mirror of
https://github.com/opencv/opencv.git
synced 2024-12-03 00:10:21 +08:00
0c84b91dde
- https://github.com/uclouvain/openjpeg/releases/tag/v2.3.1 - src/lib/openjp2 - readme files
568 lines
17 KiB
C
568 lines
17 KiB
C
/*
|
|
* The copyright in this software is being made available under the 2-clauses
|
|
* BSD License, included below. This software may be subject to other third
|
|
* party and contributor rights, including patent rights, and no such rights
|
|
* are granted under this license.
|
|
*
|
|
* Copyright (c) 2002-2014, Universite catholique de Louvain (UCL), Belgium
|
|
* Copyright (c) 2002-2014, Professor Benoit Macq
|
|
* Copyright (c) 2001-2003, David Janssens
|
|
* Copyright (c) 2002-2003, Yannick Verschueren
|
|
* Copyright (c) 2003-2007, Francois-Olivier Devaux
|
|
* Copyright (c) 2003-2014, Antonin Descampe
|
|
* Copyright (c) 2005, Herve Drolon, FreeImage Team
|
|
* Copyright (c) 2008, 2011-2012, Centre National d'Etudes Spatiales (CNES), FR
|
|
* Copyright (c) 2012, CS Systemes d'Information, France
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS'
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#ifdef __SSE__
|
|
#include <xmmintrin.h>
|
|
#endif
|
|
#ifdef __SSE2__
|
|
#include <emmintrin.h>
|
|
#endif
|
|
#ifdef __SSE4_1__
|
|
#include <smmintrin.h>
|
|
#endif
|
|
|
|
#include "opj_includes.h"
|
|
|
|
/* <summary> */
|
|
/* This table contains the norms of the basis function of the reversible MCT. */
|
|
/* </summary> */
|
|
static const OPJ_FLOAT64 opj_mct_norms[3] = { 1.732, .8292, .8292 };
|
|
|
|
/* <summary> */
|
|
/* This table contains the norms of the basis function of the irreversible MCT. */
|
|
/* </summary> */
|
|
static const OPJ_FLOAT64 opj_mct_norms_real[3] = { 1.732, 1.805, 1.573 };
|
|
|
|
const OPJ_FLOAT64 * opj_mct_get_mct_norms()
|
|
{
|
|
return opj_mct_norms;
|
|
}
|
|
|
|
const OPJ_FLOAT64 * opj_mct_get_mct_norms_real()
|
|
{
|
|
return opj_mct_norms_real;
|
|
}
|
|
|
|
/* <summary> */
|
|
/* Forward reversible MCT. */
|
|
/* </summary> */
|
|
#ifdef __SSE2__
|
|
void opj_mct_encode(
|
|
OPJ_INT32* OPJ_RESTRICT c0,
|
|
OPJ_INT32* OPJ_RESTRICT c1,
|
|
OPJ_INT32* OPJ_RESTRICT c2,
|
|
OPJ_SIZE_T n)
|
|
{
|
|
OPJ_SIZE_T i;
|
|
const OPJ_SIZE_T len = n;
|
|
/* buffer are aligned on 16 bytes */
|
|
assert(((size_t)c0 & 0xf) == 0);
|
|
assert(((size_t)c1 & 0xf) == 0);
|
|
assert(((size_t)c2 & 0xf) == 0);
|
|
|
|
for (i = 0; i < (len & ~3U); i += 4) {
|
|
__m128i y, u, v;
|
|
__m128i r = _mm_load_si128((const __m128i *) & (c0[i]));
|
|
__m128i g = _mm_load_si128((const __m128i *) & (c1[i]));
|
|
__m128i b = _mm_load_si128((const __m128i *) & (c2[i]));
|
|
y = _mm_add_epi32(g, g);
|
|
y = _mm_add_epi32(y, b);
|
|
y = _mm_add_epi32(y, r);
|
|
y = _mm_srai_epi32(y, 2);
|
|
u = _mm_sub_epi32(b, g);
|
|
v = _mm_sub_epi32(r, g);
|
|
_mm_store_si128((__m128i *) & (c0[i]), y);
|
|
_mm_store_si128((__m128i *) & (c1[i]), u);
|
|
_mm_store_si128((__m128i *) & (c2[i]), v);
|
|
}
|
|
|
|
for (; i < len; ++i) {
|
|
OPJ_INT32 r = c0[i];
|
|
OPJ_INT32 g = c1[i];
|
|
OPJ_INT32 b = c2[i];
|
|
OPJ_INT32 y = (r + (g * 2) + b) >> 2;
|
|
OPJ_INT32 u = b - g;
|
|
OPJ_INT32 v = r - g;
|
|
c0[i] = y;
|
|
c1[i] = u;
|
|
c2[i] = v;
|
|
}
|
|
}
|
|
#else
|
|
void opj_mct_encode(
|
|
OPJ_INT32* OPJ_RESTRICT c0,
|
|
OPJ_INT32* OPJ_RESTRICT c1,
|
|
OPJ_INT32* OPJ_RESTRICT c2,
|
|
OPJ_SIZE_T n)
|
|
{
|
|
OPJ_SIZE_T i;
|
|
const OPJ_SIZE_T len = n;
|
|
|
|
for (i = 0; i < len; ++i) {
|
|
OPJ_INT32 r = c0[i];
|
|
OPJ_INT32 g = c1[i];
|
|
OPJ_INT32 b = c2[i];
|
|
OPJ_INT32 y = (r + (g * 2) + b) >> 2;
|
|
OPJ_INT32 u = b - g;
|
|
OPJ_INT32 v = r - g;
|
|
c0[i] = y;
|
|
c1[i] = u;
|
|
c2[i] = v;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* <summary> */
|
|
/* Inverse reversible MCT. */
|
|
/* </summary> */
|
|
#ifdef __SSE2__
|
|
void opj_mct_decode(
|
|
OPJ_INT32* OPJ_RESTRICT c0,
|
|
OPJ_INT32* OPJ_RESTRICT c1,
|
|
OPJ_INT32* OPJ_RESTRICT c2,
|
|
OPJ_SIZE_T n)
|
|
{
|
|
OPJ_SIZE_T i;
|
|
const OPJ_SIZE_T len = n;
|
|
|
|
for (i = 0; i < (len & ~3U); i += 4) {
|
|
__m128i r, g, b;
|
|
__m128i y = _mm_load_si128((const __m128i *) & (c0[i]));
|
|
__m128i u = _mm_load_si128((const __m128i *) & (c1[i]));
|
|
__m128i v = _mm_load_si128((const __m128i *) & (c2[i]));
|
|
g = y;
|
|
g = _mm_sub_epi32(g, _mm_srai_epi32(_mm_add_epi32(u, v), 2));
|
|
r = _mm_add_epi32(v, g);
|
|
b = _mm_add_epi32(u, g);
|
|
_mm_store_si128((__m128i *) & (c0[i]), r);
|
|
_mm_store_si128((__m128i *) & (c1[i]), g);
|
|
_mm_store_si128((__m128i *) & (c2[i]), b);
|
|
}
|
|
for (; i < len; ++i) {
|
|
OPJ_INT32 y = c0[i];
|
|
OPJ_INT32 u = c1[i];
|
|
OPJ_INT32 v = c2[i];
|
|
OPJ_INT32 g = y - ((u + v) >> 2);
|
|
OPJ_INT32 r = v + g;
|
|
OPJ_INT32 b = u + g;
|
|
c0[i] = r;
|
|
c1[i] = g;
|
|
c2[i] = b;
|
|
}
|
|
}
|
|
#else
|
|
void opj_mct_decode(
|
|
OPJ_INT32* OPJ_RESTRICT c0,
|
|
OPJ_INT32* OPJ_RESTRICT c1,
|
|
OPJ_INT32* OPJ_RESTRICT c2,
|
|
OPJ_SIZE_T n)
|
|
{
|
|
OPJ_UINT32 i;
|
|
for (i = 0; i < n; ++i) {
|
|
OPJ_INT32 y = c0[i];
|
|
OPJ_INT32 u = c1[i];
|
|
OPJ_INT32 v = c2[i];
|
|
OPJ_INT32 g = y - ((u + v) >> 2);
|
|
OPJ_INT32 r = v + g;
|
|
OPJ_INT32 b = u + g;
|
|
c0[i] = r;
|
|
c1[i] = g;
|
|
c2[i] = b;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* <summary> */
|
|
/* Get norm of basis function of reversible MCT. */
|
|
/* </summary> */
|
|
OPJ_FLOAT64 opj_mct_getnorm(OPJ_UINT32 compno)
|
|
{
|
|
return opj_mct_norms[compno];
|
|
}
|
|
|
|
/* <summary> */
|
|
/* Forward irreversible MCT. */
|
|
/* </summary> */
|
|
#ifdef __SSE4_1__
|
|
void opj_mct_encode_real(
|
|
OPJ_INT32* OPJ_RESTRICT c0,
|
|
OPJ_INT32* OPJ_RESTRICT c1,
|
|
OPJ_INT32* OPJ_RESTRICT c2,
|
|
OPJ_SIZE_T n)
|
|
{
|
|
OPJ_SIZE_T i;
|
|
const OPJ_SIZE_T len = n;
|
|
|
|
const __m128i ry = _mm_set1_epi32(2449);
|
|
const __m128i gy = _mm_set1_epi32(4809);
|
|
const __m128i by = _mm_set1_epi32(934);
|
|
const __m128i ru = _mm_set1_epi32(1382);
|
|
const __m128i gu = _mm_set1_epi32(2714);
|
|
/* const __m128i bu = _mm_set1_epi32(4096); */
|
|
/* const __m128i rv = _mm_set1_epi32(4096); */
|
|
const __m128i gv = _mm_set1_epi32(3430);
|
|
const __m128i bv = _mm_set1_epi32(666);
|
|
const __m128i mulround = _mm_shuffle_epi32(_mm_cvtsi32_si128(4096),
|
|
_MM_SHUFFLE(1, 0, 1, 0));
|
|
|
|
for (i = 0; i < (len & ~3U); i += 4) {
|
|
__m128i lo, hi;
|
|
__m128i y, u, v;
|
|
__m128i r = _mm_load_si128((const __m128i *) & (c0[i]));
|
|
__m128i g = _mm_load_si128((const __m128i *) & (c1[i]));
|
|
__m128i b = _mm_load_si128((const __m128i *) & (c2[i]));
|
|
|
|
lo = r;
|
|
hi = _mm_shuffle_epi32(r, _MM_SHUFFLE(3, 3, 1, 1));
|
|
lo = _mm_mul_epi32(lo, ry);
|
|
hi = _mm_mul_epi32(hi, ry);
|
|
lo = _mm_add_epi64(lo, mulround);
|
|
hi = _mm_add_epi64(hi, mulround);
|
|
lo = _mm_srli_epi64(lo, 13);
|
|
hi = _mm_slli_epi64(hi, 32 - 13);
|
|
y = _mm_blend_epi16(lo, hi, 0xCC);
|
|
|
|
lo = g;
|
|
hi = _mm_shuffle_epi32(g, _MM_SHUFFLE(3, 3, 1, 1));
|
|
lo = _mm_mul_epi32(lo, gy);
|
|
hi = _mm_mul_epi32(hi, gy);
|
|
lo = _mm_add_epi64(lo, mulround);
|
|
hi = _mm_add_epi64(hi, mulround);
|
|
lo = _mm_srli_epi64(lo, 13);
|
|
hi = _mm_slli_epi64(hi, 32 - 13);
|
|
y = _mm_add_epi32(y, _mm_blend_epi16(lo, hi, 0xCC));
|
|
|
|
lo = b;
|
|
hi = _mm_shuffle_epi32(b, _MM_SHUFFLE(3, 3, 1, 1));
|
|
lo = _mm_mul_epi32(lo, by);
|
|
hi = _mm_mul_epi32(hi, by);
|
|
lo = _mm_add_epi64(lo, mulround);
|
|
hi = _mm_add_epi64(hi, mulround);
|
|
lo = _mm_srli_epi64(lo, 13);
|
|
hi = _mm_slli_epi64(hi, 32 - 13);
|
|
y = _mm_add_epi32(y, _mm_blend_epi16(lo, hi, 0xCC));
|
|
_mm_store_si128((__m128i *) & (c0[i]), y);
|
|
|
|
/*lo = b;
|
|
hi = _mm_shuffle_epi32(b, _MM_SHUFFLE(3, 3, 1, 1));
|
|
lo = _mm_mul_epi32(lo, mulround);
|
|
hi = _mm_mul_epi32(hi, mulround);*/
|
|
lo = _mm_cvtepi32_epi64(_mm_shuffle_epi32(b, _MM_SHUFFLE(3, 2, 2, 0)));
|
|
hi = _mm_cvtepi32_epi64(_mm_shuffle_epi32(b, _MM_SHUFFLE(3, 2, 3, 1)));
|
|
lo = _mm_slli_epi64(lo, 12);
|
|
hi = _mm_slli_epi64(hi, 12);
|
|
lo = _mm_add_epi64(lo, mulround);
|
|
hi = _mm_add_epi64(hi, mulround);
|
|
lo = _mm_srli_epi64(lo, 13);
|
|
hi = _mm_slli_epi64(hi, 32 - 13);
|
|
u = _mm_blend_epi16(lo, hi, 0xCC);
|
|
|
|
lo = r;
|
|
hi = _mm_shuffle_epi32(r, _MM_SHUFFLE(3, 3, 1, 1));
|
|
lo = _mm_mul_epi32(lo, ru);
|
|
hi = _mm_mul_epi32(hi, ru);
|
|
lo = _mm_add_epi64(lo, mulround);
|
|
hi = _mm_add_epi64(hi, mulround);
|
|
lo = _mm_srli_epi64(lo, 13);
|
|
hi = _mm_slli_epi64(hi, 32 - 13);
|
|
u = _mm_sub_epi32(u, _mm_blend_epi16(lo, hi, 0xCC));
|
|
|
|
lo = g;
|
|
hi = _mm_shuffle_epi32(g, _MM_SHUFFLE(3, 3, 1, 1));
|
|
lo = _mm_mul_epi32(lo, gu);
|
|
hi = _mm_mul_epi32(hi, gu);
|
|
lo = _mm_add_epi64(lo, mulround);
|
|
hi = _mm_add_epi64(hi, mulround);
|
|
lo = _mm_srli_epi64(lo, 13);
|
|
hi = _mm_slli_epi64(hi, 32 - 13);
|
|
u = _mm_sub_epi32(u, _mm_blend_epi16(lo, hi, 0xCC));
|
|
_mm_store_si128((__m128i *) & (c1[i]), u);
|
|
|
|
/*lo = r;
|
|
hi = _mm_shuffle_epi32(r, _MM_SHUFFLE(3, 3, 1, 1));
|
|
lo = _mm_mul_epi32(lo, mulround);
|
|
hi = _mm_mul_epi32(hi, mulround);*/
|
|
lo = _mm_cvtepi32_epi64(_mm_shuffle_epi32(r, _MM_SHUFFLE(3, 2, 2, 0)));
|
|
hi = _mm_cvtepi32_epi64(_mm_shuffle_epi32(r, _MM_SHUFFLE(3, 2, 3, 1)));
|
|
lo = _mm_slli_epi64(lo, 12);
|
|
hi = _mm_slli_epi64(hi, 12);
|
|
lo = _mm_add_epi64(lo, mulround);
|
|
hi = _mm_add_epi64(hi, mulround);
|
|
lo = _mm_srli_epi64(lo, 13);
|
|
hi = _mm_slli_epi64(hi, 32 - 13);
|
|
v = _mm_blend_epi16(lo, hi, 0xCC);
|
|
|
|
lo = g;
|
|
hi = _mm_shuffle_epi32(g, _MM_SHUFFLE(3, 3, 1, 1));
|
|
lo = _mm_mul_epi32(lo, gv);
|
|
hi = _mm_mul_epi32(hi, gv);
|
|
lo = _mm_add_epi64(lo, mulround);
|
|
hi = _mm_add_epi64(hi, mulround);
|
|
lo = _mm_srli_epi64(lo, 13);
|
|
hi = _mm_slli_epi64(hi, 32 - 13);
|
|
v = _mm_sub_epi32(v, _mm_blend_epi16(lo, hi, 0xCC));
|
|
|
|
lo = b;
|
|
hi = _mm_shuffle_epi32(b, _MM_SHUFFLE(3, 3, 1, 1));
|
|
lo = _mm_mul_epi32(lo, bv);
|
|
hi = _mm_mul_epi32(hi, bv);
|
|
lo = _mm_add_epi64(lo, mulround);
|
|
hi = _mm_add_epi64(hi, mulround);
|
|
lo = _mm_srli_epi64(lo, 13);
|
|
hi = _mm_slli_epi64(hi, 32 - 13);
|
|
v = _mm_sub_epi32(v, _mm_blend_epi16(lo, hi, 0xCC));
|
|
_mm_store_si128((__m128i *) & (c2[i]), v);
|
|
}
|
|
for (; i < len; ++i) {
|
|
OPJ_INT32 r = c0[i];
|
|
OPJ_INT32 g = c1[i];
|
|
OPJ_INT32 b = c2[i];
|
|
OPJ_INT32 y = opj_int_fix_mul(r, 2449) + opj_int_fix_mul(g,
|
|
4809) + opj_int_fix_mul(b, 934);
|
|
OPJ_INT32 u = -opj_int_fix_mul(r, 1382) - opj_int_fix_mul(g,
|
|
2714) + opj_int_fix_mul(b, 4096);
|
|
OPJ_INT32 v = opj_int_fix_mul(r, 4096) - opj_int_fix_mul(g,
|
|
3430) - opj_int_fix_mul(b, 666);
|
|
c0[i] = y;
|
|
c1[i] = u;
|
|
c2[i] = v;
|
|
}
|
|
}
|
|
#else
|
|
void opj_mct_encode_real(
|
|
OPJ_INT32* OPJ_RESTRICT c0,
|
|
OPJ_INT32* OPJ_RESTRICT c1,
|
|
OPJ_INT32* OPJ_RESTRICT c2,
|
|
OPJ_SIZE_T n)
|
|
{
|
|
OPJ_UINT32 i;
|
|
for (i = 0; i < n; ++i) {
|
|
OPJ_INT32 r = c0[i];
|
|
OPJ_INT32 g = c1[i];
|
|
OPJ_INT32 b = c2[i];
|
|
OPJ_INT32 y = opj_int_fix_mul(r, 2449) + opj_int_fix_mul(g,
|
|
4809) + opj_int_fix_mul(b, 934);
|
|
OPJ_INT32 u = -opj_int_fix_mul(r, 1382) - opj_int_fix_mul(g,
|
|
2714) + opj_int_fix_mul(b, 4096);
|
|
OPJ_INT32 v = opj_int_fix_mul(r, 4096) - opj_int_fix_mul(g,
|
|
3430) - opj_int_fix_mul(b, 666);
|
|
c0[i] = y;
|
|
c1[i] = u;
|
|
c2[i] = v;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* <summary> */
|
|
/* Inverse irreversible MCT. */
|
|
/* </summary> */
|
|
void opj_mct_decode_real(
|
|
OPJ_FLOAT32* OPJ_RESTRICT c0,
|
|
OPJ_FLOAT32* OPJ_RESTRICT c1,
|
|
OPJ_FLOAT32* OPJ_RESTRICT c2,
|
|
OPJ_SIZE_T n)
|
|
{
|
|
OPJ_UINT32 i;
|
|
#ifdef __SSE__
|
|
__m128 vrv, vgu, vgv, vbu;
|
|
vrv = _mm_set1_ps(1.402f);
|
|
vgu = _mm_set1_ps(0.34413f);
|
|
vgv = _mm_set1_ps(0.71414f);
|
|
vbu = _mm_set1_ps(1.772f);
|
|
for (i = 0; i < (n >> 3); ++i) {
|
|
__m128 vy, vu, vv;
|
|
__m128 vr, vg, vb;
|
|
|
|
vy = _mm_load_ps(c0);
|
|
vu = _mm_load_ps(c1);
|
|
vv = _mm_load_ps(c2);
|
|
vr = _mm_add_ps(vy, _mm_mul_ps(vv, vrv));
|
|
vg = _mm_sub_ps(_mm_sub_ps(vy, _mm_mul_ps(vu, vgu)), _mm_mul_ps(vv, vgv));
|
|
vb = _mm_add_ps(vy, _mm_mul_ps(vu, vbu));
|
|
_mm_store_ps(c0, vr);
|
|
_mm_store_ps(c1, vg);
|
|
_mm_store_ps(c2, vb);
|
|
c0 += 4;
|
|
c1 += 4;
|
|
c2 += 4;
|
|
|
|
vy = _mm_load_ps(c0);
|
|
vu = _mm_load_ps(c1);
|
|
vv = _mm_load_ps(c2);
|
|
vr = _mm_add_ps(vy, _mm_mul_ps(vv, vrv));
|
|
vg = _mm_sub_ps(_mm_sub_ps(vy, _mm_mul_ps(vu, vgu)), _mm_mul_ps(vv, vgv));
|
|
vb = _mm_add_ps(vy, _mm_mul_ps(vu, vbu));
|
|
_mm_store_ps(c0, vr);
|
|
_mm_store_ps(c1, vg);
|
|
_mm_store_ps(c2, vb);
|
|
c0 += 4;
|
|
c1 += 4;
|
|
c2 += 4;
|
|
}
|
|
n &= 7;
|
|
#endif
|
|
for (i = 0; i < n; ++i) {
|
|
OPJ_FLOAT32 y = c0[i];
|
|
OPJ_FLOAT32 u = c1[i];
|
|
OPJ_FLOAT32 v = c2[i];
|
|
OPJ_FLOAT32 r = y + (v * 1.402f);
|
|
OPJ_FLOAT32 g = y - (u * 0.34413f) - (v * (0.71414f));
|
|
OPJ_FLOAT32 b = y + (u * 1.772f);
|
|
c0[i] = r;
|
|
c1[i] = g;
|
|
c2[i] = b;
|
|
}
|
|
}
|
|
|
|
/* <summary> */
|
|
/* Get norm of basis function of irreversible MCT. */
|
|
/* </summary> */
|
|
OPJ_FLOAT64 opj_mct_getnorm_real(OPJ_UINT32 compno)
|
|
{
|
|
return opj_mct_norms_real[compno];
|
|
}
|
|
|
|
|
|
OPJ_BOOL opj_mct_encode_custom(
|
|
OPJ_BYTE * pCodingdata,
|
|
OPJ_SIZE_T n,
|
|
OPJ_BYTE ** pData,
|
|
OPJ_UINT32 pNbComp,
|
|
OPJ_UINT32 isSigned)
|
|
{
|
|
OPJ_FLOAT32 * lMct = (OPJ_FLOAT32 *) pCodingdata;
|
|
OPJ_SIZE_T i;
|
|
OPJ_UINT32 j;
|
|
OPJ_UINT32 k;
|
|
OPJ_UINT32 lNbMatCoeff = pNbComp * pNbComp;
|
|
OPJ_INT32 * lCurrentData = 00;
|
|
OPJ_INT32 * lCurrentMatrix = 00;
|
|
OPJ_INT32 ** lData = (OPJ_INT32 **) pData;
|
|
OPJ_UINT32 lMultiplicator = 1 << 13;
|
|
OPJ_INT32 * lMctPtr;
|
|
|
|
OPJ_ARG_NOT_USED(isSigned);
|
|
|
|
lCurrentData = (OPJ_INT32 *) opj_malloc((pNbComp + lNbMatCoeff) * sizeof(
|
|
OPJ_INT32));
|
|
if (! lCurrentData) {
|
|
return OPJ_FALSE;
|
|
}
|
|
|
|
lCurrentMatrix = lCurrentData + pNbComp;
|
|
|
|
for (i = 0; i < lNbMatCoeff; ++i) {
|
|
lCurrentMatrix[i] = (OPJ_INT32)(*(lMct++) * (OPJ_FLOAT32)lMultiplicator);
|
|
}
|
|
|
|
for (i = 0; i < n; ++i) {
|
|
lMctPtr = lCurrentMatrix;
|
|
for (j = 0; j < pNbComp; ++j) {
|
|
lCurrentData[j] = (*(lData[j]));
|
|
}
|
|
|
|
for (j = 0; j < pNbComp; ++j) {
|
|
*(lData[j]) = 0;
|
|
for (k = 0; k < pNbComp; ++k) {
|
|
*(lData[j]) += opj_int_fix_mul(*lMctPtr, lCurrentData[k]);
|
|
++lMctPtr;
|
|
}
|
|
|
|
++lData[j];
|
|
}
|
|
}
|
|
|
|
opj_free(lCurrentData);
|
|
|
|
return OPJ_TRUE;
|
|
}
|
|
|
|
OPJ_BOOL opj_mct_decode_custom(
|
|
OPJ_BYTE * pDecodingData,
|
|
OPJ_SIZE_T n,
|
|
OPJ_BYTE ** pData,
|
|
OPJ_UINT32 pNbComp,
|
|
OPJ_UINT32 isSigned)
|
|
{
|
|
OPJ_FLOAT32 * lMct;
|
|
OPJ_SIZE_T i;
|
|
OPJ_UINT32 j;
|
|
OPJ_UINT32 k;
|
|
|
|
OPJ_FLOAT32 * lCurrentData = 00;
|
|
OPJ_FLOAT32 * lCurrentResult = 00;
|
|
OPJ_FLOAT32 ** lData = (OPJ_FLOAT32 **) pData;
|
|
|
|
OPJ_ARG_NOT_USED(isSigned);
|
|
|
|
lCurrentData = (OPJ_FLOAT32 *) opj_malloc(2 * pNbComp * sizeof(OPJ_FLOAT32));
|
|
if (! lCurrentData) {
|
|
return OPJ_FALSE;
|
|
}
|
|
lCurrentResult = lCurrentData + pNbComp;
|
|
|
|
for (i = 0; i < n; ++i) {
|
|
lMct = (OPJ_FLOAT32 *) pDecodingData;
|
|
for (j = 0; j < pNbComp; ++j) {
|
|
lCurrentData[j] = (OPJ_FLOAT32)(*(lData[j]));
|
|
}
|
|
for (j = 0; j < pNbComp; ++j) {
|
|
lCurrentResult[j] = 0;
|
|
for (k = 0; k < pNbComp; ++k) {
|
|
lCurrentResult[j] += *(lMct++) * lCurrentData[k];
|
|
}
|
|
*(lData[j]++) = (OPJ_FLOAT32)(lCurrentResult[j]);
|
|
}
|
|
}
|
|
opj_free(lCurrentData);
|
|
return OPJ_TRUE;
|
|
}
|
|
|
|
void opj_calculate_norms(OPJ_FLOAT64 * pNorms,
|
|
OPJ_UINT32 pNbComps,
|
|
OPJ_FLOAT32 * pMatrix)
|
|
{
|
|
OPJ_UINT32 i, j, lIndex;
|
|
OPJ_FLOAT32 lCurrentValue;
|
|
OPJ_FLOAT64 * lNorms = (OPJ_FLOAT64 *) pNorms;
|
|
OPJ_FLOAT32 * lMatrix = (OPJ_FLOAT32 *) pMatrix;
|
|
|
|
for (i = 0; i < pNbComps; ++i) {
|
|
lNorms[i] = 0;
|
|
lIndex = i;
|
|
|
|
for (j = 0; j < pNbComps; ++j) {
|
|
lCurrentValue = lMatrix[lIndex];
|
|
lIndex += pNbComps;
|
|
lNorms[i] += lCurrentValue * lCurrentValue;
|
|
}
|
|
lNorms[i] = sqrt(lNorms[i]);
|
|
}
|
|
}
|