opencv/modules/ocl/src/opencl/match_template.cl
2013-03-26 14:10:29 +08:00

859 lines
26 KiB
Common Lisp

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Peng Xiao, pengxiao@multicorewareinc.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other oclMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#pragma OPENCL EXTENSION cl_amd_printf : enable
#if defined (DOUBLE_SUPPORT)
#ifdef cl_khr_fp64
#pragma OPENCL EXTENSION cl_khr_fp64:enable
#elif defined (cl_amd_fp64)
#pragma OPENCL EXTENSION cl_amd_fp64:enable
#endif
#define TYPE_IMAGE_SQSUM double
#else
#define TYPE_IMAGE_SQSUM float
#endif
#ifndef CN4
#define CN4 1
#else
#define CN4 4
#endif
//////////////////////////////////////////////////
// utilities
#define SQSUMS_PTR(ox, oy) mad24(gidy + oy, img_sqsums_step, (gidx + img_sqsums_offset + ox) * CN4)
#define SUMS_PTR(ox, oy) mad24(gidy + oy, img_sums_step, gidx + img_sums_offset + ox)
// normAcc* are accurate normalization routines which make GPU matchTemplate
// consistent with CPU one
float normAcc(float num, float denum)
{
if(fabs(num) < denum)
{
return num / denum;
}
if(fabs(num) < denum * 1.125f)
{
return num > 0 ? 1 : -1;
}
return 0;
}
float normAcc_SQDIFF(float num, float denum)
{
if(fabs(num) < denum)
{
return num / denum;
}
if(fabs(num) < denum * 1.125f)
{
return num > 0 ? 1 : -1;
}
return 1;
}
//////////////////////////////////////////////////////////////////////
// normalize
__kernel
void normalizeKernel_C1_D0
(
__global const float * img_sqsums,
__global float * res,
ulong tpl_sqsum,
int res_rows,
int res_cols,
int tpl_rows,
int tpl_cols,
int img_sqsums_offset,
int img_sqsums_step,
int res_offset,
int res_step
)
{
int gidx = get_global_id(0);
int gidy = get_global_id(1);
res_step /= sizeof(*res);
res_offset /= sizeof(*res);
img_sqsums_step /= sizeof(*img_sqsums);
img_sqsums_offset /= sizeof(*img_sqsums);
int res_idx = mad24(gidy, res_step, res_offset + gidx);
if(gidx < res_cols && gidy < res_rows)
{
float image_sqsum_ = (float)(
(img_sqsums[SQSUMS_PTR(tpl_cols, tpl_rows)] - img_sqsums[SQSUMS_PTR(tpl_cols, 0)]) -
(img_sqsums[SQSUMS_PTR(0, tpl_rows)] - img_sqsums[SQSUMS_PTR(0, 0)]));
res[res_idx] = normAcc(res[res_idx], sqrt(image_sqsum_ * tpl_sqsum));
}
}
__kernel
void matchTemplate_Prepared_SQDIFF_C1_D0
(
__global const TYPE_IMAGE_SQSUM * img_sqsums,
__global float * res,
ulong tpl_sqsum,
int res_rows,
int res_cols,
int tpl_rows,
int tpl_cols,
int img_sqsums_offset,
int img_sqsums_step,
int res_offset,
int res_step
)
{
int gidx = get_global_id(0);
int gidy = get_global_id(1);
res_step /= sizeof(*res);
res_offset /= sizeof(*res);
img_sqsums_step /= sizeof(*img_sqsums);
img_sqsums_offset /= sizeof(*img_sqsums);
int res_idx = mad24(gidy, res_step, res_offset + gidx);
if(gidx < res_cols && gidy < res_rows)
{
float image_sqsum_ = (float)(
(img_sqsums[SQSUMS_PTR(tpl_cols, tpl_rows)] - img_sqsums[SQSUMS_PTR(tpl_cols, 0)]) -
(img_sqsums[SQSUMS_PTR(0, tpl_rows)] - img_sqsums[SQSUMS_PTR(0, 0)]));
res[res_idx] = image_sqsum_ - 2.f * res[res_idx] + tpl_sqsum;
}
}
__kernel
void matchTemplate_Prepared_SQDIFF_NORMED_C1_D0
(
__global const float * img_sqsums,
__global float * res,
ulong tpl_sqsum,
int res_rows,
int res_cols,
int tpl_rows,
int tpl_cols,
int img_sqsums_offset,
int img_sqsums_step,
int res_offset,
int res_step
)
{
int gidx = get_global_id(0);
int gidy = get_global_id(1);
res_step /= sizeof(*res);
res_offset /= sizeof(*res);
img_sqsums_step /= sizeof(*img_sqsums);
img_sqsums_offset /= sizeof(*img_sqsums);
int res_idx = mad24(gidy, res_step, res_offset + gidx);
if(gidx < res_cols && gidy < res_rows)
{
float image_sqsum_ = (float)(
(img_sqsums[SQSUMS_PTR(tpl_cols, tpl_rows)] - img_sqsums[SQSUMS_PTR(tpl_cols, 0)]) -
(img_sqsums[SQSUMS_PTR(0, tpl_rows)] - img_sqsums[SQSUMS_PTR(0, 0)]));
res[res_idx] = normAcc_SQDIFF(image_sqsum_ - 2.f * res[res_idx] + tpl_sqsum,
sqrt(image_sqsum_ * tpl_sqsum));
}
}
//////////////////////////////////////////////////
// SQDIFF
__kernel
void matchTemplate_Naive_SQDIFF_C1_D0
(
__global const uchar * img,
__global const uchar * tpl,
__global float * res,
int img_rows,
int img_cols,
int tpl_rows,
int tpl_cols,
int res_rows,
int res_cols,
int img_offset,
int tpl_offset,
int res_offset,
int img_step,
int tpl_step,
int res_step
)
{
int gidx = get_global_id(0);
int gidy = get_global_id(1);
int i,j;
int delta;
int sum = 0;
res_step /= sizeof(*res);
res_offset /= sizeof(*res);
int res_idx = mad24(gidy, res_step, res_offset + gidx);
if(gidx < res_cols && gidy < res_rows)
{
for(i = 0; i < tpl_rows; i ++)
{
// get specific rows of img data
__global const uchar * img_ptr = img + mad24(gidy + i, img_step, gidx + img_offset);
__global const uchar * tpl_ptr = tpl + mad24(i, tpl_step, tpl_offset);
for(j = 0; j < tpl_cols; j ++)
{
delta = img_ptr[j] - tpl_ptr[j];
sum = mad24(delta, delta, sum);
}
}
res[res_idx] = sum;
}
}
__kernel
void matchTemplate_Naive_SQDIFF_C1_D5
(
__global const float * img,
__global const float * tpl,
__global float * res,
int img_rows,
int img_cols,
int tpl_rows,
int tpl_cols,
int res_rows,
int res_cols,
int img_offset,
int tpl_offset,
int res_offset,
int img_step,
int tpl_step,
int res_step
)
{
int gidx = get_global_id(0);
int gidy = get_global_id(1);
int i,j;
float delta;
float sum = 0;
img_step /= sizeof(*img);
img_offset /= sizeof(*img);
tpl_step /= sizeof(*tpl);
tpl_offset /= sizeof(*tpl);
res_step /= sizeof(*res);
res_offset /= sizeof(*res);
int res_idx = mad24(gidy, res_step, res_offset + gidx);
if(gidx < res_cols && gidy < res_rows)
{
for(i = 0; i < tpl_rows; i ++)
{
// get specific rows of img data
__global const float * img_ptr = img + mad24(gidy + i, img_step, gidx + img_offset);
__global const float * tpl_ptr = tpl + mad24(i, tpl_step, tpl_offset);
for(j = 0; j < tpl_cols; j ++)
{
delta = img_ptr[j] - tpl_ptr[j];
sum = mad(delta, delta, sum);
}
}
res[res_idx] = sum;
}
}
__kernel
void matchTemplate_Naive_SQDIFF_C4_D0
(
__global const uchar4 * img,
__global const uchar4 * tpl,
__global float * res,
int img_rows,
int img_cols,
int tpl_rows,
int tpl_cols,
int res_rows,
int res_cols,
int img_offset,
int tpl_offset,
int res_offset,
int img_step,
int tpl_step,
int res_step
)
{
int gidx = get_global_id(0);
int gidy = get_global_id(1);
int i,j;
int4 delta;
int4 sum = (int4)(0, 0, 0, 0);
img_step /= sizeof(*img);
img_offset /= sizeof(*img);
tpl_step /= sizeof(*tpl);
tpl_offset /= sizeof(*tpl);
res_step /= sizeof(*res);
res_offset /= sizeof(*res);
int res_idx = mad24(gidy, res_step, res_offset + gidx);
if(gidx < res_cols && gidy < res_rows)
{
for(i = 0; i < tpl_rows; i ++)
{
// get specific rows of img data
__global const uchar4 * img_ptr = img + mad24(gidy + i, img_step, gidx + img_offset);
__global const uchar4 * tpl_ptr = tpl + mad24(i, tpl_step, tpl_offset);
for(j = 0; j < tpl_cols; j ++)
{
//delta = convert_int4(img_ptr[j] - tpl_ptr[j]); // this alternative is incorrect
delta.x = img_ptr[j].x - tpl_ptr[j].x;
delta.y = img_ptr[j].y - tpl_ptr[j].y;
delta.z = img_ptr[j].z - tpl_ptr[j].z;
delta.w = img_ptr[j].w - tpl_ptr[j].w;
sum = mad24(delta, delta, sum);
}
}
res[res_idx] = sum.x + sum.y + sum.z + sum.w;
}
}
__kernel
void matchTemplate_Naive_SQDIFF_C4_D5
(
__global const float4 * img,
__global const float4 * tpl,
__global float * res,
int img_rows,
int img_cols,
int tpl_rows,
int tpl_cols,
int res_rows,
int res_cols,
int img_offset,
int tpl_offset,
int res_offset,
int img_step,
int tpl_step,
int res_step
)
{
int gidx = get_global_id(0);
int gidy = get_global_id(1);
int i,j;
float4 delta;
float4 sum = (float4)(0, 0, 0, 0);
img_step /= sizeof(*img);
img_offset /= sizeof(*img);
tpl_step /= sizeof(*tpl);
tpl_offset /= sizeof(*tpl);
res_step /= sizeof(*res);
res_offset /= sizeof(*res);
int res_idx = mad24(gidy, res_step, res_offset + gidx);
if(gidx < res_cols && gidy < res_rows)
{
for(i = 0; i < tpl_rows; i ++)
{
// get specific rows of img data
__global const float4 * img_ptr = img + mad24(gidy + i, img_step, gidx + img_offset);
__global const float4 * tpl_ptr = tpl + mad24(i, tpl_step, tpl_offset);
for(j = 0; j < tpl_cols; j ++)
{
//delta = convert_int4(img_ptr[j] - tpl_ptr[j]); // this alternative is incorrect
delta.x = img_ptr[j].x - tpl_ptr[j].x;
delta.y = img_ptr[j].y - tpl_ptr[j].y;
delta.z = img_ptr[j].z - tpl_ptr[j].z;
delta.w = img_ptr[j].w - tpl_ptr[j].w;
sum = mad(delta, delta, sum);
}
}
res[res_idx] = sum.x + sum.y + sum.z + sum.w;
}
}
//////////////////////////////////////////////////
// CCORR
__kernel
void matchTemplate_Naive_CCORR_C1_D0
(
__global const uchar * img,
__global const uchar * tpl,
__global float * res,
int img_rows,
int img_cols,
int tpl_rows,
int tpl_cols,
int res_rows,
int res_cols,
int img_offset,
int tpl_offset,
int res_offset,
int img_step,
int tpl_step,
int res_step
)
{
int gidx = get_global_id(0);
int gidy = get_global_id(1);
int i,j;
int sum = 0;
res_step /= sizeof(*res);
res_offset /= sizeof(*res);
int res_idx = mad24(gidy, res_step, res_offset + gidx);
if(gidx < res_cols && gidy < res_rows)
{
for(i = 0; i < tpl_rows; i ++)
{
// get specific rows of img data
__global const uchar * img_ptr = img + mad24(gidy + i, img_step, gidx + img_offset);
__global const uchar * tpl_ptr = tpl + mad24(i, tpl_step, tpl_offset);
for(j = 0; j < tpl_cols; j ++)
{
sum = mad24(img_ptr[j], tpl_ptr[j], sum);
}
}
res[res_idx] = sum;
}
}
__kernel
void matchTemplate_Naive_CCORR_C1_D5
(
__global const float * img,
__global const float * tpl,
__global float * res,
int img_rows,
int img_cols,
int tpl_rows,
int tpl_cols,
int res_rows,
int res_cols,
int img_offset,
int tpl_offset,
int res_offset,
int img_step,
int tpl_step,
int res_step
)
{
int gidx = get_global_id(0);
int gidy = get_global_id(1);
int i,j;
float sum = 0;
img_step /= sizeof(*img);
img_offset /= sizeof(*img);
tpl_step /= sizeof(*tpl);
tpl_offset /= sizeof(*tpl);
res_step /= sizeof(*res);
res_offset /= sizeof(*res);
int res_idx = mad24(gidy, res_step, res_offset + gidx);
if(gidx < res_cols && gidy < res_rows)
{
for(i = 0; i < tpl_rows; i ++)
{
// get specific rows of img data
__global const float * img_ptr = img + mad24(gidy + i, img_step, gidx + img_offset);
__global const float * tpl_ptr = tpl + mad24(i, tpl_step, tpl_offset);
for(j = 0; j < tpl_cols; j ++)
{
sum = mad(img_ptr[j], tpl_ptr[j], sum);
}
}
res[res_idx] = sum;
}
}
__kernel
void matchTemplate_Naive_CCORR_C4_D0
(
__global const uchar4 * img,
__global const uchar4 * tpl,
__global float * res,
int img_rows,
int img_cols,
int tpl_rows,
int tpl_cols,
int res_rows,
int res_cols,
int img_offset,
int tpl_offset,
int res_offset,
int img_step,
int tpl_step,
int res_step
)
{
int gidx = get_global_id(0);
int gidy = get_global_id(1);
int i,j;
int4 sum = (int4)(0, 0, 0, 0);
img_step /= sizeof(*img);
img_offset /= sizeof(*img);
tpl_step /= sizeof(*tpl);
tpl_offset /= sizeof(*tpl);
res_step /= sizeof(*res);
res_offset /= sizeof(*res);
int res_idx = mad24(gidy, res_step, res_offset + gidx);
if(gidx < res_cols && gidy < res_rows)
{
for(i = 0; i < tpl_rows; i ++)
{
// get specific rows of img data
__global const uchar4 * img_ptr = img + mad24(gidy + i, img_step, gidx + img_offset);
__global const uchar4 * tpl_ptr = tpl + mad24(i, tpl_step, tpl_offset);
for(j = 0; j < tpl_cols; j ++)
{
sum = mad24(convert_int4(img_ptr[j]), convert_int4(tpl_ptr[j]), sum);
}
}
res[res_idx] = sum.x + sum.y + sum.z + sum.w;
}
}
__kernel
void matchTemplate_Naive_CCORR_C4_D5
(
__global const float4 * img,
__global const float4 * tpl,
__global float * res,
int img_rows,
int img_cols,
int tpl_rows,
int tpl_cols,
int res_rows,
int res_cols,
int img_offset,
int tpl_offset,
int res_offset,
int img_step,
int tpl_step,
int res_step
)
{
int gidx = get_global_id(0);
int gidy = get_global_id(1);
int i,j;
float4 sum = (float4)(0, 0, 0, 0);
img_step /= sizeof(*img);
img_offset /= sizeof(*img);
tpl_step /= sizeof(*tpl);
tpl_offset /= sizeof(*tpl);
res_step /= sizeof(*res);
res_offset /= sizeof(*res);
int res_idx = mad24(gidy, res_step, res_offset + gidx);
if(gidx < res_cols && gidy < res_rows)
{
for(i = 0; i < tpl_rows; i ++)
{
// get specific rows of img data
__global const float4 * img_ptr = img + mad24(gidy + i, img_step, gidx + img_offset);
__global const float4 * tpl_ptr = tpl + mad24(i, tpl_step, tpl_offset);
for(j = 0; j < tpl_cols; j ++)
{
sum = mad(convert_float4(img_ptr[j]), convert_float4(tpl_ptr[j]), sum);
}
}
res[res_idx] = sum.x + sum.y + sum.z + sum.w;
}
}
//////////////////////////////////////////////////
// CCOFF
__kernel
void matchTemplate_Prepared_CCOFF_C1_D0
(
__global float * res,
int img_rows,
int img_cols,
int tpl_rows,
int tpl_cols,
int res_rows,
int res_cols,
int res_offset,
int res_step,
__global const uint * img_sums,
int img_sums_offset,
int img_sums_step,
float tpl_sum
)
{
int gidx = get_global_id(0);
int gidy = get_global_id(1);
img_sums_offset /= sizeof(*img_sums);
img_sums_step /= sizeof(*img_sums);
res_step /= sizeof(*res);
res_offset /= sizeof(*res);
int res_idx = mad24(gidy, res_step, res_offset + gidx);
if(gidx < res_cols && gidy < res_rows)
{
float sum = (float)(
(img_sums[SUMS_PTR(tpl_cols, tpl_rows)] - img_sums[SUMS_PTR(tpl_cols, 0)])
- (img_sums[SUMS_PTR(0, tpl_rows)] - img_sums[SUMS_PTR(0, 0)]));
res[res_idx] -= sum * tpl_sum;
}
}
__kernel
void matchTemplate_Prepared_CCOFF_C4_D0
(
__global float * res,
int img_rows,
int img_cols,
int tpl_rows,
int tpl_cols,
int res_rows,
int res_cols,
int res_offset,
int res_step,
__global const uint * img_sums_c0,
__global const uint * img_sums_c1,
__global const uint * img_sums_c2,
__global const uint * img_sums_c3,
int img_sums_offset,
int img_sums_step,
float tpl_sum_c0,
float tpl_sum_c1,
float tpl_sum_c2,
float tpl_sum_c3
)
{
int gidx = get_global_id(0);
int gidy = get_global_id(1);
img_sums_offset /= sizeof(*img_sums_c0);
img_sums_step /= sizeof(*img_sums_c0);
res_step /= sizeof(*res);
res_offset /= sizeof(*res);
int res_idx = mad24(gidy, res_step, res_offset + gidx);
if(gidx < res_cols && gidy < res_rows)
{
float ccorr = res[res_idx];
ccorr -= tpl_sum_c0*(float)(
(img_sums_c0[SUMS_PTR(tpl_cols, tpl_rows)] - img_sums_c0[SUMS_PTR(tpl_cols, 0)])
- (img_sums_c0[SUMS_PTR(0, tpl_rows)] - img_sums_c0[SUMS_PTR(0, 0)]));
ccorr -= tpl_sum_c1*(float)(
(img_sums_c1[SUMS_PTR(tpl_cols, tpl_rows)] - img_sums_c1[SUMS_PTR(tpl_cols, 0)])
- (img_sums_c1[SUMS_PTR(0, tpl_rows)] - img_sums_c1[SUMS_PTR(0, 0)]));
ccorr -= tpl_sum_c2*(float)(
(img_sums_c2[SUMS_PTR(tpl_cols, tpl_rows)] - img_sums_c2[SUMS_PTR(tpl_cols, 0)])
- (img_sums_c2[SUMS_PTR(0, tpl_rows)] - img_sums_c2[SUMS_PTR(0, 0)]));
ccorr -= tpl_sum_c3*(float)(
(img_sums_c3[SUMS_PTR(tpl_cols, tpl_rows)] - img_sums_c3[SUMS_PTR(tpl_cols, 0)])
- (img_sums_c3[SUMS_PTR(0, tpl_rows)] - img_sums_c3[SUMS_PTR(0, 0)]));
res[res_idx] = ccorr;
}
}
__kernel
void matchTemplate_Prepared_CCOFF_NORMED_C1_D0
(
__global float * res,
int img_rows,
int img_cols,
int tpl_rows,
int tpl_cols,
int res_rows,
int res_cols,
int res_offset,
int res_step,
float weight,
__global const uint * img_sums,
int img_sums_offset,
int img_sums_step,
__global const float * img_sqsums,
int img_sqsums_offset,
int img_sqsums_step,
float tpl_sum,
float tpl_sqsum
)
{
int gidx = get_global_id(0);
int gidy = get_global_id(1);
img_sqsums_step /= sizeof(*img_sqsums);
img_sqsums_offset /= sizeof(*img_sqsums);
img_sums_offset /= sizeof(*img_sums);
img_sums_step /= sizeof(*img_sums);
res_step /= sizeof(*res);
res_offset /= sizeof(*res);
int res_idx = mad24(gidy, res_step, res_offset + gidx);
if(gidx < res_cols && gidy < res_rows)
{
float image_sum_ = (float)(
(img_sums[SUMS_PTR(tpl_cols, tpl_rows)] - img_sums[SUMS_PTR(tpl_cols, 0)])
- (img_sums[SUMS_PTR(0, tpl_rows)] - img_sums[SUMS_PTR(0, 0)]));
float image_sqsum_ = (float)(
(img_sqsums[SQSUMS_PTR(tpl_cols, tpl_rows)] - img_sqsums[SQSUMS_PTR(tpl_cols, 0)]) -
(img_sqsums[SQSUMS_PTR(0, tpl_rows)] - img_sqsums[SQSUMS_PTR(0, 0)]));
res[res_idx] = normAcc(res[res_idx] - image_sum_ * tpl_sum,
sqrt(tpl_sqsum * (image_sqsum_ - weight * image_sum_ * image_sum_)));
}
}
__kernel
void matchTemplate_Prepared_CCOFF_NORMED_C4_D0
(
__global float * res,
int img_rows,
int img_cols,
int tpl_rows,
int tpl_cols,
int res_rows,
int res_cols,
int res_offset,
int res_step,
float weight,
__global const uint * img_sums_c0,
__global const uint * img_sums_c1,
__global const uint * img_sums_c2,
__global const uint * img_sums_c3,
int img_sums_offset,
int img_sums_step,
__global const float * img_sqsums_c0,
__global const float * img_sqsums_c1,
__global const float * img_sqsums_c2,
__global const float * img_sqsums_c3,
int img_sqsums_offset,
int img_sqsums_step,
float tpl_sum_c0,
float tpl_sum_c1,
float tpl_sum_c2,
float tpl_sum_c3,
float tpl_sqsum
)
{
int gidx = get_global_id(0);
int gidy = get_global_id(1);
img_sqsums_step /= sizeof(*img_sqsums_c0);
img_sqsums_offset /= sizeof(*img_sqsums_c0);
img_sums_offset /= sizeof(*img_sums_c0);
img_sums_step /= sizeof(*img_sums_c0);
res_step /= sizeof(*res);
res_offset /= sizeof(*res);
int res_idx = mad24(gidy, res_step, res_offset + gidx);
if(gidx < res_cols && gidy < res_rows)
{
float image_sum_c0 = (float)(
(img_sums_c0[SUMS_PTR(tpl_cols, tpl_rows)] - img_sums_c0[SUMS_PTR(tpl_cols, 0)])
- (img_sums_c0[SUMS_PTR(0, tpl_rows)] - img_sums_c0[SUMS_PTR(0, 0)]));
float image_sum_c1 = (float)(
(img_sums_c1[SUMS_PTR(tpl_cols, tpl_rows)] - img_sums_c1[SUMS_PTR(tpl_cols, 0)])
- (img_sums_c1[SUMS_PTR(0, tpl_rows)] - img_sums_c1[SUMS_PTR(0, 0)]));
float image_sum_c2 = (float)(
(img_sums_c2[SUMS_PTR(tpl_cols, tpl_rows)] - img_sums_c2[SUMS_PTR(tpl_cols, 0)])
- (img_sums_c2[SUMS_PTR(0, tpl_rows)] - img_sums_c2[SUMS_PTR(0, 0)]));
float image_sum_c3 = (float)(
(img_sums_c3[SUMS_PTR(tpl_cols, tpl_rows)] - img_sums_c3[SUMS_PTR(tpl_cols, 0)])
- (img_sums_c3[SUMS_PTR(0, tpl_rows)] - img_sums_c3[SUMS_PTR(0, 0)]));
float image_sqsum_c0 = (float)(
(img_sqsums_c0[SQSUMS_PTR(tpl_cols, tpl_rows)] - img_sqsums_c0[SQSUMS_PTR(tpl_cols, 0)]) -
(img_sqsums_c0[SQSUMS_PTR(0, tpl_rows)] - img_sqsums_c0[SQSUMS_PTR(0, 0)]));
float image_sqsum_c1 = (float)(
(img_sqsums_c1[SQSUMS_PTR(tpl_cols, tpl_rows)] - img_sqsums_c1[SQSUMS_PTR(tpl_cols, 0)]) -
(img_sqsums_c1[SQSUMS_PTR(0, tpl_rows)] - img_sqsums_c1[SQSUMS_PTR(0, 0)]));
float image_sqsum_c2 = (float)(
(img_sqsums_c2[SQSUMS_PTR(tpl_cols, tpl_rows)] - img_sqsums_c2[SQSUMS_PTR(tpl_cols, 0)]) -
(img_sqsums_c2[SQSUMS_PTR(0, tpl_rows)] - img_sqsums_c2[SQSUMS_PTR(0, 0)]));
float image_sqsum_c3 = (float)(
(img_sqsums_c3[SQSUMS_PTR(tpl_cols, tpl_rows)] - img_sqsums_c3[SQSUMS_PTR(tpl_cols, 0)]) -
(img_sqsums_c3[SQSUMS_PTR(0, tpl_rows)] - img_sqsums_c3[SQSUMS_PTR(0, 0)]));
float num = res[res_idx] -
image_sum_c0 * tpl_sum_c0 -
image_sum_c1 * tpl_sum_c1 -
image_sum_c2 * tpl_sum_c2 -
image_sum_c3 * tpl_sum_c3;
float denum = sqrt( tpl_sqsum * (
image_sqsum_c0 - weight * image_sum_c0 * image_sum_c0 +
image_sqsum_c1 - weight * image_sum_c1 * image_sum_c1 +
image_sqsum_c2 - weight * image_sum_c2 * image_sum_c2 +
image_sqsum_c3 - weight * image_sum_c0 * image_sum_c3)
);
res[res_idx] = normAcc(num, denum);
}
}
//////////////////////////////////////////////////////////////////////
// extractFirstChannel
__kernel
void extractFirstChannel
(
const __global float4* img,
__global float* res,
int rows,
int cols,
int img_offset,
int res_offset,
int img_step,
int res_step
)
{
img_step /= sizeof(float4);
res_step /= sizeof(float);
img_offset /= sizeof(float4);
res_offset /= sizeof(float);
img += img_offset;
res += res_offset;
int gidx = get_global_id(0);
int gidy = get_global_id(1);
if(gidx < cols && gidy < rows)
{
res[gidx + gidy * res_step] = img[gidx + gidy * img_step].x;
}
}