mirror of
https://github.com/opencv/opencv.git
synced 2025-06-21 19:07:04 +08:00
123 lines
3.8 KiB
C++
123 lines
3.8 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
// Copyright (C) 2018, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
#include "../precomp.hpp"
|
|
#include "../op_inf_engine.hpp"
|
|
#include "../op_cuda.hpp"
|
|
#include "layers_common.hpp"
|
|
#include "../ie_ngraph.hpp"
|
|
|
|
#ifdef HAVE_OPENCL
|
|
#include "opencl_kernels_dnn.hpp"
|
|
#endif
|
|
|
|
#ifdef HAVE_CUDA
|
|
#include "../cuda4dnn/primitives/const.hpp"
|
|
using namespace cv::dnn::cuda4dnn;
|
|
#endif
|
|
|
|
namespace cv { namespace dnn {
|
|
|
|
class ConstLayerImpl CV_FINAL : public ConstLayer
|
|
{
|
|
public:
|
|
ConstLayerImpl(const LayerParams& params)
|
|
{
|
|
setParamsFrom(params);
|
|
CV_Assert(blobs.size() == 1);
|
|
}
|
|
|
|
virtual bool supportBackend(int backendId) CV_OVERRIDE
|
|
{
|
|
return backendId == DNN_BACKEND_OPENCV ||
|
|
backendId == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019 ||
|
|
backendId == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH ||
|
|
backendId == DNN_BACKEND_CUDA;
|
|
}
|
|
|
|
virtual bool getMemoryShapes(const std::vector<MatShape> &inputs,
|
|
const int requiredOutputs,
|
|
std::vector<MatShape> &outputs,
|
|
std::vector<MatShape> &internals) const CV_OVERRIDE
|
|
{
|
|
CV_Assert(inputs.empty());
|
|
outputs.assign(1, shape(blobs[0]));
|
|
return false;
|
|
}
|
|
|
|
#ifdef HAVE_OPENCL
|
|
bool forward_ocl(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays internals)
|
|
{
|
|
std::vector<UMat> outputs;
|
|
outs.getUMatVector(outputs);
|
|
if (outs.depth() == CV_16S)
|
|
convertFp16(blobs[0], outputs[0]);
|
|
else
|
|
blobs[0].copyTo(outputs[0]);
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
|
|
|
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget),
|
|
forward_ocl(inputs_arr, outputs_arr, internals_arr))
|
|
|
|
std::vector<Mat> outputs;
|
|
outputs_arr.getMatVector(outputs);
|
|
blobs[0].copyTo(outputs[0]);
|
|
}
|
|
|
|
|
|
#ifdef HAVE_DNN_IE_NN_BUILDER_2019
|
|
virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> >&) CV_OVERRIDE
|
|
{
|
|
InferenceEngine::Builder::ConstLayer ieLayer(name);
|
|
ieLayer.setData(wrapToInfEngineBlob(blobs[0]));
|
|
return Ptr<BackendNode>(new InfEngineBackendNode(ieLayer));
|
|
}
|
|
#endif // HAVE_DNN_IE_NN_BUILDER_2019
|
|
|
|
|
|
#ifdef HAVE_DNN_NGRAPH
|
|
virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> >& inputs,
|
|
const std::vector<Ptr<BackendNode> >& nodes) CV_OVERRIDE
|
|
{
|
|
auto node = std::make_shared<ngraph::op::Constant>(ngraph::element::f32,
|
|
getShape<size_t>(blobs[0]),
|
|
blobs[0].data);
|
|
return Ptr<BackendNode>(new InfEngineNgraphNode(node));
|
|
}
|
|
#endif // HAVE_DNN_NGRAPH
|
|
|
|
|
|
#ifdef HAVE_CUDA
|
|
Ptr<BackendNode> initCUDA(
|
|
void *context_,
|
|
const std::vector<Ptr<BackendWrapper>>& inputs,
|
|
const std::vector<Ptr<BackendWrapper>>& outputs
|
|
) override
|
|
{
|
|
auto context = reinterpret_cast<csl::CSLContext*>(context_);
|
|
|
|
CV_Assert(blobs.size() == 1);
|
|
return make_cuda_node<cuda4dnn::ConstOp>(preferableTarget, std::move(context->stream), blobs[0]);
|
|
}
|
|
#endif
|
|
|
|
};
|
|
|
|
Ptr<Layer> ConstLayer::create(const LayerParams& params)
|
|
{
|
|
return Ptr<Layer>(new ConstLayerImpl(params));
|
|
}
|
|
|
|
}} // namespace cv::dnn
|