mirror of
https://github.com/opencv/opencv.git
synced 2025-01-22 09:36:59 +08:00
240 lines
9.2 KiB
Common Lisp
240 lines
9.2 KiB
Common Lisp
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
|
|
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// @Authors
|
|
// Zhang Ying, zhangying913@gmail.com
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors as is and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#ifdef DOUBLE_SUPPORT
|
|
#ifdef cl_amd_fp64
|
|
#pragma OPENCL EXTENSION cl_amd_fp64:enable
|
|
#elif defined (cl_khr_fp64)
|
|
#pragma OPENCL EXTENSION cl_khr_fp64:enable
|
|
#endif
|
|
#define CT double
|
|
#else
|
|
#define CT float
|
|
#endif
|
|
|
|
#define INTER_BITS 5
|
|
#define INTER_TAB_SIZE (1 << INTER_BITS)
|
|
#define INTER_SCALE 1.f / INTER_TAB_SIZE
|
|
#define AB_BITS max(10, (int)INTER_BITS)
|
|
#define AB_SCALE (1 << AB_BITS)
|
|
#define INTER_REMAP_COEF_BITS 15
|
|
#define INTER_REMAP_COEF_SCALE (1 << INTER_REMAP_COEF_BITS)
|
|
|
|
#define noconvert
|
|
|
|
#ifndef ST
|
|
#define ST T
|
|
#endif
|
|
|
|
#if cn != 3
|
|
#define loadpix(addr) *(__global const T*)(addr)
|
|
#define storepix(val, addr) *(__global T*)(addr) = val
|
|
#define scalar scalar_
|
|
#define pixsize (int)sizeof(T)
|
|
#else
|
|
#define loadpix(addr) vload3(0, (__global const T1*)(addr))
|
|
#define storepix(val, addr) vstore3(val, 0, (__global T1*)(addr))
|
|
#ifdef INTER_NEAREST
|
|
#define scalar (T)(scalar_.x, scalar_.y, scalar_.z)
|
|
#else
|
|
#define scalar (WT)(scalar_.x, scalar_.y, scalar_.z)
|
|
#endif
|
|
#define pixsize ((int)sizeof(T1)*3)
|
|
#endif
|
|
|
|
#ifdef INTER_NEAREST
|
|
|
|
__kernel void warpPerspective(__global const uchar * srcptr, int src_step, int src_offset, int src_rows, int src_cols,
|
|
__global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols,
|
|
__constant CT * M, ST scalar_)
|
|
{
|
|
int dx = get_global_id(0);
|
|
int dy = get_global_id(1);
|
|
|
|
if (dx < dst_cols && dy < dst_rows)
|
|
{
|
|
CT X0 = M[0] * dx + M[1] * dy + M[2];
|
|
CT Y0 = M[3] * dx + M[4] * dy + M[5];
|
|
CT W = M[6] * dx + M[7] * dy + M[8];
|
|
W = W != 0.0f ? 1.f / W : 0.0f;
|
|
short sx = convert_short_sat_rte(X0*W);
|
|
short sy = convert_short_sat_rte(Y0*W);
|
|
|
|
int dst_index = mad24(dy, dst_step, dx * pixsize + dst_offset);
|
|
|
|
if (sx >= 0 && sx < src_cols && sy >= 0 && sy < src_rows)
|
|
{
|
|
int src_index = mad24(sy, src_step, sx * pixsize + src_offset);
|
|
storepix(loadpix(srcptr + src_index), dstptr + dst_index);
|
|
}
|
|
else
|
|
storepix(scalar, dstptr + dst_index);
|
|
}
|
|
}
|
|
|
|
#elif defined INTER_LINEAR
|
|
|
|
__kernel void warpPerspective(__global const uchar * srcptr, int src_step, int src_offset, int src_rows, int src_cols,
|
|
__global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols,
|
|
__constant CT * M, ST scalar_)
|
|
{
|
|
int dx = get_global_id(0);
|
|
int dy = get_global_id(1);
|
|
|
|
if (dx < dst_cols && dy < dst_rows)
|
|
{
|
|
CT X0 = M[0] * dx + M[1] * dy + M[2];
|
|
CT Y0 = M[3] * dx + M[4] * dy + M[5];
|
|
CT W = M[6] * dx + M[7] * dy + M[8];
|
|
W = W != 0.0f ? INTER_TAB_SIZE / W : 0.0f;
|
|
int X = rint(X0 * W), Y = rint(Y0 * W);
|
|
|
|
short sx = convert_short_sat(X >> INTER_BITS);
|
|
short sy = convert_short_sat(Y >> INTER_BITS);
|
|
short ay = (short)(Y & (INTER_TAB_SIZE - 1));
|
|
short ax = (short)(X & (INTER_TAB_SIZE - 1));
|
|
|
|
WT v0 = (sx >= 0 && sx < src_cols && sy >= 0 && sy < src_rows) ?
|
|
convertToWT(loadpix(srcptr + mad24(sy, src_step, src_offset + sx * pixsize))) : scalar;
|
|
WT v1 = (sx+1 >= 0 && sx+1 < src_cols && sy >= 0 && sy < src_rows) ?
|
|
convertToWT(loadpix(srcptr + mad24(sy, src_step, src_offset + (sx+1) * pixsize))) : scalar;
|
|
WT v2 = (sx >= 0 && sx < src_cols && sy+1 >= 0 && sy+1 < src_rows) ?
|
|
convertToWT(loadpix(srcptr + mad24(sy+1, src_step, src_offset + sx * pixsize))) : scalar;
|
|
WT v3 = (sx+1 >= 0 && sx+1 < src_cols && sy+1 >= 0 && sy+1 < src_rows) ?
|
|
convertToWT(loadpix(srcptr + mad24(sy+1, src_step, src_offset + (sx+1) * pixsize))) : scalar;
|
|
|
|
float taby = 1.f/INTER_TAB_SIZE*ay;
|
|
float tabx = 1.f/INTER_TAB_SIZE*ax;
|
|
|
|
int dst_index = mad24(dy, dst_step, dst_offset + dx * pixsize);
|
|
|
|
#if depth <= 4
|
|
int itab0 = convert_short_sat_rte( (1.0f-taby)*(1.0f-tabx) * INTER_REMAP_COEF_SCALE );
|
|
int itab1 = convert_short_sat_rte( (1.0f-taby)*tabx * INTER_REMAP_COEF_SCALE );
|
|
int itab2 = convert_short_sat_rte( taby*(1.0f-tabx) * INTER_REMAP_COEF_SCALE );
|
|
int itab3 = convert_short_sat_rte( taby*tabx * INTER_REMAP_COEF_SCALE );
|
|
|
|
WT val = v0 * itab0 + v1 * itab1 + v2 * itab2 + v3 * itab3;
|
|
storepix(convertToT((val + (1 << (INTER_REMAP_COEF_BITS-1))) >> INTER_REMAP_COEF_BITS), dstptr + dst_index);
|
|
#else
|
|
float tabx2 = 1.0f - tabx, taby2 = 1.0f - taby;
|
|
WT val = v0 * tabx2 * taby2 + v1 * tabx * taby2 + v2 * tabx2 * taby + v3 * tabx * taby;
|
|
storepix(convertToT(val), dstptr + dst_index);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#elif defined INTER_CUBIC
|
|
|
|
inline void interpolateCubic( float x, float* coeffs )
|
|
{
|
|
const float A = -0.75f;
|
|
|
|
coeffs[0] = ((A*(x + 1.f) - 5.0f*A)*(x + 1.f) + 8.0f*A)*(x + 1.f) - 4.0f*A;
|
|
coeffs[1] = ((A + 2.f)*x - (A + 3.f))*x*x + 1.f;
|
|
coeffs[2] = ((A + 2.f)*(1.f - x) - (A + 3.f))*(1.f - x)*(1.f - x) + 1.f;
|
|
coeffs[3] = 1.f - coeffs[0] - coeffs[1] - coeffs[2];
|
|
}
|
|
|
|
__kernel void warpPerspective(__global const uchar * srcptr, int src_step, int src_offset, int src_rows, int src_cols,
|
|
__global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols,
|
|
__constant CT * M, ST scalar_)
|
|
{
|
|
int dx = get_global_id(0);
|
|
int dy = get_global_id(1);
|
|
|
|
if (dx < dst_cols && dy < dst_rows)
|
|
{
|
|
CT X0 = M[0] * dx + M[1] * dy + M[2];
|
|
CT Y0 = M[3] * dx + M[4] * dy + M[5];
|
|
CT W = M[6] * dx + M[7] * dy + M[8];
|
|
W = W != 0.0f ? INTER_TAB_SIZE / W : 0.0f;
|
|
int X = rint(X0 * W), Y = rint(Y0 * W);
|
|
|
|
short sx = convert_short_sat(X >> INTER_BITS) - 1;
|
|
short sy = convert_short_sat(Y >> INTER_BITS) - 1;
|
|
short ay = (short)(Y & (INTER_TAB_SIZE-1));
|
|
short ax = (short)(X & (INTER_TAB_SIZE-1));
|
|
|
|
WT v[16];
|
|
#pragma unroll
|
|
for (int y = 0; y < 4; y++)
|
|
#pragma unroll
|
|
for (int x = 0; x < 4; x++)
|
|
v[mad24(y, 4, x)] = (sx+x >= 0 && sx+x < src_cols && sy+y >= 0 && sy+y < src_rows) ?
|
|
convertToWT(loadpix(srcptr + mad24(sy+y, src_step, src_offset + (sx+x) * pixsize))) : scalar;
|
|
|
|
float tab1y[4], tab1x[4];
|
|
|
|
float ayy = INTER_SCALE * ay;
|
|
float axx = INTER_SCALE * ax;
|
|
interpolateCubic(ayy, tab1y);
|
|
interpolateCubic(axx, tab1x);
|
|
|
|
int dst_index = mad24(dy, dst_step, dst_offset + dx * pixsize);
|
|
|
|
WT sum = (WT)(0);
|
|
#if depth <= 4
|
|
int itab[16];
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < 16; i++)
|
|
itab[i] = rint(tab1y[(i>>2)] * tab1x[(i&3)] * INTER_REMAP_COEF_SCALE);
|
|
|
|
#pragma unroll
|
|
for (int i = 0; i < 16; i++)
|
|
sum += v[i] * itab[i];
|
|
storepix(convertToT( (sum + (1 << (INTER_REMAP_COEF_BITS-1))) >> INTER_REMAP_COEF_BITS ), dstptr + dst_index);
|
|
#else
|
|
#pragma unroll
|
|
for (int i = 0; i < 16; i++)
|
|
sum += v[i] * tab1y[(i>>2)] * tab1x[(i&3)];
|
|
storepix(convertToT( sum ), dstptr + dst_index);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#endif
|