mirror of
https://github.com/opencv/opencv.git
synced 2024-12-04 16:59:12 +08:00
120 lines
3.6 KiB
Java
120 lines
3.6 KiB
Java
package org.opencv.test.dnn;
|
|
|
|
import java.io.File;
|
|
import java.io.FileInputStream;
|
|
import java.io.IOException;
|
|
import java.util.ArrayList;
|
|
import java.util.List;
|
|
import org.opencv.core.Core;
|
|
import org.opencv.core.Mat;
|
|
import org.opencv.core.MatOfInt;
|
|
import org.opencv.core.MatOfFloat;
|
|
import org.opencv.core.MatOfByte;
|
|
import org.opencv.core.Scalar;
|
|
import org.opencv.core.Size;
|
|
import org.opencv.dnn.DictValue;
|
|
import org.opencv.dnn.Dnn;
|
|
import org.opencv.dnn.Layer;
|
|
import org.opencv.dnn.Net;
|
|
import org.opencv.imgcodecs.Imgcodecs;
|
|
import org.opencv.imgproc.Imgproc;
|
|
import org.opencv.test.OpenCVTestCase;
|
|
|
|
/*
|
|
* regression test for #12324,
|
|
* testing various java.util.List invocations,
|
|
* which use the LIST_GET macro
|
|
*/
|
|
|
|
public class DnnListRegressionTest extends OpenCVTestCase {
|
|
|
|
private final static String ENV_OPENCV_DNN_TEST_DATA_PATH = "OPENCV_DNN_TEST_DATA_PATH";
|
|
|
|
private final static String ENV_OPENCV_TEST_DATA_PATH = "OPENCV_TEST_DATA_PATH";
|
|
|
|
String modelFileName = "";
|
|
String sourceImageFile = "";
|
|
|
|
Net net;
|
|
|
|
@Override
|
|
protected void setUp() throws Exception {
|
|
super.setUp();
|
|
|
|
String envDnnTestDataPath = System.getenv(ENV_OPENCV_DNN_TEST_DATA_PATH);
|
|
|
|
if(envDnnTestDataPath == null){
|
|
isTestCaseEnabled = false;
|
|
return;
|
|
}
|
|
|
|
File dnnTestDataPath = new File(envDnnTestDataPath);
|
|
modelFileName = new File(dnnTestDataPath, "dnn/tensorflow_inception_graph.pb").toString();
|
|
|
|
String envTestDataPath = System.getenv(ENV_OPENCV_TEST_DATA_PATH);
|
|
|
|
if(envTestDataPath == null) throw new Exception(ENV_OPENCV_TEST_DATA_PATH + " has to be defined!");
|
|
|
|
File testDataPath = new File(envTestDataPath);
|
|
|
|
File f = new File(testDataPath, "dnn/grace_hopper_227.png");
|
|
sourceImageFile = f.toString();
|
|
if(!f.exists()) throw new Exception("Test image is missing: " + sourceImageFile);
|
|
|
|
net = Dnn.readNetFromTensorflow(modelFileName);
|
|
|
|
Mat image = Imgcodecs.imread(sourceImageFile);
|
|
assertNotNull("Loading image from file failed!", image);
|
|
|
|
Mat inputBlob = Dnn.blobFromImage(image, 1.0, new Size(224, 224), new Scalar(0), true, true);
|
|
assertNotNull("Converting image to blob failed!", inputBlob);
|
|
|
|
net.setInput(inputBlob, "input");
|
|
}
|
|
|
|
public void testSetInputsNames() {
|
|
List<String> inputs = new ArrayList();
|
|
inputs.add("input");
|
|
try {
|
|
net.setInputsNames(inputs);
|
|
} catch(Exception e) {
|
|
fail("Net setInputsNames failed: " + e.getMessage());
|
|
}
|
|
}
|
|
|
|
public void testForward() {
|
|
List<Mat> outs = new ArrayList();
|
|
List<String> outNames = new ArrayList();
|
|
outNames.add("softmax2");
|
|
try {
|
|
net.forward(outs,outNames);
|
|
} catch(Exception e) {
|
|
fail("Net forward failed: " + e.getMessage());
|
|
}
|
|
}
|
|
|
|
public void testGetMemoryConsumption() {
|
|
int layerId = 1;
|
|
List<MatOfInt> netInputShapes = new ArrayList();
|
|
netInputShapes.add(new MatOfInt(1, 3, 224, 224));
|
|
long[] weights=null;
|
|
long[] blobs=null;
|
|
try {
|
|
net.getMemoryConsumption(layerId, netInputShapes, weights, blobs);
|
|
} catch(Exception e) {
|
|
fail("Net getMemoryConsumption failed: " + e.getMessage());
|
|
}
|
|
}
|
|
|
|
public void testGetFLOPS() {
|
|
int layerId = 1;
|
|
List<MatOfInt> netInputShapes = new ArrayList();
|
|
netInputShapes.add(new MatOfInt(1, 3, 224, 224));
|
|
try {
|
|
net.getFLOPS(layerId, netInputShapes);
|
|
} catch(Exception e) {
|
|
fail("Net getFLOPS failed: " + e.getMessage());
|
|
}
|
|
}
|
|
}
|