mirror of
https://github.com/opencv/opencv.git
synced 2025-01-15 04:03:43 +08:00
169 lines
6.5 KiB
C++
169 lines
6.5 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
|
|
#if !defined HAVE_CUDA || defined(CUDA_DISABLER)
|
|
|
|
cv::gpu::GMG_GPU::GMG_GPU() { throw_nogpu(); }
|
|
void cv::gpu::GMG_GPU::initialize(cv::Size, float, float) { throw_nogpu(); }
|
|
void cv::gpu::GMG_GPU::operator ()(const cv::gpu::GpuMat&, cv::gpu::GpuMat&, float, cv::gpu::Stream&) { throw_nogpu(); }
|
|
void cv::gpu::GMG_GPU::release() {}
|
|
|
|
#else
|
|
|
|
namespace cv { namespace gpu { namespace device {
|
|
namespace bgfg_gmg
|
|
{
|
|
void loadConstants(int width, int height, float minVal, float maxVal, int quantizationLevels, float backgroundPrior,
|
|
float decisionThreshold, int maxFeatures, int numInitializationFrames);
|
|
|
|
template <typename SrcT>
|
|
void update_gpu(PtrStepSzb frame, PtrStepb fgmask, PtrStepSzi colors, PtrStepf weights, PtrStepi nfeatures,
|
|
int frameNum, float learningRate, bool updateBackgroundModel, cudaStream_t stream);
|
|
}
|
|
}}}
|
|
|
|
cv::gpu::GMG_GPU::GMG_GPU()
|
|
{
|
|
maxFeatures = 64;
|
|
learningRate = 0.025f;
|
|
numInitializationFrames = 120;
|
|
quantizationLevels = 16;
|
|
backgroundPrior = 0.8f;
|
|
decisionThreshold = 0.8f;
|
|
smoothingRadius = 7;
|
|
updateBackgroundModel = true;
|
|
}
|
|
|
|
void cv::gpu::GMG_GPU::initialize(cv::Size frameSize, float min, float max)
|
|
{
|
|
using namespace cv::gpu::device::bgfg_gmg;
|
|
|
|
CV_Assert(min < max);
|
|
CV_Assert(maxFeatures > 0);
|
|
CV_Assert(learningRate >= 0.0f && learningRate <= 1.0f);
|
|
CV_Assert(numInitializationFrames >= 1);
|
|
CV_Assert(quantizationLevels >= 1 && quantizationLevels <= 255);
|
|
CV_Assert(backgroundPrior >= 0.0f && backgroundPrior <= 1.0f);
|
|
|
|
minVal_ = min;
|
|
maxVal_ = max;
|
|
|
|
frameSize_ = frameSize;
|
|
|
|
frameNum_ = 0;
|
|
|
|
nfeatures_.create(frameSize_, CV_32SC1);
|
|
colors_.create(maxFeatures * frameSize_.height, frameSize_.width, CV_32SC1);
|
|
weights_.create(maxFeatures * frameSize_.height, frameSize_.width, CV_32FC1);
|
|
|
|
nfeatures_.setTo(cv::Scalar::all(0));
|
|
|
|
if (smoothingRadius > 0)
|
|
boxFilter_ = cv::gpu::createBoxFilter_GPU(CV_8UC1, CV_8UC1, cv::Size(smoothingRadius, smoothingRadius));
|
|
|
|
loadConstants(frameSize_.width, frameSize_.height, minVal_, maxVal_, quantizationLevels, backgroundPrior, decisionThreshold, maxFeatures, numInitializationFrames);
|
|
}
|
|
|
|
void cv::gpu::GMG_GPU::operator ()(const cv::gpu::GpuMat& frame, cv::gpu::GpuMat& fgmask, float newLearningRate, cv::gpu::Stream& stream)
|
|
{
|
|
using namespace cv::gpu::device::bgfg_gmg;
|
|
|
|
typedef void (*func_t)(PtrStepSzb frame, PtrStepb fgmask, PtrStepSzi colors, PtrStepf weights, PtrStepi nfeatures,
|
|
int frameNum, float learningRate, bool updateBackgroundModel, cudaStream_t stream);
|
|
static const func_t funcs[6][4] =
|
|
{
|
|
{update_gpu<uchar>, 0, update_gpu<uchar3>, update_gpu<uchar4>},
|
|
{0,0,0,0},
|
|
{update_gpu<ushort>, 0, update_gpu<ushort3>, update_gpu<ushort4>},
|
|
{0,0,0,0},
|
|
{0,0,0,0},
|
|
{update_gpu<float>, 0, update_gpu<float3>, update_gpu<float4>}
|
|
};
|
|
|
|
CV_Assert(frame.depth() == CV_8U || frame.depth() == CV_16U || frame.depth() == CV_32F);
|
|
CV_Assert(frame.channels() == 1 || frame.channels() == 3 || frame.channels() == 4);
|
|
|
|
if (newLearningRate != -1.0f)
|
|
{
|
|
CV_Assert(newLearningRate >= 0.0f && newLearningRate <= 1.0f);
|
|
learningRate = newLearningRate;
|
|
}
|
|
|
|
if (frame.size() != frameSize_)
|
|
initialize(frame.size(), 0.0f, frame.depth() == CV_8U ? 255.0f : frame.depth() == CV_16U ? std::numeric_limits<ushort>::max() : 1.0f);
|
|
|
|
fgmask.create(frameSize_, CV_8UC1);
|
|
if (stream)
|
|
stream.enqueueMemSet(fgmask, cv::Scalar::all(0));
|
|
else
|
|
fgmask.setTo(cv::Scalar::all(0));
|
|
|
|
funcs[frame.depth()][frame.channels() - 1](frame, fgmask, colors_, weights_, nfeatures_, frameNum_, learningRate, updateBackgroundModel, cv::gpu::StreamAccessor::getStream(stream));
|
|
|
|
// medianBlur
|
|
if (smoothingRadius > 0)
|
|
{
|
|
boxFilter_->apply(fgmask, buf_, cv::Rect(0,0,-1,-1), stream);
|
|
int minCount = (smoothingRadius * smoothingRadius + 1) / 2;
|
|
double thresh = 255.0 * minCount / (smoothingRadius * smoothingRadius);
|
|
cv::gpu::threshold(buf_, fgmask, thresh, 255.0, cv::THRESH_BINARY, stream);
|
|
}
|
|
|
|
// keep track of how many frames we have processed
|
|
++frameNum_;
|
|
}
|
|
|
|
void cv::gpu::GMG_GPU::release()
|
|
{
|
|
frameSize_ = Size();
|
|
|
|
nfeatures_.release();
|
|
colors_.release();
|
|
weights_.release();
|
|
boxFilter_.release();
|
|
buf_.release();
|
|
}
|
|
|
|
#endif
|