dx); CV_UNUSED(dy); CV_UNUSED(scale); CV_UNUSED(delta); CV_UNUSED(borderType);
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
static bool IPPDerivSobel(InputArray _src, OutputArray _dst, int ddepth, int dx, int dy, int ksize, double scale, double delta, int borderType)
|
|
{
|
|
if ((borderType != BORDER_REPLICATE) || ((3 != ksize) && (5 != ksize)))
|
|
return false;
|
|
if (fabs(delta) > FLT_EPSILON)
|
|
return false;
|
|
if (1 != _src.channels())
|
|
return false;
|
|
|
|
int bufSize = 0;
|
|
cv::AutoBuffer<char> buffer;
|
|
Mat src = _src.getMat(), dst = _dst.getMat();
|
|
if ( ddepth < 0 )
|
|
ddepth = src.depth();
|
|
|
|
IppiSize roi = {src.cols, src.rows};
|
|
IppiMaskSize kernel = (IppiMaskSize)(ksize*10+ksize);
|
|
|
|
if (src.type() == CV_8U && dst.type() == CV_16S && scale == 1)
|
|
{
|
|
#if IPP_VERSION_X100 >= 900
|
|
if(ippiFilterSobelGetBufferSize(roi, kernel, ippNormL2, ipp8u, ipp16s, 1, &bufSize) < 0)
|
|
return false;
|
|
buffer.allocate(bufSize);
|
|
#endif
|
|
|
|
if ((dx == 1) && (dy == 0))
|
|
{
|
|
#if IPP_VERSION_X100 < 900
|
|
if (0 > ippiFilterSobelNegVertGetBufferSize_8u16s_C1R(roi, kernel,&bufSize))
|
|
return false;
|
|
buffer.allocate(bufSize);
|
|
#endif
|
|
|
|
if (0 > ippiFilterSobelNegVertBorder_8u16s_C1R(src.ptr<Ipp8u>(), (int)src.step,
|
|
dst.ptr<Ipp16s>(), (int)dst.step, roi, kernel,
|
|
ippBorderRepl, 0, (Ipp8u*)(char*)buffer))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
if ((dx == 0) && (dy == 1))
|
|
{
|
|
#if IPP_VERSION_X100 < 900
|
|
if (0 > ippiFilterSobelHorizGetBufferSize_8u16s_C1R(roi, kernel,&bufSize))
|
|
return false;
|
|
buffer.allocate(bufSize);
|
|
#endif
|
|
|
|
if (0 > ippiFilterSobelHorizBorder_8u16s_C1R(src.ptr<Ipp8u>(), (int)src.step,
|
|
dst.ptr<Ipp16s>(), (int)dst.step, roi, kernel,
|
|
ippBorderRepl, 0, (Ipp8u*)(char*)buffer))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
#if !defined(HAVE_IPP_ICV_ONLY)
|
|
if ((dx == 2) && (dy == 0))
|
|
{
|
|
#if IPP_VERSION_X100 < 900
|
|
if (0 > ippiFilterSobelVertSecondGetBufferSize_8u16s_C1R(roi, kernel,&bufSize))
|
|
return false;
|
|
buffer.allocate(bufSize);
|
|
#endif
|
|
|
|
if (0 > ippiFilterSobelVertSecondBorder_8u16s_C1R(src.ptr<Ipp8u>(), (int)src.step,
|
|
dst.ptr<Ipp16s>(), (int)dst.step, roi, kernel,
|
|
ippBorderRepl, 0, (Ipp8u*)(char*)buffer))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
if ((dx == 0) && (dy == 2))
|
|
{
|
|
#if IPP_VERSION_X100 < 900
|
|
if (0 > ippiFilterSobelHorizSecondGetBufferSize_8u16s_C1R(roi, kernel,&bufSize))
|
|
return false;
|
|
buffer.allocate(bufSize);
|
|
#endif
|
|
|
|
if (0 > ippiFilterSobelHorizSecondBorder_8u16s_C1R(src.ptr<Ipp8u>(), (int)src.step,
|
|
dst.ptr<Ipp16s>(), (int)dst.step, roi, kernel,
|
|
ippBorderRepl, 0, (Ipp8u*)(char*)buffer))
|
|
return false;
|
|
return true;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
if (src.type() == CV_32F && dst.type() == CV_32F)
|
|
{
|
|
#if IPP_VERSION_X100 >= 900
|
|
if(ippiFilterSobelGetBufferSize(roi, kernel, ippNormL2, ipp32f, ipp32f, 1, &bufSize) < 0)
|
|
return false;
|
|
buffer.allocate(bufSize);
|
|
#endif
|
|
|
|
#if IPP_DISABLE_BLOCK
|
|
if ((dx == 1) && (dy == 0))
|
|
{
|
|
#if IPP_VERSION_X100 < 900
|
|
if (0 > ippiFilterSobelNegVertGetBufferSize_32f_C1R(roi, kernel, &bufSize))
|
|
return false;
|
|
buffer.allocate(bufSize);
|
|
#endif
|
|
|
|
if (0 > ippiFilterSobelNegVertBorder_32f_C1R(src.ptr<Ipp32f>(), (int)src.step,
|
|
dst.ptr<Ipp32f>(), (int)dst.step, roi, kernel,
|
|
ippBorderRepl, 0, (Ipp8u*)(char*)buffer))
|
|
return false;
|
|
if(scale != 1)
|
|
ippiMulC_32f_C1R(dst.ptr<Ipp32f>(), (int)dst.step, (Ipp32f)scale, dst.ptr<Ipp32f>(), (int)dst.step, ippiSize(dst.cols*dst.channels(), dst.rows));
|
|
return true;
|
|
}
|
|
|
|
if ((dx == 0) && (dy == 1))
|
|
{
|
|
#if IPP_VERSION_X100 < 900
|
|
if (0 > ippiFilterSobelHorizGetBufferSize_32f_C1R(roi, kernel,&bufSize))
|
|
return false;
|
|
buffer.allocate(bufSize);
|
|
#endif
|
|
|
|
if (0 > ippiFilterSobelHorizBorder_32f_C1R(src.ptr<Ipp32f>(), (int)src.step,
|
|
dst.ptr<Ipp32f>(), (int)dst.step, roi, kernel,
|
|
ippBorderRepl, 0, (Ipp8u*)(char*)buffer))
|
|
return false;
|
|
if(scale != 1)
|
|
ippiMulC_32f_C1R(dst.ptr<Ipp32f>(), (int)dst.step, (Ipp32f)scale, dst.ptr<Ipp32f>(), (int)dst.step, ippiSize(dst.cols*dst.channels(), dst.rows));
|
|
return true;
|
|
}
|
|
#endif
|
|
#if !defined(HAVE_IPP_ICV_ONLY)
|
|
if((dx == 2) && (dy == 0))
|
|
{
|
|
#if IPP_VERSION_X100 < 900
|
|
if (0 > ippiFilterSobelVertSecondGetBufferSize_32f_C1R(roi, kernel,&bufSize))
|
|
return false;
|
|
buffer.allocate(bufSize);
|
|
#endif
|
|
|
|
if (0 > ippiFilterSobelVertSecondBorder_32f_C1R(src.ptr<Ipp32f>(), (int)src.step,
|
|
dst.ptr<Ipp32f>(), (int)dst.step, roi, kernel,
|
|
ippBorderRepl, 0, (Ipp8u*)(char*)buffer))
|
|
return false;
|
|
if(scale != 1)
|
|
ippiMulC_32f_C1R(dst.ptr<Ipp32f>(), (int)dst.step, (Ipp32f)scale, dst.ptr<Ipp32f>(), (int)dst.step, ippiSize(dst.cols*dst.channels(), dst.rows));
|
|
return true;
|
|
}
|
|
|
|
if((dx == 0) && (dy == 2))
|
|
{
|
|
#if IPP_VERSION_X100 < 900
|
|
if (0 > ippiFilterSobelHorizSecondGetBufferSize_32f_C1R(roi, kernel,&bufSize))
|
|
return false;
|
|
buffer.allocate(bufSize);
|
|
#endif
|
|
|
|
if (0 > ippiFilterSobelHorizSecondBorder_32f_C1R(src.ptr<Ipp32f>(), (int)src.step,
|
|
dst.ptr<Ipp32f>(), (int)dst.step, roi, kernel,
|
|
ippBorderRepl, 0, (Ipp8u*)(char*)buffer))
|
|
return false;
|
|
|
|
if(scale != 1)
|
|
ippiMulC_32f_C1R(dst.ptr<Ipp32f>(), (int)dst.step, (Ipp32f)scale, dst.ptr<Ipp32f>(), (int)dst.step, ippiSize(dst.cols*dst.channels(), dst.rows));
|
|
return true;
|
|
}
|
|
#endif
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool ipp_sobel(InputArray _src, OutputArray _dst, int ddepth, int dx, int dy, int ksize, double scale, double delta, int borderType)
|
|
{
|
|
if (ksize < 0)
|
|
{
|
|
if (IPPDerivScharr(_src, _dst, ddepth, dx, dy, scale, delta, borderType))
|
|
return true;
|
|
}
|
|
else if (0 < ksize)
|
|
{
|
|
if (IPPDerivSobel(_src, _dst, ddepth, dx, dy, ksize, scale, delta, borderType))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
void cv::Sobel( InputArray _src, OutputArray _dst, int ddepth, int dx, int dy,
|
|
int ksize, double scale, double delta, int borderType )
|
|
{
|
|
int stype = _src.type(), sdepth = CV_MAT_DEPTH(stype), cn = CV_MAT_CN(stype);
|
|
if (ddepth < 0)
|
|
ddepth = sdepth;
|
|
int dtype = CV_MAKE_TYPE(ddepth, cn);
|
|
_dst.create( _src.size(), dtype );
|
|
|
|
#ifdef HAVE_TEGRA_OPTIMIZATION
|
|
if (tegra::useTegra() && scale == 1.0 && delta == 0)
|
|
{
|
|
Mat src = _src.getMat(), dst = _dst.getMat();
|
|
if (ksize == 3 && tegra::sobel3x3(src, dst, dx, dy, borderType))
|
|
return;
|
|
if (ksize == -1 && tegra::scharr(src, dst, dx, dy, borderType))
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
CV_IPP_RUN(true, ipp_sobel(_src, _dst, ddepth, dx, dy, ksize, scale, delta, borderType));
|
|
|
|
int ktype = std::max(CV_32F, std::max(ddepth, sdepth));
|
|
|
|
Mat kx, ky;
|
|
getDerivKernels( kx, ky, dx, dy, ksize, false, ktype );
|
|
if( scale != 1 )
|
|
{
|
|
// usually the smoothing part is the slowest to compute,
|
|
// so try to scale it instead of the faster differenciating part
|
|
if( dx == 0 )
|
|
kx *= scale;
|
|
else
|
|
ky *= scale;
|
|
}
|
|
sepFilter2D( _src, _dst, ddepth, kx, ky, Point(-1, -1), delta, borderType );
|
|
}
|
|
|
|
|
|
void cv::Scharr( InputArray _src, OutputArray _dst, int ddepth, int dx, int dy,
|
|
double scale, double delta, int borderType )
|
|
{
|
|
int stype = _src.type(), sdepth = CV_MAT_DEPTH(stype), cn = CV_MAT_CN(stype);
|
|
if (ddepth < 0)
|
|
ddepth = sdepth;
|
|
int dtype = CV_MAKETYPE(ddepth, cn);
|
|
_dst.create( _src.size(), dtype );
|
|
|
|
#ifdef HAVE_TEGRA_OPTIMIZATION
|
|
if (tegra::useTegra() && scale == 1.0 && delta == 0)
|
|
{
|
|
Mat src = _src.getMat(), dst = _dst.getMat();
|
|
if (tegra::scharr(src, dst, dx, dy, borderType))
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
CV_IPP_RUN(true, IPPDerivScharr(_src, _dst, ddepth, dx, dy, scale, delta, borderType));
|
|
|
|
int ktype = std::max(CV_32F, std::max(ddepth, sdepth));
|
|
|
|
Mat kx, ky;
|
|
getScharrKernels( kx, ky, dx, dy, false, ktype );
|
|
if( scale != 1 )
|
|
{
|
|
// usually the smoothing part is the slowest to compute,
|
|
// so try to scale it instead of the faster differenciating part
|
|
if( dx == 0 )
|
|
kx *= scale;
|
|
else
|
|
ky *= scale;
|
|
}
|
|
sepFilter2D( _src, _dst, ddepth, kx, ky, Point(-1, -1), delta, borderType );
|
|
}
|
|
|
|
#ifdef HAVE_OPENCL
|
|
|
|
namespace cv {
|
|
|
|
#define LAPLACIAN_LOCAL_MEM(tileX, tileY, ksize, elsize) (((tileX) + 2 * (int)((ksize) / 2)) * (3 * (tileY) + 2 * (int)((ksize) / 2)) * elsize)
|
|
|
|
static bool ocl_Laplacian5(InputArray _src, OutputArray _dst,
|
|
const Mat & kd, const Mat & ks, double scale, double delta,
|
|
int borderType, int depth, int ddepth)
|
|
{
|
|
const size_t tileSizeX = 16;
|
|
const size_t tileSizeYmin = 8;
|
|
|
|
const ocl::Device dev = ocl::Device::getDefault();
|
|
|
|
int stype = _src.type();
|
|
int sdepth = CV_MAT_DEPTH(stype), cn = CV_MAT_CN(stype), esz = CV_ELEM_SIZE(stype);
|
|
|
|
bool doubleSupport = dev.doubleFPConfig() > 0;
|
|
if (!doubleSupport && (sdepth == CV_64F || ddepth == CV_64F))
|
|
return false;
|
|
|
|
Mat kernelX = kd.reshape(1, 1);
|
|
if (kernelX.cols % 2 != 1)
|
|
return false;
|
|
Mat kernelY = ks.reshape(1, 1);
|
|
if (kernelY.cols % 2 != 1)
|
|
return false;
|
|
CV_Assert(kernelX.cols == kernelY.cols);
|
|
|
|
size_t wgs = dev.maxWorkGroupSize();
|
|
size_t lmsz = dev.localMemSize();
|
|
size_t src_step = _src.step(), src_offset = _src.offset();
|
|
const size_t tileSizeYmax = wgs / tileSizeX;
|
|
|
|
// workaround for Nvidia: 3 channel vector type takes 4*elem_size in local memory
|
|
int loc_mem_cn = dev.vendorID() == ocl::Device::VENDOR_NVIDIA && cn == 3 ? 4 : cn;
|
|
|
|
if (((src_offset % src_step) % esz == 0) &&
|
|
(
|
|
(borderType == BORDER_CONSTANT || borderType == BORDER_REPLICATE) ||
|
|
((borderType == BORDER_REFLECT || borderType == BORDER_WRAP || borderType == BORDER_REFLECT_101) &&
|
|
(_src.cols() >= (int) (kernelX.cols + tileSizeX) && _src.rows() >= (int) (kernelY.cols + tileSizeYmax)))
|
|
) &&
|
|
(tileSizeX * tileSizeYmin <= wgs) &&
|
|
(LAPLACIAN_LOCAL_MEM(tileSizeX, tileSizeYmin, kernelX.cols, loc_mem_cn * 4) <= lmsz)
|
|
)
|
|
{
|
|
Size size = _src.size(), wholeSize;
|
|
Point origin;
|
|
int dtype = CV_MAKE_TYPE(ddepth, cn);
|
|
int wdepth = CV_32F;
|
|
|
|
size_t tileSizeY = tileSizeYmax;
|
|
while ((tileSizeX * tileSizeY > wgs) || (LAPLACIAN_LOCAL_MEM(tileSizeX, tileSizeY, kernelX.cols, loc_mem_cn * 4) > lmsz))
|
|
{
|
|
tileSizeY /= 2;
|
|
}
|
|
size_t lt2[2] = { tileSizeX, tileSizeY};
|
|
size_t gt2[2] = { lt2[0] * (1 + (size.width - 1) / lt2[0]), lt2[1] };
|
|
|
|
char cvt[2][40];
|
|
const char * const borderMap[] = { "BORDER_CONSTANT", "BORDER_REPLICATE", "BORDER_REFLECT", "BORDER_WRAP",
|
|
"BORDER_REFLECT_101" };
|
|
|
|
String opts = cv::format("-D BLK_X=%d -D BLK_Y=%d -D RADIUS=%d%s%s"
|
|
" -D convertToWT=%s -D convertToDT=%s"
|
|
" -D %s -D srcT1=%s -D dstT1=%s -D WT1=%s"
|
|
" -D srcT=%s -D dstT=%s -D WT=%s"
|
|
" -D CN=%d ",
|
|
(int)lt2[0], (int)lt2[1], kernelX.cols / 2,
|
|
ocl::kernelToStr(kernelX, wdepth, "KERNEL_MATRIX_X").c_str(),
|
|
ocl::kernelToStr(kernelY, wdepth, "KERNEL_MATRIX_Y").c_str(),
|
|
ocl::convertTypeStr(sdepth, wdepth, cn, cvt[0]),
|
|
ocl::convertTypeStr(wdepth, ddepth, cn, cvt[1]),
|
|
borderMap[borderType],
|
|
ocl::typeToStr(sdepth), ocl::typeToStr(ddepth), ocl::typeToStr(wdepth),
|
|
ocl::typeToStr(CV_MAKETYPE(sdepth, cn)),
|
|
ocl::typeToStr(CV_MAKETYPE(ddepth, cn)),
|
|
ocl::typeToStr(CV_MAKETYPE(wdepth, cn)),
|
|
cn);
|
|
|
|
ocl::Kernel k("laplacian", ocl::imgproc::laplacian5_oclsrc, opts);
|
|
if (k.empty())
|
|
return false;
|
|
UMat src = _src.getUMat();
|
|
_dst.create(size, dtype);
|
|
UMat dst = _dst.getUMat();
|
|
|
|
int src_offset_x = static_cast<int>((src_offset % src_step) / esz);
|
|
int src_offset_y = static_cast<int>(src_offset / src_step);
|
|
|
|
src.locateROI(wholeSize, origin);
|
|
|
|
k.args(ocl::KernelArg::PtrReadOnly(src), (int)src_step, src_offset_x, src_offset_y,
|
|
wholeSize.height, wholeSize.width, ocl::KernelArg::WriteOnly(dst),
|
|
static_cast<float>(scale), static_cast<float>(delta));
|
|
|
|
return k.run(2, gt2, lt2, false);
|
|
}
|
|
int iscale = cvRound(scale), idelta = cvRound(delta);
|
|
bool floatCoeff = std::fabs(delta - idelta) > DBL_EPSILON || std::fabs(scale - iscale) > DBL_EPSILON;
|
|
int wdepth = std::max(depth, floatCoeff ? CV_32F : CV_32S), kercn = 1;
|
|
|
|
if (!doubleSupport && wdepth == CV_64F)
|
|
return false;
|
|
|
|
char cvt[2][40];
|
|
ocl::Kernel k("sumConvert", ocl::imgproc::laplacian5_oclsrc,
|
|
format("-D ONLY_SUM_CONVERT "
|
|
"-D srcT=%s -D WT=%s -D dstT=%s -D coeffT=%s -D wdepth=%d "
|
|
"-D convertToWT=%s -D convertToDT=%s%s",
|
|
ocl::typeToStr(CV_MAKE_TYPE(depth, kercn)),
|
|
ocl::typeToStr(CV_MAKE_TYPE(wdepth, kercn)),
|
|
ocl::typeToStr(CV_MAKE_TYPE(ddepth, kercn)),
|
|
ocl::typeToStr(wdepth), wdepth,
|
|
ocl::convertTypeStr(depth, wdepth, kercn, cvt[0]),
|
|
ocl::convertTypeStr(wdepth, ddepth, kercn, cvt[1]),
|
|
doubleSupport ? " -D DOUBLE_SUPPORT" : ""));
|
|
if (k.empty())
|
|
return false;
|
|
|
|
UMat d2x, d2y;
|
|
sepFilter2D(_src, d2x, depth, kd, ks, Point(-1, -1), 0, borderType);
|
|
sepFilter2D(_src, d2y, depth, ks, kd, Point(-1, -1), 0, borderType);
|
|
|
|
UMat dst = _dst.getUMat();
|
|
|
|
ocl::KernelArg d2xarg = ocl::KernelArg::ReadOnlyNoSize(d2x),
|
|
d2yarg = ocl::KernelArg::ReadOnlyNoSize(d2y),
|
|
dstarg = ocl::KernelArg::WriteOnly(dst, cn, kercn);
|
|
|
|
if (wdepth >= CV_32F)
|
|
k.args(d2xarg, d2yarg, dstarg, (float)scale, (float)delta);
|
|
else
|
|
k.args(d2xarg, d2yarg, dstarg, iscale, idelta);
|
|
|
|
size_t globalsize[] = { dst.cols * cn / kercn, dst.rows };
|
|
return k.run(2, globalsize, NULL, false);
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
#if defined(HAVE_IPP)
|
|
namespace cv
|
|
{
|
|
static bool ipp_Laplacian(InputArray _src, OutputArray _dst, int ddepth, int ksize,
|
|
double scale, double delta, int borderType)
|
|
{
|
|
int stype = _src.type(), sdepth = CV_MAT_DEPTH(stype), cn = CV_MAT_CN(stype);
|
|
if (ddepth < 0)
|
|
ddepth = sdepth;
|
|
_dst.create( _src.size(), CV_MAKETYPE(ddepth, cn) );
|
|
|
|
int iscale = saturate_cast<int>(scale), idelta = saturate_cast<int>(delta);
|
|
bool floatScale = std::fabs(scale - iscale) > DBL_EPSILON, needScale = iscale != 1;
|
|
bool floatDelta = std::fabs(delta - idelta) > DBL_EPSILON, needDelta = delta != 0;
|
|
int borderTypeNI = borderType & ~BORDER_ISOLATED;
|
|
Mat src = _src.getMat(), dst = _dst.getMat();
|
|
|
|
if (src.data != dst.data)
|
|
{
|
|
Ipp32s bufsize;
|
|
IppStatus status = (IppStatus)-1;
|
|
IppiSize roisize = { src.cols, src.rows };
|
|
IppiMaskSize masksize = ksize == 3 ? ippMskSize3x3 : ippMskSize5x5;
|
|
IppiBorderType borderTypeIpp = ippiGetBorderType(borderTypeNI);
|
|
|
|
#define IPP_FILTER_LAPLACIAN(ippsrctype, ippdsttype, ippfavor) \
|
|
do \
|
|
{ \
|
|
if (borderTypeIpp >= 0 && ippiFilterLaplacianGetBufferSize_##ippfavor##_C1R(roisize, masksize, &bufsize) >= 0) \
|
|
{ \
|
|
Ipp8u * buffer = ippsMalloc_8u(bufsize); \
|
|
status = ippiFilterLaplacianBorder_##ippfavor##_C1R(src.ptr<ippsrctype>(), (int)src.step, dst.ptr<ippdsttype>(), \
|
|
(int)dst.step, roisize, masksize, borderTypeIpp, 0, buffer); \
|
|
ippsFree(buffer); \
|
|
} \
|
|
} while ((void)0, 0)
|
|
|
|
CV_SUPPRESS_DEPRECATED_START
|
|
if (sdepth == CV_8U && ddepth == CV_16S && !floatScale && !floatDelta)
|
|
{
|
|
IPP_FILTER_LAPLACIAN(Ipp8u, Ipp16s, 8u16s);
|
|
|
|
if (needScale && status >= 0)
|
|
status = ippiMulC_16s_C1IRSfs((Ipp16s)iscale, dst.ptr<Ipp16s>(), (int)dst.step, roisize, 0);
|
|
if (needDelta && status >= 0)
|
|
status = ippiAddC_16s_C1IRSfs((Ipp16s)idelta, dst.ptr<Ipp16s>(), (int)dst.step, roisize, 0);
|
|
}
|
|
else if (sdepth == CV_32F && ddepth == CV_32F)
|
|
{
|
|
IPP_FILTER_LAPLACIAN(Ipp32f, Ipp32f, 32f);
|
|
|
|
if (needScale && status >= 0)
|
|
status = ippiMulC_32f_C1IR((Ipp32f)scale, dst.ptr<Ipp32f>(), (int)dst.step, roisize);
|
|
if (needDelta && status >= 0)
|
|
status = ippiAddC_32f_C1IR((Ipp32f)delta, dst.ptr<Ipp32f>(), (int)dst.step, roisize);
|
|
}
|
|
CV_SUPPRESS_DEPRECATED_END
|
|
|
|
if (status >= 0)
|
|
return true;
|
|
}
|
|
|
|
#undef IPP_FILTER_LAPLACIAN
|
|
return false;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
void cv::Laplacian( InputArray _src, OutputArray _dst, int ddepth, int ksize,
|
|
double scale, double delta, int borderType )
|
|
{
|
|
int stype = _src.type(), sdepth = CV_MAT_DEPTH(stype), cn = CV_MAT_CN(stype);
|
|
if (ddepth < 0)
|
|
ddepth = sdepth;
|
|
_dst.create( _src.size(), CV_MAKETYPE(ddepth, cn) );
|
|
|
|
CV_IPP_RUN((ksize == 3 || ksize == 5) && ((borderType & BORDER_ISOLATED) != 0 || !_src.isSubmatrix()) &&
|
|
((stype == CV_8UC1 && ddepth == CV_16S) || (ddepth == CV_32F && stype == CV_32FC1)) && (!cv::ocl::useOpenCL()),
|
|
ipp_Laplacian(_src, _dst, ddepth, ksize, scale, delta, borderType));
|
|
|
|
|
|
#ifdef HAVE_TEGRA_OPTIMIZATION
|
|
if (tegra::useTegra() && scale == 1.0 && delta == 0)
|
|
{
|
|
Mat src = _src.getMat(), dst = _dst.getMat();
|
|
if (ksize == 1 && tegra::laplace1(src, dst, borderType))
|
|
return;
|
|
if (ksize == 3 && tegra::laplace3(src, dst, borderType))
|
|
return;
|
|
if (ksize == 5 && tegra::laplace5(src, dst, borderType))
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
if( ksize == 1 || ksize == 3 )
|
|
{
|
|
float K[2][9] =
|
|
{
|
|
{ 0, 1, 0, 1, -4, 1, 0, 1, 0 },
|
|
{ 2, 0, 2, 0, -8, 0, 2, 0, 2 }
|
|
};
|
|
Mat kernel(3, 3, CV_32F, K[ksize == 3]);
|
|
if( scale != 1 )
|
|
kernel *= scale;
|
|
filter2D( _src, _dst, ddepth, kernel, Point(-1, -1), delta, borderType );
|
|
}
|
|
else
|
|
{
|
|
int ktype = std::max(CV_32F, std::max(ddepth, sdepth));
|
|
int wdepth = sdepth == CV_8U && ksize <= 5 ? CV_16S : sdepth <= CV_32F ? CV_32F : CV_64F;
|
|
int wtype = CV_MAKETYPE(wdepth, cn);
|
|
Mat kd, ks;
|
|
getSobelKernels( kd, ks, 2, 0, ksize, false, ktype );
|
|
|
|
CV_OCL_RUN(_dst.isUMat(),
|
|
ocl_Laplacian5(_src, _dst, kd, ks, scale,
|
|
delta, borderType, wdepth, ddepth))
|
|
|
|
const size_t STRIPE_SIZE = 1 << 14;
|
|
Ptr<FilterEngine> fx = createSeparableLinearFilter(stype,
|
|
wtype, kd, ks, Point(-1,-1), 0, borderType, borderType, Scalar() );
|
|
Ptr<FilterEngine> fy = createSeparableLinearFilter(stype,
|
|
wtype, ks, kd, Point(-1,-1), 0, borderType, borderType, Scalar() );
|
|
|
|
Mat src = _src.getMat(), dst = _dst.getMat();
|
|
int y = fx->start(src), dsty = 0, dy = 0;
|
|
fy->start(src);
|
|
const uchar* sptr = src.ptr(y);
|
|
|
|
int dy0 = std::min(std::max((int)(STRIPE_SIZE/(CV_ELEM_SIZE(stype)*src.cols)), 1), src.rows);
|
|
Mat d2x( dy0 + kd.rows - 1, src.cols, wtype );
|
|
Mat d2y( dy0 + kd.rows - 1, src.cols, wtype );
|
|
|
|
for( ; dsty < src.rows; sptr += dy0*src.step, dsty += dy )
|
|
{
|
|
fx->proceed( sptr, (int)src.step, dy0, d2x.ptr(), (int)d2x.step );
|
|
dy = fy->proceed( sptr, (int)src.step, dy0, d2y.ptr(), (int)d2y.step );
|
|
if( dy > 0 )
|
|
{
|
|
Mat dstripe = dst.rowRange(dsty, dsty + dy);
|
|
d2x.rows = d2y.rows = dy; // modify the headers, which should work
|
|
d2x += d2y;
|
|
d2x.convertTo( dstripe, ddepth, scale, delta );
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
CV_IMPL void
|
|
cvSobel( const void* srcarr, void* dstarr, int dx, int dy, int aperture_size )
|
|
{
|
|
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr);
|
|
|
|
CV_Assert( src.size() == dst.size() && src.channels() == dst.channels() );
|
|
|
|
cv::Sobel( src, dst, dst.depth(), dx, dy, aperture_size, 1, 0, cv::BORDER_REPLICATE );
|
|
if( CV_IS_IMAGE(srcarr) && ((IplImage*)srcarr)->origin && dy % 2 != 0 )
|
|
dst *= -1;
|
|
}
|
|
|
|
|
|
CV_IMPL void
|
|
cvLaplace( const void* srcarr, void* dstarr, int aperture_size )
|
|
{
|
|
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr);
|
|
|
|
CV_Assert( src.size() == dst.size() && src.channels() == dst.channels() );
|
|
|
|
cv::Laplacian( src, dst, dst.depth(), aperture_size, 1, 0, cv::BORDER_REPLICATE );
|
|
}
|
|
|
|
/* End of file. */
|