mirror of
https://github.com/opencv/opencv.git
synced 2025-08-01 02:18:01 +08:00

[GSoC] OpenCV.js: Accelerate OpenCV.js DNN via WebNN * Add WebNN backend for OpenCV DNN Module Update dnn.cpp Update dnn.cpp Update dnn.cpp Update dnn.cpp Add WebNN head files into OpenCV 3rd partiy files Create webnn.hpp update cmake Complete README and add OpenCVDetectWebNN.cmake file add webnn.cpp Modify webnn.cpp Can successfully compile the codes for creating a MLContext Update webnn.cpp Update README.md Update README.md Update README.md Update README.md Update cmake files and update README.md Update OpenCVDetectWebNN.cmake and README.md Update OpenCVDetectWebNN.cmake Fix OpenCVDetectWebNN.cmake and update README.md Add source webnn_cpp.cpp and libary libwebnn_proc.so Update dnn.cpp Update dnn.cpp Update dnn.cpp Update dnn.cpp update dnn.cpp update op_webnn update op_webnn Update op_webnn.hpp update op_webnn.cpp & hpp Update op_webnn.hpp Update op_webnn update the skeleton Update op_webnn.cpp Update op_webnn Update op_webnn.cpp Update op_webnn.cpp Update op_webnn.hpp update op_webnn update op_webnn Solved the problems of released variables. Fixed the bugs in op_webnn.cpp Implement op_webnn Implement Relu by WebNN API Update dnn.cpp for better test Update elementwise_layers.cpp Implement ReLU6 Update elementwise_layers.cpp Implement SoftMax using WebNN API Implement Reshape by WebNN API Implement PermuteLayer by WebNN API Implement PoolingLayer using WebNN API Update pooling_layer.cpp Update pooling_layer.cpp Update pooling_layer.cpp Update pooling_layer.cpp Update pooling_layer.cpp Update pooling_layer.cpp Implement poolingLayer by WebNN API and add more detailed logs Update dnn.cpp Update dnn.cpp Remove redundant codes and add more logs for poolingLayer Add more logs in the pooling layer implementation Fix the indent issue and resolve the compiling issue Fix the build problems Fix the build issue FIx the build issue Update dnn.cpp Update dnn.cpp * Fix the build issue * Implement BatchNorm Layer by WebNN API * Update convolution_layer.cpp This is a temporary file for Conv2d layer implementation * Integrate some general functions into op_webnn.cpp&hpp * Update const_layer.cpp * Update convolution_layer.cpp Still have some bugs that should be fixed. * Update conv2d layer and fc layer still have some problems to be fixed. * update constLayer, conv layer, fc layer There are still some bugs to be fixed. * Fix the build issue * Update concat_layer.cpp Still have some bugs to be fixed. * Update conv2d layer, fully connected layer and const layer * Update convolution_layer.cpp * Add OpenCV.js DNN module WebNN Backend (both using webnn-polyfill and electron) * Delete bib19450.aux * Add WebNN backend for OpenCV DNN Module Update dnn.cpp Update dnn.cpp Update dnn.cpp Update dnn.cpp Add WebNN head files into OpenCV 3rd partiy files Create webnn.hpp update cmake Complete README and add OpenCVDetectWebNN.cmake file add webnn.cpp Modify webnn.cpp Can successfully compile the codes for creating a MLContext Update webnn.cpp Update README.md Update README.md Update README.md Update README.md Update cmake files and update README.md Update OpenCVDetectWebNN.cmake and README.md Update OpenCVDetectWebNN.cmake Fix OpenCVDetectWebNN.cmake and update README.md Add source webnn_cpp.cpp and libary libwebnn_proc.so Update dnn.cpp Update dnn.cpp Update dnn.cpp Update dnn.cpp update dnn.cpp update op_webnn update op_webnn Update op_webnn.hpp update op_webnn.cpp & hpp Update op_webnn.hpp Update op_webnn update the skeleton Update op_webnn.cpp Update op_webnn Update op_webnn.cpp Update op_webnn.cpp Update op_webnn.hpp update op_webnn update op_webnn Solved the problems of released variables. Fixed the bugs in op_webnn.cpp Implement op_webnn Implement Relu by WebNN API Update dnn.cpp for better test Update elementwise_layers.cpp Implement ReLU6 Update elementwise_layers.cpp Implement SoftMax using WebNN API Implement Reshape by WebNN API Implement PermuteLayer by WebNN API Implement PoolingLayer using WebNN API Update pooling_layer.cpp Update pooling_layer.cpp Update pooling_layer.cpp Update pooling_layer.cpp Update pooling_layer.cpp Update pooling_layer.cpp Implement poolingLayer by WebNN API and add more detailed logs Update dnn.cpp Update dnn.cpp Remove redundant codes and add more logs for poolingLayer Add more logs in the pooling layer implementation Fix the indent issue and resolve the compiling issue Fix the build problems Fix the build issue FIx the build issue Update dnn.cpp Update dnn.cpp * Fix the build issue * Implement BatchNorm Layer by WebNN API * Update convolution_layer.cpp This is a temporary file for Conv2d layer implementation * Integrate some general functions into op_webnn.cpp&hpp * Update const_layer.cpp * Update convolution_layer.cpp Still have some bugs that should be fixed. * Update conv2d layer and fc layer still have some problems to be fixed. * update constLayer, conv layer, fc layer There are still some bugs to be fixed. * Update conv2d layer, fully connected layer and const layer * Update convolution_layer.cpp * Add OpenCV.js DNN module WebNN Backend (both using webnn-polyfill and electron) * Update dnn.cpp * Fix Error in dnn.cpp * Resolve duplication in conditions in convolution_layer.cpp * Fixed the issues in the comments * Fix building issue * Update tutorial * Fixed comments * Address the comments * Update CMakeLists.txt * Offer more accurate perf test on native * Add better perf tests for both native and web * Modify per tests for better results * Use more latest version of Electron * Support latest WebNN Clamp op * Add definition of HAVE_WEBNN macro * Support group convolution * Implement Scale_layer using WebNN * Add Softmax option for native classification example * Fix comments * Fix comments
249 lines
7.6 KiB
C++
249 lines
7.6 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
#include <fstream>
|
|
#include "op_webnn.hpp"
|
|
|
|
#include <opencv2/core/utils/configuration.private.hpp>
|
|
#include <opencv2/core/utils/logger.hpp>
|
|
|
|
#include "opencv2/core/utils/filesystem.hpp"
|
|
#include "opencv2/core/utils/filesystem.private.hpp"
|
|
|
|
#include <opencv2/dnn/shape_utils.hpp>
|
|
|
|
namespace cv { namespace dnn {
|
|
|
|
#ifdef HAVE_WEBNN
|
|
|
|
namespace webnn {
|
|
ml::Operand BuildConstant(const ml::GraphBuilder& builder,
|
|
const std::vector<int32_t>& dimensions,
|
|
const void* value,
|
|
size_t size,
|
|
ml::OperandType type) {
|
|
ml::OperandDescriptor desc;
|
|
desc.type = type;
|
|
desc.dimensions = dimensions.data();
|
|
desc.dimensionsCount = (uint32_t)dimensions.size();
|
|
ml::ArrayBufferView resource;
|
|
resource.buffer = const_cast<void*>(value);
|
|
resource.byteLength = size;
|
|
return builder.Constant(&desc, &resource);
|
|
}
|
|
}
|
|
|
|
static std::string kDefaultInpLayerName = "opencv_webnn_empty_inp_layer_name";
|
|
|
|
static std::vector<Ptr<WebnnBackendWrapper> >
|
|
webnnWrappers(const std::vector<Ptr<BackendWrapper> >& ptrs)
|
|
{
|
|
std::vector<Ptr<WebnnBackendWrapper> > wrappers(ptrs.size());
|
|
for (int i = 0; i < ptrs.size(); ++i)
|
|
{
|
|
CV_Assert(!ptrs[i].empty());
|
|
wrappers[i] = ptrs[i].dynamicCast<WebnnBackendWrapper>();
|
|
CV_Assert(!wrappers[i].empty());
|
|
}
|
|
return wrappers;
|
|
}
|
|
|
|
// WebnnNet
|
|
WebnnNet::WebnnNet()
|
|
{
|
|
hasNetOwner = false;
|
|
device_name = "CPU";
|
|
|
|
#ifdef __EMSCRIPTEN__
|
|
context = ml::Context(emscripten_webnn_create_context());
|
|
#else
|
|
WebnnProcTable backendProcs = webnn_native::GetProcs();
|
|
webnnProcSetProcs(&backendProcs);
|
|
context = ml::Context(webnn_native::CreateContext());
|
|
#endif
|
|
builder = ::ml::CreateGraphBuilder(context);
|
|
namedOperands = ::ml::CreateNamedOperands();
|
|
}
|
|
|
|
void WebnnNet::addOutput(const std::string& name)
|
|
{
|
|
requestedOutputs.push_back(name);
|
|
}
|
|
|
|
void WebnnNet::createNet(Target targetId) {
|
|
init(targetId);
|
|
}
|
|
|
|
void WebnnNet::init(Target targetId)
|
|
{
|
|
switch (targetId)
|
|
{
|
|
case DNN_TARGET_CPU:
|
|
device_name = "CPU";
|
|
break;
|
|
case DNN_TARGET_OPENCL:
|
|
device_name = "GPU";
|
|
break;
|
|
default:
|
|
CV_Error(Error::StsNotImplemented, "Unknown target");
|
|
};
|
|
|
|
graph = builder.Build(namedOperands);
|
|
CV_Assert(graph!=nullptr);
|
|
isInit = true;
|
|
}
|
|
|
|
std::vector<ml::Operand> WebnnNet::setInputs(const std::vector<cv::Mat>& inputs,
|
|
const std::vector<std::string>& names) {
|
|
CV_Assert_N(inputs.size() == names.size());
|
|
std::vector<ml::Operand> current_inp;
|
|
for (size_t i = 0; i < inputs.size(); i++)
|
|
{
|
|
auto& m = inputs[i];
|
|
|
|
std::vector<int32_t> dimensions = webnn::getShape(m);
|
|
ml::OperandDescriptor descriptor;
|
|
descriptor.dimensions = dimensions.data();
|
|
descriptor.dimensionsCount = dimensions.size();
|
|
if (m.type() == CV_32F)
|
|
{
|
|
descriptor.type = ml::OperandType::Float32;
|
|
}
|
|
else
|
|
{
|
|
CV_Error(Error::StsNotImplemented, format("Unsupported data type %s", typeToString(m.type()).c_str()));
|
|
}
|
|
ml::Operand inputOperand = builder.Input(names[i].c_str(), &descriptor);
|
|
current_inp.push_back(std::move(inputOperand));
|
|
}
|
|
inputNames = names;
|
|
return current_inp;
|
|
}
|
|
|
|
void WebnnNet::setUnconnectedNodes(Ptr<WebnnBackendNode>& node) {
|
|
outputNames.push_back(node->name);
|
|
namedOperands.Set(outputNames.back().c_str(), node->operand);
|
|
}
|
|
|
|
bool WebnnNet::isInitialized()
|
|
{
|
|
return isInit;
|
|
}
|
|
|
|
void WebnnNet::reset()
|
|
{
|
|
allBlobs.clear();
|
|
isInit = false;
|
|
}
|
|
|
|
void WebnnNet::addBlobs(const std::vector<cv::Ptr<BackendWrapper> >& ptrs)
|
|
{
|
|
auto wrappers = webnnWrappers(ptrs);
|
|
for (const auto& wrapper : wrappers)
|
|
{
|
|
std::string name = wrapper->name;
|
|
name = name.empty() ? kDefaultInpLayerName : name;
|
|
allBlobs.insert({name, wrapper});
|
|
}
|
|
}
|
|
|
|
void WebnnNet::forward(const std::vector<Ptr<BackendWrapper> >& outBlobsWrappers, bool isAsync)
|
|
{
|
|
CV_LOG_DEBUG(NULL, "WebnnNet::forward(" << (isAsync ? "async" : "sync") << ")");
|
|
ml::NamedInputs named_inputs = ::ml::CreateNamedInputs();
|
|
std::vector<ml::Input> inputs(inputNames.size());
|
|
for (int i = 0; i < inputNames.size(); ++i) {
|
|
const std::string& name = inputNames[i];
|
|
ml::Input& input = inputs[i];
|
|
auto blobIt = allBlobs.find(name);
|
|
CV_Assert(blobIt != allBlobs.end());
|
|
const Ptr<WebnnBackendWrapper> wrapper = blobIt->second;
|
|
input.resource.buffer = wrapper->host->data;
|
|
input.resource.byteLength = wrapper->size;
|
|
named_inputs.Set(name.c_str(), &input);
|
|
}
|
|
std::vector<Ptr<WebnnBackendWrapper> > outs = webnnWrappers(outBlobsWrappers);
|
|
ml::NamedOutputs named_outputs = ::ml::CreateNamedOutputs();
|
|
std::vector<ml::ArrayBufferView> outputs(outs.size());
|
|
for (int i = 0; i < outs.size(); ++i) {
|
|
const std::string& name = outs[i]->name;
|
|
ml::ArrayBufferView& output = outputs[i];
|
|
output.buffer = outs[i]->host->data;
|
|
// std::cout<<"host data size: "<<outs[i]->host->total()*outs[i]->host->elemSize()<<std::endl;
|
|
output.byteLength = outs[i]->size;
|
|
// std::cout<<"outs[i]->size: "<< outs[i]->size << std::endl;
|
|
named_outputs.Set(name.c_str(), &output);
|
|
}
|
|
ml::ComputeGraphStatus status = graph.Compute(named_inputs, named_outputs);
|
|
if (status != ::ml::ComputeGraphStatus::Success) {
|
|
CV_Error(Error::StsAssert, format("Failed to compute: %d", int(status)));
|
|
}
|
|
}
|
|
|
|
// WebnnBackendNode
|
|
WebnnBackendNode::WebnnBackendNode(ml::Operand&& _operand)
|
|
: BackendNode(DNN_BACKEND_WEBNN), operand(std::move(_operand)) {}
|
|
|
|
WebnnBackendNode::WebnnBackendNode(ml::Operand& _operand)
|
|
: BackendNode(DNN_BACKEND_WEBNN), operand(_operand) {}
|
|
|
|
// WebnnBackendWrapper
|
|
WebnnBackendWrapper::WebnnBackendWrapper(int targetId, cv::Mat& m)
|
|
: BackendWrapper(DNN_BACKEND_WEBNN, targetId)
|
|
{
|
|
size = m.total() * m.elemSize();
|
|
// buffer.reset(new char[size]);
|
|
// std::memcpy(buffer.get(), m.data, size);
|
|
// dimensions = getShape<int32_t>(m);
|
|
// descriptor.dimensions = dimensions.data();
|
|
// descriptor.dimensionsCount = dimensions.size();
|
|
if (m.type() == CV_32F)
|
|
{
|
|
descriptor.type = ml::OperandType::Float32;
|
|
}
|
|
else
|
|
{
|
|
CV_Error(Error::StsNotImplemented, format("Unsupported data type %s", typeToString(m.type()).c_str()));
|
|
}
|
|
host = &m;
|
|
}
|
|
|
|
WebnnBackendWrapper::~WebnnBackendWrapper()
|
|
{
|
|
// nothing
|
|
}
|
|
|
|
void WebnnBackendWrapper::copyToHost()
|
|
{
|
|
CV_LOG_DEBUG(NULL, "WebnnBackendWrapper::copyToHost()");
|
|
//CV_Error(Error::StsNotImplemented, "");
|
|
}
|
|
|
|
void WebnnBackendWrapper::setHostDirty()
|
|
{
|
|
CV_LOG_DEBUG(NULL, "WebnnBackendWrapper::setHostDirty()");
|
|
//CV_Error(Error::StsNotImplemented, "");
|
|
}
|
|
|
|
void forwardWebnn(const std::vector<Ptr<BackendWrapper> >& outBlobsWrappers,
|
|
Ptr<BackendNode>& node, bool isAsync)
|
|
{
|
|
CV_Assert(!node.empty());
|
|
Ptr<WebnnBackendNode> webnnNode = node.dynamicCast<WebnnBackendNode>();
|
|
CV_Assert(!webnnNode.empty());
|
|
webnnNode->net->forward(outBlobsWrappers, isAsync);
|
|
}
|
|
|
|
|
|
#else
|
|
void forwardWebnn(const std::vector<Ptr<BackendWrapper> >& outBlobsWrappers,
|
|
Ptr<BackendNode>& operand, bool isAsync)
|
|
{
|
|
CV_Assert(false && "WebNN is not enabled in this OpenCV build");
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
} |