mirror of
https://github.com/opencv/opencv.git
synced 2025-01-19 23:19:23 +08:00
22d64ae08f
[GSoC] High Level API and Samples for Scene Text Detection and Recognition * APIs and samples for scene text detection and recognition * update APIs and tutorial for Text Detection and Recognition * API updates: (1) put decodeType into struct Voc (2) optimize the post-processing of DB * sample update: (1) add transformation into scene_text_spotting.cpp (2) modify text_detection.cpp with API update * update tutorial * simplify text recognition API update tutorial * update impl usage in recognize() and detect() * dnn: refactoring public API of TextRecognitionModel/TextDetectionModel * update provided models update opencv.bib * dnn: adjust text rectangle angle * remove points ordering operation in model.cpp * update gts of DB test in test_model.cpp * dnn: ensure to keep text rectangle angle - avoid 90/180 degree turns * dnn(text): use quadrangle result in TextDetectionModel API * dnn: update Text Detection API (1) keep points' order consistent with (bl, tl, tr, br) in unclip (2) update contourScore with boundingRect
178 lines
6.7 KiB
C++
178 lines
6.7 KiB
C++
/*
|
|
Text detection model: https://github.com/argman/EAST
|
|
Download link: https://www.dropbox.com/s/r2ingd0l3zt8hxs/frozen_east_text_detection.tar.gz?dl=1
|
|
|
|
Text recognition models can be downloaded directly here:
|
|
Download link: https://drive.google.com/drive/folders/1cTbQ3nuZG-EKWak6emD_s8_hHXWz7lAr?usp=sharing
|
|
and doc/tutorials/dnn/dnn_text_spotting/dnn_text_spotting.markdown
|
|
|
|
How to convert from pb to onnx:
|
|
Using classes from here: https://github.com/meijieru/crnn.pytorch/blob/master/models/crnn.py
|
|
import torch
|
|
from models.crnn import CRNN
|
|
model = CRNN(32, 1, 37, 256)
|
|
model.load_state_dict(torch.load('crnn.pth'))
|
|
dummy_input = torch.randn(1, 1, 32, 100)
|
|
torch.onnx.export(model, dummy_input, "crnn.onnx", verbose=True)
|
|
|
|
For more information, please refer to doc/tutorials/dnn/dnn_text_spotting/dnn_text_spotting.markdown and doc/tutorials/dnn/dnn_OCR/dnn_OCR.markdown
|
|
*/
|
|
#include <iostream>
|
|
#include <fstream>
|
|
|
|
#include <opencv2/imgproc.hpp>
|
|
#include <opencv2/highgui.hpp>
|
|
#include <opencv2/dnn.hpp>
|
|
|
|
using namespace cv;
|
|
using namespace cv::dnn;
|
|
|
|
const char* keys =
|
|
"{ help h | | Print help message. }"
|
|
"{ input i | | Path to input image or video file. Skip this argument to capture frames from a camera.}"
|
|
"{ detModel dmp | | Path to a binary .pb file contains trained detector network.}"
|
|
"{ width | 320 | Preprocess input image by resizing to a specific width. It should be multiple by 32. }"
|
|
"{ height | 320 | Preprocess input image by resizing to a specific height. It should be multiple by 32. }"
|
|
"{ thr | 0.5 | Confidence threshold. }"
|
|
"{ nms | 0.4 | Non-maximum suppression threshold. }"
|
|
"{ recModel rmp | | Path to a binary .onnx file contains trained CRNN text recognition model. "
|
|
"Download links are provided in doc/tutorials/dnn/dnn_text_spotting/dnn_text_spotting.markdown}"
|
|
"{ RGBInput rgb |0| 0: imread with flags=IMREAD_GRAYSCALE; 1: imread with flags=IMREAD_COLOR. }"
|
|
"{ vocabularyPath vp | alphabet_36.txt | Path to benchmarks for evaluation. "
|
|
"Download links are provided in doc/tutorials/dnn/dnn_text_spotting/dnn_text_spotting.markdown}";
|
|
|
|
void fourPointsTransform(const Mat& frame, const Point2f vertices[], Mat& result);
|
|
|
|
int main(int argc, char** argv)
|
|
{
|
|
// Parse command line arguments.
|
|
CommandLineParser parser(argc, argv, keys);
|
|
parser.about("Use this script to run TensorFlow implementation (https://github.com/argman/EAST) of "
|
|
"EAST: An Efficient and Accurate Scene Text Detector (https://arxiv.org/abs/1704.03155v2)");
|
|
if (argc == 1 || parser.has("help"))
|
|
{
|
|
parser.printMessage();
|
|
return 0;
|
|
}
|
|
|
|
float confThreshold = parser.get<float>("thr");
|
|
float nmsThreshold = parser.get<float>("nms");
|
|
int width = parser.get<int>("width");
|
|
int height = parser.get<int>("height");
|
|
int imreadRGB = parser.get<int>("RGBInput");
|
|
String detModelPath = parser.get<String>("detModel");
|
|
String recModelPath = parser.get<String>("recModel");
|
|
String vocPath = parser.get<String>("vocabularyPath");
|
|
|
|
if (!parser.check())
|
|
{
|
|
parser.printErrors();
|
|
return 1;
|
|
}
|
|
|
|
// Load networks.
|
|
CV_Assert(!detModelPath.empty() && !recModelPath.empty());
|
|
TextDetectionModel_EAST detector(detModelPath);
|
|
detector.setConfidenceThreshold(confThreshold)
|
|
.setNMSThreshold(nmsThreshold);
|
|
|
|
TextRecognitionModel recognizer(recModelPath);
|
|
|
|
// Load vocabulary
|
|
CV_Assert(!vocPath.empty());
|
|
std::ifstream vocFile;
|
|
vocFile.open(samples::findFile(vocPath));
|
|
CV_Assert(vocFile.is_open());
|
|
String vocLine;
|
|
std::vector<String> vocabulary;
|
|
while (std::getline(vocFile, vocLine)) {
|
|
vocabulary.push_back(vocLine);
|
|
}
|
|
recognizer.setVocabulary(vocabulary);
|
|
recognizer.setDecodeType("CTC-greedy");
|
|
|
|
// Parameters for Recognition
|
|
double recScale = 1.0 / 127.5;
|
|
Scalar recMean = Scalar(127.5, 127.5, 127.5);
|
|
Size recInputSize = Size(100, 32);
|
|
recognizer.setInputParams(recScale, recInputSize, recMean);
|
|
|
|
// Parameters for Detection
|
|
double detScale = 1.0;
|
|
Size detInputSize = Size(width, height);
|
|
Scalar detMean = Scalar(123.68, 116.78, 103.94);
|
|
bool swapRB = true;
|
|
detector.setInputParams(detScale, detInputSize, detMean, swapRB);
|
|
|
|
// Open a video file or an image file or a camera stream.
|
|
VideoCapture cap;
|
|
bool openSuccess = parser.has("input") ? cap.open(parser.get<String>("input")) : cap.open(0);
|
|
CV_Assert(openSuccess);
|
|
|
|
static const std::string kWinName = "EAST: An Efficient and Accurate Scene Text Detector";
|
|
|
|
Mat frame;
|
|
while (waitKey(1) < 0)
|
|
{
|
|
cap >> frame;
|
|
if (frame.empty())
|
|
{
|
|
waitKey();
|
|
break;
|
|
}
|
|
|
|
std::cout << frame.size << std::endl;
|
|
|
|
// Detection
|
|
std::vector< std::vector<Point> > detResults;
|
|
detector.detect(frame, detResults);
|
|
|
|
if (detResults.size() > 0) {
|
|
// Text Recognition
|
|
Mat recInput;
|
|
if (!imreadRGB) {
|
|
cvtColor(frame, recInput, cv::COLOR_BGR2GRAY);
|
|
} else {
|
|
recInput = frame;
|
|
}
|
|
std::vector< std::vector<Point> > contours;
|
|
for (uint i = 0; i < detResults.size(); i++)
|
|
{
|
|
const auto& quadrangle = detResults[i];
|
|
CV_CheckEQ(quadrangle.size(), (size_t)4, "");
|
|
|
|
contours.emplace_back(quadrangle);
|
|
|
|
std::vector<Point2f> quadrangle_2f;
|
|
for (int j = 0; j < 4; j++)
|
|
quadrangle_2f.emplace_back(quadrangle[j]);
|
|
|
|
Mat cropped;
|
|
fourPointsTransform(recInput, &quadrangle_2f[0], cropped);
|
|
|
|
std::string recognitionResult = recognizer.recognize(cropped);
|
|
std::cout << i << ": '" << recognitionResult << "'" << std::endl;
|
|
|
|
putText(frame, recognitionResult, quadrangle[3], FONT_HERSHEY_SIMPLEX, 1.5, Scalar(0, 0, 255), 2);
|
|
}
|
|
polylines(frame, contours, true, Scalar(0, 255, 0), 2);
|
|
}
|
|
imshow(kWinName, frame);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void fourPointsTransform(const Mat& frame, const Point2f vertices[], Mat& result)
|
|
{
|
|
const Size outputSize = Size(100, 32);
|
|
|
|
Point2f targetVertices[4] = {
|
|
Point(0, outputSize.height - 1),
|
|
Point(0, 0), Point(outputSize.width - 1, 0),
|
|
Point(outputSize.width - 1, outputSize.height - 1)
|
|
};
|
|
Mat rotationMatrix = getPerspectiveTransform(vertices, targetVertices);
|
|
|
|
warpPerspective(frame, result, rotationMatrix, outputSize);
|
|
}
|