mirror of
https://github.com/opencv/opencv.git
synced 2025-07-25 22:57:53 +08:00

Stitcher will now make a working copy of the CameraParams object to avoid side effects when composing Panorama. Makes it possible to estimate transform once and then compose multiple panoramas. Useful for setup with fixed cameras.
648 lines
21 KiB
C++
648 lines
21 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
|
|
namespace cv {
|
|
|
|
Stitcher Stitcher::createDefault(bool try_use_gpu)
|
|
{
|
|
Stitcher stitcher;
|
|
stitcher.setRegistrationResol(0.6);
|
|
stitcher.setSeamEstimationResol(0.1);
|
|
stitcher.setCompositingResol(ORIG_RESOL);
|
|
stitcher.setPanoConfidenceThresh(1);
|
|
stitcher.setWaveCorrection(true);
|
|
stitcher.setWaveCorrectKind(detail::WAVE_CORRECT_HORIZ);
|
|
stitcher.setFeaturesMatcher(makePtr<detail::BestOf2NearestMatcher>(try_use_gpu));
|
|
stitcher.setBundleAdjuster(makePtr<detail::BundleAdjusterRay>());
|
|
|
|
#ifdef HAVE_OPENCV_CUDALEGACY
|
|
if (try_use_gpu && cuda::getCudaEnabledDeviceCount() > 0)
|
|
{
|
|
#ifdef HAVE_OPENCV_XFEATURES2D
|
|
stitcher.setFeaturesFinder(makePtr<detail::SurfFeaturesFinderGpu>());
|
|
#else
|
|
stitcher.setFeaturesFinder(makePtr<detail::OrbFeaturesFinder>());
|
|
#endif
|
|
stitcher.setWarper(makePtr<SphericalWarperGpu>());
|
|
stitcher.setSeamFinder(makePtr<detail::GraphCutSeamFinderGpu>());
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
#ifdef HAVE_OPENCV_XFEATURES2D
|
|
stitcher.setFeaturesFinder(makePtr<detail::SurfFeaturesFinder>());
|
|
#else
|
|
stitcher.setFeaturesFinder(makePtr<detail::OrbFeaturesFinder>());
|
|
#endif
|
|
stitcher.setWarper(makePtr<SphericalWarper>());
|
|
stitcher.setSeamFinder(makePtr<detail::GraphCutSeamFinder>(detail::GraphCutSeamFinderBase::COST_COLOR));
|
|
}
|
|
|
|
stitcher.setExposureCompensator(makePtr<detail::BlocksGainCompensator>());
|
|
stitcher.setBlender(makePtr<detail::MultiBandBlender>(try_use_gpu));
|
|
|
|
stitcher.work_scale_ = 1;
|
|
stitcher.seam_scale_ = 1;
|
|
stitcher.seam_work_aspect_ = 1;
|
|
stitcher.warped_image_scale_ = 1;
|
|
|
|
return stitcher;
|
|
}
|
|
|
|
|
|
Ptr<Stitcher> Stitcher::create(Mode mode, bool try_use_gpu)
|
|
{
|
|
Stitcher stit = createDefault(try_use_gpu);
|
|
Ptr<Stitcher> stitcher = makePtr<Stitcher>(stit);
|
|
|
|
switch (mode)
|
|
{
|
|
case PANORAMA: // PANORAMA is the default
|
|
// already setup
|
|
break;
|
|
|
|
case SCANS:
|
|
stitcher->setWaveCorrection(false);
|
|
stitcher->setFeaturesMatcher(makePtr<detail::AffineBestOf2NearestMatcher>(false, try_use_gpu));
|
|
stitcher->setBundleAdjuster(makePtr<detail::BundleAdjusterAffinePartial>());
|
|
stitcher->setWarper(makePtr<AffineWarper>());
|
|
stitcher->setExposureCompensator(makePtr<detail::NoExposureCompensator>());
|
|
break;
|
|
|
|
default:
|
|
CV_Error(Error::StsBadArg, "Invalid stitching mode. Must be one of Stitcher::Mode");
|
|
break;
|
|
}
|
|
|
|
return stitcher;
|
|
}
|
|
|
|
|
|
Stitcher::Status Stitcher::estimateTransform(InputArrayOfArrays images)
|
|
{
|
|
CV_INSTRUMENT_REGION()
|
|
|
|
return estimateTransform(images, std::vector<std::vector<Rect> >());
|
|
}
|
|
|
|
|
|
Stitcher::Status Stitcher::estimateTransform(InputArrayOfArrays images, const std::vector<std::vector<Rect> > &rois)
|
|
{
|
|
CV_INSTRUMENT_REGION()
|
|
|
|
images.getUMatVector(imgs_);
|
|
rois_ = rois;
|
|
|
|
Status status;
|
|
|
|
if ((status = matchImages()) != OK)
|
|
return status;
|
|
|
|
if ((status = estimateCameraParams()) != OK)
|
|
return status;
|
|
|
|
return OK;
|
|
}
|
|
|
|
|
|
|
|
Stitcher::Status Stitcher::composePanorama(OutputArray pano)
|
|
{
|
|
CV_INSTRUMENT_REGION()
|
|
|
|
return composePanorama(std::vector<UMat>(), pano);
|
|
}
|
|
|
|
|
|
Stitcher::Status Stitcher::composePanorama(InputArrayOfArrays images, OutputArray pano)
|
|
{
|
|
CV_INSTRUMENT_REGION()
|
|
|
|
LOGLN("Warping images (auxiliary)... ");
|
|
|
|
std::vector<UMat> imgs;
|
|
images.getUMatVector(imgs);
|
|
if (!imgs.empty())
|
|
{
|
|
CV_Assert(imgs.size() == imgs_.size());
|
|
|
|
UMat img;
|
|
seam_est_imgs_.resize(imgs.size());
|
|
|
|
for (size_t i = 0; i < imgs.size(); ++i)
|
|
{
|
|
imgs_[i] = imgs[i];
|
|
resize(imgs[i], img, Size(), seam_scale_, seam_scale_);
|
|
seam_est_imgs_[i] = img.clone();
|
|
}
|
|
|
|
std::vector<UMat> seam_est_imgs_subset;
|
|
std::vector<UMat> imgs_subset;
|
|
|
|
for (size_t i = 0; i < indices_.size(); ++i)
|
|
{
|
|
imgs_subset.push_back(imgs_[indices_[i]]);
|
|
seam_est_imgs_subset.push_back(seam_est_imgs_[indices_[i]]);
|
|
}
|
|
|
|
seam_est_imgs_ = seam_est_imgs_subset;
|
|
imgs_ = imgs_subset;
|
|
}
|
|
|
|
UMat pano_;
|
|
|
|
#if ENABLE_LOG
|
|
int64 t = getTickCount();
|
|
#endif
|
|
|
|
std::vector<Point> corners(imgs_.size());
|
|
std::vector<UMat> masks_warped(imgs_.size());
|
|
std::vector<UMat> images_warped(imgs_.size());
|
|
std::vector<Size> sizes(imgs_.size());
|
|
std::vector<UMat> masks(imgs_.size());
|
|
|
|
// Prepare image masks
|
|
for (size_t i = 0; i < imgs_.size(); ++i)
|
|
{
|
|
masks[i].create(seam_est_imgs_[i].size(), CV_8U);
|
|
masks[i].setTo(Scalar::all(255));
|
|
}
|
|
|
|
// Warp images and their masks
|
|
Ptr<detail::RotationWarper> w = warper_->create(float(warped_image_scale_ * seam_work_aspect_));
|
|
for (size_t i = 0; i < imgs_.size(); ++i)
|
|
{
|
|
Mat_<float> K;
|
|
cameras_[i].K().convertTo(K, CV_32F);
|
|
K(0,0) *= (float)seam_work_aspect_;
|
|
K(0,2) *= (float)seam_work_aspect_;
|
|
K(1,1) *= (float)seam_work_aspect_;
|
|
K(1,2) *= (float)seam_work_aspect_;
|
|
|
|
corners[i] = w->warp(seam_est_imgs_[i], K, cameras_[i].R, INTER_LINEAR, BORDER_REFLECT, images_warped[i]);
|
|
sizes[i] = images_warped[i].size();
|
|
|
|
w->warp(masks[i], K, cameras_[i].R, INTER_NEAREST, BORDER_CONSTANT, masks_warped[i]);
|
|
}
|
|
|
|
|
|
LOGLN("Warping images, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
|
|
|
|
// Compensate exposure before finding seams
|
|
exposure_comp_->feed(corners, images_warped, masks_warped);
|
|
for (size_t i = 0; i < imgs_.size(); ++i)
|
|
exposure_comp_->apply(int(i), corners[i], images_warped[i], masks_warped[i]);
|
|
|
|
// Find seams
|
|
std::vector<UMat> images_warped_f(imgs_.size());
|
|
for (size_t i = 0; i < imgs_.size(); ++i)
|
|
images_warped[i].convertTo(images_warped_f[i], CV_32F);
|
|
seam_finder_->find(images_warped_f, corners, masks_warped);
|
|
|
|
// Release unused memory
|
|
seam_est_imgs_.clear();
|
|
images_warped.clear();
|
|
images_warped_f.clear();
|
|
masks.clear();
|
|
|
|
LOGLN("Compositing...");
|
|
#if ENABLE_LOG
|
|
t = getTickCount();
|
|
#endif
|
|
|
|
UMat img_warped, img_warped_s;
|
|
UMat dilated_mask, seam_mask, mask, mask_warped;
|
|
|
|
//double compose_seam_aspect = 1;
|
|
double compose_work_aspect = 1;
|
|
bool is_blender_prepared = false;
|
|
|
|
double compose_scale = 1;
|
|
bool is_compose_scale_set = false;
|
|
|
|
std::vector<detail::CameraParams> cameras_scaled(cameras_);
|
|
|
|
UMat full_img, img;
|
|
for (size_t img_idx = 0; img_idx < imgs_.size(); ++img_idx)
|
|
{
|
|
LOGLN("Compositing image #" << indices_[img_idx] + 1);
|
|
#if ENABLE_LOG
|
|
int64 compositing_t = getTickCount();
|
|
#endif
|
|
|
|
// Read image and resize it if necessary
|
|
full_img = imgs_[img_idx];
|
|
if (!is_compose_scale_set)
|
|
{
|
|
if (compose_resol_ > 0)
|
|
compose_scale = std::min(1.0, std::sqrt(compose_resol_ * 1e6 / full_img.size().area()));
|
|
is_compose_scale_set = true;
|
|
|
|
// Compute relative scales
|
|
//compose_seam_aspect = compose_scale / seam_scale_;
|
|
compose_work_aspect = compose_scale / work_scale_;
|
|
|
|
// Update warped image scale
|
|
float warp_scale = static_cast<float>(warped_image_scale_ * compose_work_aspect);
|
|
w = warper_->create(warp_scale);
|
|
|
|
// Update corners and sizes
|
|
for (size_t i = 0; i < imgs_.size(); ++i)
|
|
{
|
|
// Update intrinsics
|
|
cameras_scaled[i].ppx *= compose_work_aspect;
|
|
cameras_scaled[i].ppy *= compose_work_aspect;
|
|
cameras_scaled[i].focal *= compose_work_aspect;
|
|
|
|
// Update corner and size
|
|
Size sz = full_img_sizes_[i];
|
|
if (std::abs(compose_scale - 1) > 1e-1)
|
|
{
|
|
sz.width = cvRound(full_img_sizes_[i].width * compose_scale);
|
|
sz.height = cvRound(full_img_sizes_[i].height * compose_scale);
|
|
}
|
|
|
|
Mat K;
|
|
cameras_scaled[i].K().convertTo(K, CV_32F);
|
|
Rect roi = w->warpRoi(sz, K, cameras_scaled[i].R);
|
|
corners[i] = roi.tl();
|
|
sizes[i] = roi.size();
|
|
}
|
|
}
|
|
if (std::abs(compose_scale - 1) > 1e-1)
|
|
{
|
|
#if ENABLE_LOG
|
|
int64 resize_t = getTickCount();
|
|
#endif
|
|
resize(full_img, img, Size(), compose_scale, compose_scale);
|
|
LOGLN(" resize time: " << ((getTickCount() - resize_t) / getTickFrequency()) << " sec");
|
|
}
|
|
else
|
|
img = full_img;
|
|
full_img.release();
|
|
Size img_size = img.size();
|
|
|
|
LOGLN(" after resize time: " << ((getTickCount() - compositing_t) / getTickFrequency()) << " sec");
|
|
|
|
Mat K;
|
|
cameras_scaled[img_idx].K().convertTo(K, CV_32F);
|
|
|
|
#if ENABLE_LOG
|
|
int64 pt = getTickCount();
|
|
#endif
|
|
// Warp the current image
|
|
w->warp(img, K, cameras_[img_idx].R, INTER_LINEAR, BORDER_REFLECT, img_warped);
|
|
LOGLN(" warp the current image: " << ((getTickCount() - pt) / getTickFrequency()) << " sec");
|
|
#if ENABLE_LOG
|
|
pt = getTickCount();
|
|
#endif
|
|
|
|
// Warp the current image mask
|
|
mask.create(img_size, CV_8U);
|
|
mask.setTo(Scalar::all(255));
|
|
w->warp(mask, K, cameras_[img_idx].R, INTER_NEAREST, BORDER_CONSTANT, mask_warped);
|
|
LOGLN(" warp the current image mask: " << ((getTickCount() - pt) / getTickFrequency()) << " sec");
|
|
#if ENABLE_LOG
|
|
pt = getTickCount();
|
|
#endif
|
|
|
|
// Compensate exposure
|
|
exposure_comp_->apply((int)img_idx, corners[img_idx], img_warped, mask_warped);
|
|
LOGLN(" compensate exposure: " << ((getTickCount() - pt) / getTickFrequency()) << " sec");
|
|
#if ENABLE_LOG
|
|
pt = getTickCount();
|
|
#endif
|
|
|
|
img_warped.convertTo(img_warped_s, CV_16S);
|
|
img_warped.release();
|
|
img.release();
|
|
mask.release();
|
|
|
|
// Make sure seam mask has proper size
|
|
dilate(masks_warped[img_idx], dilated_mask, Mat());
|
|
resize(dilated_mask, seam_mask, mask_warped.size());
|
|
|
|
bitwise_and(seam_mask, mask_warped, mask_warped);
|
|
|
|
LOGLN(" other: " << ((getTickCount() - pt) / getTickFrequency()) << " sec");
|
|
#if ENABLE_LOG
|
|
pt = getTickCount();
|
|
#endif
|
|
|
|
if (!is_blender_prepared)
|
|
{
|
|
blender_->prepare(corners, sizes);
|
|
is_blender_prepared = true;
|
|
}
|
|
|
|
LOGLN(" other2: " << ((getTickCount() - pt) / getTickFrequency()) << " sec");
|
|
|
|
LOGLN(" feed...");
|
|
#if ENABLE_LOG
|
|
int64 feed_t = getTickCount();
|
|
#endif
|
|
// Blend the current image
|
|
blender_->feed(img_warped_s, mask_warped, corners[img_idx]);
|
|
LOGLN(" feed time: " << ((getTickCount() - feed_t) / getTickFrequency()) << " sec");
|
|
LOGLN("Compositing ## time: " << ((getTickCount() - compositing_t) / getTickFrequency()) << " sec");
|
|
}
|
|
|
|
#if ENABLE_LOG
|
|
int64 blend_t = getTickCount();
|
|
#endif
|
|
UMat result, result_mask;
|
|
blender_->blend(result, result_mask);
|
|
LOGLN("blend time: " << ((getTickCount() - blend_t) / getTickFrequency()) << " sec");
|
|
|
|
LOGLN("Compositing, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
|
|
|
|
// Preliminary result is in CV_16SC3 format, but all values are in [0,255] range,
|
|
// so convert it to avoid user confusing
|
|
result.convertTo(pano, CV_8U);
|
|
|
|
return OK;
|
|
}
|
|
|
|
|
|
Stitcher::Status Stitcher::stitch(InputArrayOfArrays images, OutputArray pano)
|
|
{
|
|
CV_INSTRUMENT_REGION()
|
|
|
|
Status status = estimateTransform(images);
|
|
if (status != OK)
|
|
return status;
|
|
return composePanorama(pano);
|
|
}
|
|
|
|
|
|
Stitcher::Status Stitcher::stitch(InputArrayOfArrays images, const std::vector<std::vector<Rect> > &rois, OutputArray pano)
|
|
{
|
|
CV_INSTRUMENT_REGION()
|
|
|
|
Status status = estimateTransform(images, rois);
|
|
if (status != OK)
|
|
return status;
|
|
return composePanorama(pano);
|
|
}
|
|
|
|
|
|
Stitcher::Status Stitcher::matchImages()
|
|
{
|
|
if ((int)imgs_.size() < 2)
|
|
{
|
|
LOGLN("Need more images");
|
|
return ERR_NEED_MORE_IMGS;
|
|
}
|
|
|
|
work_scale_ = 1;
|
|
seam_work_aspect_ = 1;
|
|
seam_scale_ = 1;
|
|
bool is_work_scale_set = false;
|
|
bool is_seam_scale_set = false;
|
|
UMat full_img, img;
|
|
features_.resize(imgs_.size());
|
|
seam_est_imgs_.resize(imgs_.size());
|
|
full_img_sizes_.resize(imgs_.size());
|
|
|
|
LOGLN("Finding features...");
|
|
#if ENABLE_LOG
|
|
int64 t = getTickCount();
|
|
#endif
|
|
|
|
std::vector<UMat> feature_find_imgs(imgs_.size());
|
|
std::vector<std::vector<Rect> > feature_find_rois(rois_.size());
|
|
|
|
for (size_t i = 0; i < imgs_.size(); ++i)
|
|
{
|
|
full_img = imgs_[i];
|
|
full_img_sizes_[i] = full_img.size();
|
|
|
|
if (registr_resol_ < 0)
|
|
{
|
|
img = full_img;
|
|
work_scale_ = 1;
|
|
is_work_scale_set = true;
|
|
}
|
|
else
|
|
{
|
|
if (!is_work_scale_set)
|
|
{
|
|
work_scale_ = std::min(1.0, std::sqrt(registr_resol_ * 1e6 / full_img.size().area()));
|
|
is_work_scale_set = true;
|
|
}
|
|
resize(full_img, img, Size(), work_scale_, work_scale_);
|
|
}
|
|
if (!is_seam_scale_set)
|
|
{
|
|
seam_scale_ = std::min(1.0, std::sqrt(seam_est_resol_ * 1e6 / full_img.size().area()));
|
|
seam_work_aspect_ = seam_scale_ / work_scale_;
|
|
is_seam_scale_set = true;
|
|
}
|
|
|
|
if (rois_.empty())
|
|
feature_find_imgs[i] = img;
|
|
else
|
|
{
|
|
feature_find_rois[i].resize(rois_[i].size());
|
|
for (size_t j = 0; j < rois_[i].size(); ++j)
|
|
{
|
|
Point tl(cvRound(rois_[i][j].x * work_scale_), cvRound(rois_[i][j].y * work_scale_));
|
|
Point br(cvRound(rois_[i][j].br().x * work_scale_), cvRound(rois_[i][j].br().y * work_scale_));
|
|
feature_find_rois[i][j] = Rect(tl, br);
|
|
}
|
|
feature_find_imgs[i] = img;
|
|
}
|
|
features_[i].img_idx = (int)i;
|
|
LOGLN("Features in image #" << i+1 << ": " << features_[i].keypoints.size());
|
|
|
|
resize(full_img, img, Size(), seam_scale_, seam_scale_);
|
|
seam_est_imgs_[i] = img.clone();
|
|
}
|
|
|
|
// find features possibly in parallel
|
|
if (rois_.empty())
|
|
(*features_finder_)(feature_find_imgs, features_);
|
|
else
|
|
(*features_finder_)(feature_find_imgs, features_, feature_find_rois);
|
|
|
|
// Do it to save memory
|
|
features_finder_->collectGarbage();
|
|
full_img.release();
|
|
img.release();
|
|
feature_find_imgs.clear();
|
|
feature_find_rois.clear();
|
|
|
|
LOGLN("Finding features, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
|
|
|
|
LOG("Pairwise matching");
|
|
#if ENABLE_LOG
|
|
t = getTickCount();
|
|
#endif
|
|
(*features_matcher_)(features_, pairwise_matches_, matching_mask_);
|
|
features_matcher_->collectGarbage();
|
|
LOGLN("Pairwise matching, time: " << ((getTickCount() - t) / getTickFrequency()) << " sec");
|
|
|
|
// Leave only images we are sure are from the same panorama
|
|
indices_ = detail::leaveBiggestComponent(features_, pairwise_matches_, (float)conf_thresh_);
|
|
std::vector<UMat> seam_est_imgs_subset;
|
|
std::vector<UMat> imgs_subset;
|
|
std::vector<Size> full_img_sizes_subset;
|
|
for (size_t i = 0; i < indices_.size(); ++i)
|
|
{
|
|
imgs_subset.push_back(imgs_[indices_[i]]);
|
|
seam_est_imgs_subset.push_back(seam_est_imgs_[indices_[i]]);
|
|
full_img_sizes_subset.push_back(full_img_sizes_[indices_[i]]);
|
|
}
|
|
seam_est_imgs_ = seam_est_imgs_subset;
|
|
imgs_ = imgs_subset;
|
|
full_img_sizes_ = full_img_sizes_subset;
|
|
|
|
if ((int)imgs_.size() < 2)
|
|
{
|
|
LOGLN("Need more images");
|
|
return ERR_NEED_MORE_IMGS;
|
|
}
|
|
|
|
return OK;
|
|
}
|
|
|
|
|
|
Stitcher::Status Stitcher::estimateCameraParams()
|
|
{
|
|
/* TODO OpenCV ABI 4.x
|
|
get rid of this dynamic_cast hack and use estimator_
|
|
*/
|
|
Ptr<detail::Estimator> estimator;
|
|
if (dynamic_cast<detail::AffineBestOf2NearestMatcher*>(features_matcher_.get()))
|
|
estimator = makePtr<detail::AffineBasedEstimator>();
|
|
else
|
|
estimator = makePtr<detail::HomographyBasedEstimator>();
|
|
|
|
if (!(*estimator)(features_, pairwise_matches_, cameras_))
|
|
return ERR_HOMOGRAPHY_EST_FAIL;
|
|
|
|
for (size_t i = 0; i < cameras_.size(); ++i)
|
|
{
|
|
Mat R;
|
|
cameras_[i].R.convertTo(R, CV_32F);
|
|
cameras_[i].R = R;
|
|
//LOGLN("Initial intrinsic parameters #" << indices_[i] + 1 << ":\n " << cameras_[i].K());
|
|
}
|
|
|
|
bundle_adjuster_->setConfThresh(conf_thresh_);
|
|
if (!(*bundle_adjuster_)(features_, pairwise_matches_, cameras_))
|
|
return ERR_CAMERA_PARAMS_ADJUST_FAIL;
|
|
|
|
// Find median focal length and use it as final image scale
|
|
std::vector<double> focals;
|
|
for (size_t i = 0; i < cameras_.size(); ++i)
|
|
{
|
|
//LOGLN("Camera #" << indices_[i] + 1 << ":\n" << cameras_[i].K());
|
|
focals.push_back(cameras_[i].focal);
|
|
}
|
|
|
|
std::sort(focals.begin(), focals.end());
|
|
if (focals.size() % 2 == 1)
|
|
warped_image_scale_ = static_cast<float>(focals[focals.size() / 2]);
|
|
else
|
|
warped_image_scale_ = static_cast<float>(focals[focals.size() / 2 - 1] + focals[focals.size() / 2]) * 0.5f;
|
|
|
|
if (do_wave_correct_)
|
|
{
|
|
std::vector<Mat> rmats;
|
|
for (size_t i = 0; i < cameras_.size(); ++i)
|
|
rmats.push_back(cameras_[i].R.clone());
|
|
detail::waveCorrect(rmats, wave_correct_kind_);
|
|
for (size_t i = 0; i < cameras_.size(); ++i)
|
|
cameras_[i].R = rmats[i];
|
|
}
|
|
|
|
return OK;
|
|
}
|
|
|
|
|
|
Ptr<Stitcher> createStitcher(bool try_use_gpu)
|
|
{
|
|
CV_INSTRUMENT_REGION()
|
|
|
|
Ptr<Stitcher> stitcher = makePtr<Stitcher>();
|
|
stitcher->setRegistrationResol(0.6);
|
|
stitcher->setSeamEstimationResol(0.1);
|
|
stitcher->setCompositingResol(Stitcher::ORIG_RESOL);
|
|
stitcher->setPanoConfidenceThresh(1);
|
|
stitcher->setWaveCorrection(true);
|
|
stitcher->setWaveCorrectKind(detail::WAVE_CORRECT_HORIZ);
|
|
stitcher->setFeaturesMatcher(makePtr<detail::BestOf2NearestMatcher>(try_use_gpu));
|
|
stitcher->setBundleAdjuster(makePtr<detail::BundleAdjusterRay>());
|
|
|
|
#ifdef HAVE_OPENCV_CUDALEGACY
|
|
if (try_use_gpu && cuda::getCudaEnabledDeviceCount() > 0)
|
|
{
|
|
#ifdef HAVE_OPENCV_NONFREE
|
|
stitcher->setFeaturesFinder(makePtr<detail::SurfFeaturesFinderGpu>());
|
|
#else
|
|
stitcher->setFeaturesFinder(makePtr<detail::OrbFeaturesFinder>());
|
|
#endif
|
|
stitcher->setWarper(makePtr<SphericalWarperGpu>());
|
|
stitcher->setSeamFinder(makePtr<detail::GraphCutSeamFinderGpu>());
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
#ifdef HAVE_OPENCV_NONFREE
|
|
stitcher->setFeaturesFinder(makePtr<detail::SurfFeaturesFinder>());
|
|
#else
|
|
stitcher->setFeaturesFinder(makePtr<detail::OrbFeaturesFinder>());
|
|
#endif
|
|
stitcher->setWarper(makePtr<SphericalWarper>());
|
|
stitcher->setSeamFinder(makePtr<detail::GraphCutSeamFinder>(detail::GraphCutSeamFinderBase::COST_COLOR));
|
|
}
|
|
|
|
stitcher->setExposureCompensator(makePtr<detail::BlocksGainCompensator>());
|
|
stitcher->setBlender(makePtr<detail::MultiBandBlender>(try_use_gpu));
|
|
|
|
return stitcher;
|
|
}
|
|
} // namespace cv
|