mirror of
https://github.com/opencv/opencv.git
synced 2025-01-22 09:36:59 +08:00
a03b813167
Fix OpenCV.js tests #25732 ### Pull Request Readiness Checklist * Firefox tests passed See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [x] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
305 lines
11 KiB
JavaScript
305 lines
11 KiB
JavaScript
// //////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//
|
|
|
|
// //////////////////////////////////////////////////////////////////////////////////////
|
|
// Author: Sajjad Taheri, University of California, Irvine. sajjadt[at]uci[dot]edu
|
|
//
|
|
// LICENSE AGREEMENT
|
|
// Copyright (c) 2015 The Regents of the University of California (Regents)
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are met:
|
|
// 1. Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// 2. Redistributions in binary form must reproduce the above copyright
|
|
// notice, this list of conditions and the following disclaimer in the
|
|
// documentation and/or other materials provided with the distribution.
|
|
// 3. Neither the name of the University nor the
|
|
// names of its contributors may be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ''AS IS'' AND ANY
|
|
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
// DISCLAIMED. IN NO EVENT SHALL CONTRIBUTORS BE LIABLE FOR ANY
|
|
// DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
|
// ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
|
|
var haarcascade_data = undefined;
|
|
if (typeof module !== 'undefined' && module.exports) {
|
|
// The environment is Node.js
|
|
let fs = require("fs");
|
|
haarcascade_data = fs.readFileSync("haarcascade_frontalface_default.xml");
|
|
}
|
|
|
|
QUnit.module('Object Detection', {});
|
|
QUnit.test('Cascade classification', function(assert) {
|
|
// Group rectangle
|
|
{
|
|
let rectList = new cv.RectVector();
|
|
let weights = new cv.IntVector();
|
|
let groupThreshold = 1;
|
|
const eps = 0.2;
|
|
|
|
let rect1 = new cv.Rect(1, 2, 3, 4);
|
|
let rect2 = new cv.Rect(1, 4, 2, 3);
|
|
|
|
rectList.push_back(rect1);
|
|
rectList.push_back(rect2);
|
|
|
|
cv.groupRectangles(rectList, weights, groupThreshold, eps);
|
|
|
|
|
|
rectList.delete();
|
|
weights.delete();
|
|
}
|
|
|
|
// CascadeClassifier
|
|
{
|
|
if (haarcascade_data) {
|
|
cv.FS_createDataFile("/", "haarcascade_frontalface_default.xml", haarcascade_data, true, false, false);
|
|
}
|
|
|
|
let classifier = new cv.CascadeClassifier();
|
|
const modelPath = '/haarcascade_frontalface_default.xml';
|
|
|
|
assert.equal(classifier.empty(), true);
|
|
|
|
|
|
classifier.load(modelPath);
|
|
assert.equal(classifier.empty(), false);
|
|
|
|
let image = cv.Mat.eye({height: 10, width: 10}, cv.CV_8UC3);
|
|
let objects = new cv.RectVector();
|
|
let numDetections = new cv.IntVector();
|
|
const scaleFactor = 1.1;
|
|
const minNeighbors = 3;
|
|
const flags = 0;
|
|
const minSize = {height: 0, width: 0};
|
|
const maxSize = {height: 10, width: 10};
|
|
|
|
classifier.detectMultiScale2(image, objects, numDetections, scaleFactor,
|
|
minNeighbors, flags, minSize, maxSize);
|
|
|
|
// test default parameters
|
|
classifier.detectMultiScale2(image, objects, numDetections, scaleFactor,
|
|
minNeighbors, flags, minSize);
|
|
classifier.detectMultiScale2(image, objects, numDetections, scaleFactor,
|
|
minNeighbors, flags);
|
|
classifier.detectMultiScale2(image, objects, numDetections, scaleFactor,
|
|
minNeighbors);
|
|
classifier.detectMultiScale2(image, objects, numDetections, scaleFactor);
|
|
|
|
classifier.delete();
|
|
objects.delete();
|
|
numDetections.delete();
|
|
}
|
|
|
|
// HOGDescriptor
|
|
{
|
|
let hog = new cv.HOGDescriptor();
|
|
let mat = new cv.Mat({height: 10, width: 10}, cv.CV_8UC1);
|
|
let descriptors = new cv.FloatVector();
|
|
let locations = new cv.PointVector();
|
|
|
|
|
|
assert.equal(hog.winSize.height, 128);
|
|
assert.equal(hog.winSize.width, 64);
|
|
assert.equal(hog.nbins, 9);
|
|
assert.equal(hog.derivAperture, 1);
|
|
assert.equal(hog.winSigma, -1);
|
|
assert.equal(hog.histogramNormType, 0);
|
|
assert.equal(hog.nlevels, 64);
|
|
|
|
hog.nlevels = 32;
|
|
assert.equal(hog.nlevels, 32);
|
|
|
|
hog.delete();
|
|
mat.delete();
|
|
descriptors.delete();
|
|
locations.delete();
|
|
}
|
|
});
|
|
QUnit.test('QR code detect and decode', function (assert) {
|
|
{
|
|
const detector = new cv.QRCodeDetector();
|
|
let mat = cv.Mat.ones(800, 600, cv.CV_8U);
|
|
assert.ok(mat);
|
|
|
|
// test detect
|
|
let points = new cv.Mat();
|
|
let qrCodeFound = detector.detect(mat, points);
|
|
assert.equal(points.rows, 0)
|
|
assert.equal(points.cols, 0)
|
|
assert.equal(qrCodeFound, false);
|
|
|
|
// test detectMult
|
|
qrCodeFound = detector.detectMulti(mat, points);
|
|
assert.equal(points.rows, 0)
|
|
assert.equal(points.cols, 0)
|
|
assert.equal(qrCodeFound, false);
|
|
|
|
// test decode (with random numbers)
|
|
let decodeTestPoints = cv.matFromArray(1, 4, cv.CV_32FC2, [10, 20, 30, 40, 60, 80, 90, 100]);
|
|
let qrCodeContent = detector.decode(mat, decodeTestPoints);
|
|
assert.equal(typeof qrCodeContent, 'string');
|
|
assert.equal(qrCodeContent, '');
|
|
|
|
//test detectAndDecode
|
|
qrCodeContent = detector.detectAndDecode(mat);
|
|
assert.equal(typeof qrCodeContent, 'string');
|
|
assert.equal(qrCodeContent, '');
|
|
|
|
// test decodeCurved
|
|
qrCodeContent = detector.decodeCurved(mat, decodeTestPoints);
|
|
assert.equal(typeof qrCodeContent, 'string');
|
|
assert.equal(qrCodeContent, '');
|
|
|
|
decodeTestPoints.delete();
|
|
points.delete();
|
|
mat.delete();
|
|
|
|
}
|
|
});
|
|
QUnit.test('Aruco-based QR code detect', function (assert) {
|
|
{
|
|
let qrcode_params = new cv.QRCodeDetectorAruco_Params();
|
|
let detector = new cv.QRCodeDetectorAruco();
|
|
let mat = cv.Mat.ones(800, 600, cv.CV_8U);
|
|
assert.ok(mat);
|
|
|
|
detector.setDetectorParameters(qrcode_params);
|
|
|
|
let points = new cv.Mat();
|
|
let qrCodeFound = detector.detect(mat, points);
|
|
assert.equal(points.rows, 0)
|
|
assert.equal(points.cols, 0)
|
|
assert.equal(qrCodeFound, false);
|
|
|
|
qrcode_params.delete();
|
|
detector.delete();
|
|
points.delete();
|
|
mat.delete();
|
|
}
|
|
});
|
|
QUnit.test('Bar code detect', function (assert) {
|
|
{
|
|
let detector = new cv.barcode_BarcodeDetector();
|
|
let mat = cv.Mat.ones(800, 600, cv.CV_8U);
|
|
assert.ok(mat);
|
|
|
|
let points = new cv.Mat();
|
|
let codeFound = detector.detect(mat, points);
|
|
assert.equal(points.rows, 0)
|
|
assert.equal(points.cols, 0)
|
|
assert.equal(codeFound, false);
|
|
|
|
codeContent = detector.detectAndDecode(mat);
|
|
assert.equal(typeof codeContent, 'string');
|
|
assert.equal(codeContent, '');
|
|
|
|
detector.delete();
|
|
points.delete();
|
|
mat.delete();
|
|
}
|
|
});
|
|
QUnit.test('Aruco detector', function (assert) {
|
|
{
|
|
let dictionary = cv.getPredefinedDictionary(cv.DICT_4X4_50);
|
|
let aruco_image = new cv.Mat();
|
|
let detectorParameters = new cv.aruco_DetectorParameters();
|
|
let refineParameters = new cv.aruco_RefineParameters(10, 3, true);
|
|
let detector = new cv.aruco_ArucoDetector(dictionary, detectorParameters,refineParameters);
|
|
let corners = new cv.MatVector();
|
|
let ids = new cv.Mat();
|
|
|
|
dictionary.generateImageMarker(10, 128, aruco_image);
|
|
assert.ok(!aruco_image.empty());
|
|
|
|
detector.detectMarkers(aruco_image, corners, ids);
|
|
|
|
dictionary.delete();
|
|
aruco_image.delete();
|
|
detectorParameters.delete();
|
|
refineParameters.delete();
|
|
detector.delete();
|
|
corners.delete();
|
|
ids.delete();
|
|
}
|
|
});
|
|
QUnit.test('Charuco detector', function (assert) {
|
|
{
|
|
let dictionary = new cv.getPredefinedDictionary(cv.DICT_4X4_50);
|
|
let boardIds = new cv.Mat();
|
|
let board = new cv.aruco_CharucoBoard(new cv.Size(3, 5), 64, 32, dictionary, boardIds);
|
|
let charucoParameters = new cv.aruco_CharucoParameters();
|
|
let detectorParameters = new cv.aruco_DetectorParameters();
|
|
let refineParameters = new cv.aruco_RefineParameters(10, 3, true);
|
|
let detector = new cv.aruco_CharucoDetector(board, charucoParameters, detectorParameters, refineParameters);
|
|
let board_image = new cv.Mat();
|
|
let corners = new cv.Mat();
|
|
let ids = new cv.Mat();
|
|
|
|
board.generateImage(new cv.Size(300, 500), board_image);
|
|
assert.ok(!board_image.empty());
|
|
|
|
detector.detectBoard(board_image, corners, ids);
|
|
assert.ok(!corners.empty());
|
|
assert.ok(!ids.empty());
|
|
|
|
dictionary.delete();
|
|
boardIds.delete();
|
|
board.delete();
|
|
board_image.delete();
|
|
charucoParameters.delete();
|
|
detectorParameters.delete();
|
|
refineParameters.delete();
|
|
detector.delete();
|
|
corners.delete();
|
|
ids.delete();
|
|
}
|
|
});
|