mirror of
https://github.com/opencv/opencv.git
synced 2025-06-21 19:07:04 +08:00

CUDA backend for the DNN module * stub cuda4dnn design * minor fixes for tests and doxygen * add csl public api directory to module headers * add low-level CSL components * add high-level CSL components * integrate csl::Tensor into backbone code * switch to CPU iff unsupported; otherwise, fail on error * add fully connected layer * add softmax layer * add activation layers * support arbitary rank TensorDescriptor * pass input wrappers to `initCUDA()` * add 1d/2d/3d-convolution * add pooling layer * reorganize and refactor code * fixes for gcc, clang and doxygen; remove cxx14/17 code * add blank_layer * add LRN layer * add rounding modes for pooling layer * split tensor.hpp into tensor.hpp and tensor_ops.hpp * add concat layer * add scale layer * add batch normalization layer * split math.cu into activations.cu and math.hpp * add eltwise layer * add flatten layer * add tensor transform api * add asymmetric padding support for convolution layer * add reshape layer * fix rebase issues * add permute layer * add padding support for concat layer * refactor and reorganize code * add normalize layer * optimize bias addition in scale layer * add prior box layer * fix and optimize normalize layer * add asymmetric padding support for pooling layer * add event API * improve pooling performance for some padding scenarios * avoid over-allocation of compute resources to kernels * improve prior box performance * enable layer fusion * add const layer * add resize layer * add slice layer * add padding layer * add deconvolution layer * fix channelwise ReLU initialization * add vector traits * add vectorized versions of relu, clipped_relu, power * add vectorized concat kernels * improve concat_with_offsets performance * vectorize scale and bias kernels * add support for multi-billion element tensors * vectorize prior box kernels * fix address alignment check * improve bias addition performance of conv/deconv/fc layers * restructure code for supporting multiple targets * add DNN_TARGET_CUDA_FP64 * add DNN_TARGET_FP16 * improve vectorization * add region layer * improve tensor API, add dynamic ranks 1. use ManagedPtr instead of a Tensor in backend wrapper 2. add new methods to tensor classes - size_range: computes the combined size of for a given axis range - tensor span/view can be constructed from a raw pointer and shape 3. the tensor classes can change their rank at runtime (previously rank was fixed at compile-time) 4. remove device code from tensor classes (as they are unused) 5. enforce strict conditions on tensor class APIs to improve debugging ability * fix parametric relu activation * add squeeze/unsqueeze tensor API * add reorg layer * optimize permute and enable 2d permute * enable 1d and 2d slice * add split layer * add shuffle channel layer * allow tensors of different ranks in reshape primitive * patch SliceOp to allow Crop Layer * allow extra shape inputs in reshape layer * use `std::move_backward` instead of `std::move` for insert in resizable_static_array * improve workspace management * add spatial LRN * add nms (cpu) to region layer * add max pooling with argmax ( and a fix to limits.hpp) * add max unpooling layer * rename DNN_TARGET_CUDA_FP32 to DNN_TARGET_CUDA * update supportBackend to be more rigorous * remove stray include from preventing non-cuda build * include op_cuda.hpp outside condition #if * refactoring, fixes and many optimizations * drop DNN_TARGET_CUDA_FP64 * fix gcc errors * increase max. tensor rank limit to six * add Interp layer * drop custom layers; use BackendNode * vectorize activation kernels * fixes for gcc * remove wrong assertion * fix broken assertion in unpooling primitive * fix build errors in non-CUDA build * completely remove workspace from public API * fix permute layer * enable accuracy and perf. tests for DNN_TARGET_CUDA * add asynchronous forward * vectorize eltwise ops * vectorize fill kernel * fixes for gcc * remove CSL headers from public API * remove csl header source group from cmake * update min. cudnn version in cmake * add numerically stable FP32 log1pexp * refactor code * add FP16 specialization to cudnn based tensor addition * vectorize scale1 and bias1 + minor refactoring * fix doxygen build * fix invalid alignment assertion * clear backend wrappers before allocateLayers * ignore memory lock failures * do not allocate internal blobs * integrate NVTX * add numerically stable half precision log1pexp * fix indentation, following coding style, improve docs * remove accidental modification of IE code * Revert "add asynchronous forward" This reverts commit 1154b9da9da07e9b52f8a81bdcea48cf31c56f70. * [cmake] throw error for unsupported CC versions * fix rebase issues * add more docs, refactor code, fix bugs * minor refactoring and fixes * resolve warnings/errors from clang * remove haveCUDA() checks from supportBackend() * remove NVTX integration * changes based on review comments * avoid exception when no CUDA device is present * add color code for CUDA in Net::dump
162 lines
5.2 KiB
C++
162 lines
5.2 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
// Copyright (C) 2018, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
#include "../precomp.hpp"
|
|
#include "../op_cuda.hpp"
|
|
|
|
#ifdef HAVE_CUDA
|
|
#include "../cuda4dnn/primitives/shuffle_channel.hpp"
|
|
using namespace cv::dnn::cuda4dnn;
|
|
#endif
|
|
|
|
namespace cv { namespace dnn {
|
|
|
|
class ShuffleChannelLayerImpl CV_FINAL : public ShuffleChannelLayer
|
|
{
|
|
public:
|
|
ShuffleChannelLayerImpl(const LayerParams& params)
|
|
{
|
|
group = params.get<int>("group", 1);
|
|
setParamsFrom(params);
|
|
}
|
|
|
|
virtual bool supportBackend(int backendId) CV_OVERRIDE
|
|
{
|
|
return backendId == DNN_BACKEND_OPENCV ||
|
|
backendId == DNN_BACKEND_CUDA;
|
|
}
|
|
|
|
bool getMemoryShapes(const std::vector<MatShape> &inputs,
|
|
const int requiredOutputs,
|
|
std::vector<MatShape> &outputs,
|
|
std::vector<MatShape> &internals) const CV_OVERRIDE
|
|
{
|
|
CV_Assert(inputs.size() == 1 && inputs[0].size() == 4);
|
|
CV_Assert(inputs[0][1] % group == 0);
|
|
Layer::getMemoryShapes(inputs, requiredOutputs, outputs, internals);
|
|
return group == 1;
|
|
}
|
|
|
|
virtual void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr) CV_OVERRIDE
|
|
{
|
|
if (group != 1)
|
|
{
|
|
std::vector<Mat> inputs, outputs;
|
|
inputs_arr.getMatVector(inputs);
|
|
outputs_arr.getMatVector(outputs);
|
|
|
|
LayerParams lp;
|
|
float order[] = {0, 2, 1, 3};
|
|
lp.set("order", DictValue::arrayInt(&order[0], 4));
|
|
permute = PermuteLayer::create(lp);
|
|
|
|
const Mat& inp = inputs[0];
|
|
const Mat& out = outputs[0];
|
|
|
|
permuteInpShape.resize(4);
|
|
permuteInpShape[0] = inp.size[0];
|
|
permuteInpShape[1] = group;
|
|
permuteInpShape[2] = inp.size[1] / group;
|
|
permuteInpShape[3] = inp.size[2]*inp.size[3];
|
|
|
|
permuteOutShape.resize(4);
|
|
permuteOutShape[0] = permuteInpShape[0];
|
|
permuteOutShape[1] = permuteInpShape[2];
|
|
permuteOutShape[2] = permuteInpShape[1];
|
|
permuteOutShape[3] = permuteInpShape[3];
|
|
|
|
std::vector<Mat> permuteInputs(1, inp.reshape(1, permuteInpShape));
|
|
std::vector<Mat> permuteOutputs(1, out.reshape(1, permuteOutShape));
|
|
permute->finalize(permuteInputs, permuteOutputs);
|
|
}
|
|
}
|
|
|
|
#ifdef HAVE_OPENCL
|
|
bool forward_ocl(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays internals)
|
|
{
|
|
std::vector<UMat> inputs;
|
|
std::vector<UMat> outputs;
|
|
|
|
inps.getUMatVector(inputs);
|
|
outs.getUMatVector(outputs);
|
|
|
|
if (inputs[0].u != outputs[0].u)
|
|
{
|
|
if (!permute.empty())
|
|
{
|
|
inputs[0] = inputs[0].reshape(1, permuteInpShape.size(), &permuteInpShape[0]);
|
|
outputs[0] = outputs[0].reshape(1, permuteOutShape.size(), &permuteOutShape[0]);
|
|
permute->preferableTarget = preferableTarget;
|
|
permute->forward(inputs, outputs, internals);
|
|
}
|
|
else
|
|
inputs[0].copyTo(outputs[0]);
|
|
}
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
|
|
|
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget),
|
|
forward_ocl(inputs_arr, outputs_arr, internals_arr))
|
|
|
|
if (inputs_arr.depth() == CV_16S)
|
|
{
|
|
forward_fallback(inputs_arr, outputs_arr, internals_arr);
|
|
return;
|
|
}
|
|
|
|
std::vector<Mat> inputs, outputs, internals;
|
|
inputs_arr.getMatVector(inputs);
|
|
outputs_arr.getMatVector(outputs);
|
|
internals_arr.getMatVector(internals);
|
|
|
|
Mat inp = inputs[0];
|
|
Mat out = outputs[0];
|
|
if (inp.data != out.data)
|
|
{
|
|
if (!permute.empty())
|
|
{
|
|
inp = inp.reshape(1, permuteInpShape);
|
|
out = out.reshape(1, permuteOutShape);
|
|
std::vector<Mat> permuteInputs(1, inp);
|
|
std::vector<Mat> permuteOutputs(1, out);
|
|
permute->forward(permuteInputs, permuteOutputs, internals);
|
|
}
|
|
else
|
|
inp.copyTo(out);
|
|
}
|
|
}
|
|
|
|
#ifdef HAVE_CUDA
|
|
Ptr<BackendNode> initCUDA(
|
|
void *context_,
|
|
const std::vector<Ptr<BackendWrapper>>& inputs,
|
|
const std::vector<Ptr<BackendWrapper>>& outputs
|
|
) override
|
|
{
|
|
auto context = reinterpret_cast<csl::CSLContext*>(context_);
|
|
return make_cuda_node<cuda4dnn::ShuffleChannelOp>(preferableTarget, std::move(context->stream), group);
|
|
}
|
|
#endif
|
|
|
|
private:
|
|
Ptr<PermuteLayer> permute;
|
|
std::vector<int> permuteInpShape, permuteOutShape;
|
|
};
|
|
|
|
Ptr<Layer> ShuffleChannelLayer::create(const LayerParams& params)
|
|
{
|
|
return Ptr<Layer>(new ShuffleChannelLayerImpl(params));
|
|
}
|
|
|
|
} // namespace dnn
|
|
} // namespace cv
|