opencv/samples/dnn/ssd_mobilenet_object_detection.cpp
Alexander Alekhin 0f34628af7 dnn: drop OpenCL code path for DetectionOutputLayer
getUMat()/getMat() calls are scope based. Results of these calls can't be
stored somewhere for future usage.
2017-11-21 17:28:42 +03:00

210 lines
7.2 KiB
C++

#include <opencv2/dnn.hpp>
#include <opencv2/dnn/shape_utils.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
using namespace cv;
using namespace cv::dnn;
#include <fstream>
#include <iostream>
#include <cstdlib>
using namespace std;
const size_t inWidth = 300;
const size_t inHeight = 300;
const float WHRatio = inWidth / (float)inHeight;
const float inScaleFactor = 0.007843f;
const float meanVal = 127.5;
const char* classNames[] = {"background",
"aeroplane", "bicycle", "bird", "boat",
"bottle", "bus", "car", "cat", "chair",
"cow", "diningtable", "dog", "horse",
"motorbike", "person", "pottedplant",
"sheep", "sofa", "train", "tvmonitor"};
const char* about = "This sample uses MobileNet Single-Shot Detector "
"(https://arxiv.org/abs/1704.04861) "
"to detect objects on camera/video/image.\n"
".caffemodel model's file is available here: "
"https://github.com/chuanqi305/MobileNet-SSD\n"
"Default network is 300x300 and 20-classes VOC.\n";
const char* params
= "{ help | false | print usage }"
"{ proto | MobileNetSSD_deploy.prototxt | model configuration }"
"{ model | MobileNetSSD_deploy.caffemodel | model weights }"
"{ camera_device | 0 | camera device number }"
"{ video | | video or image for detection}"
"{ out | | path to output video file}"
"{ min_confidence | 0.2 | min confidence }"
"{ opencl | false | enable OpenCL }"
;
int main(int argc, char** argv)
{
CommandLineParser parser(argc, argv, params);
if (parser.get<bool>("help"))
{
cout << about << endl;
parser.printMessage();
return 0;
}
String modelConfiguration = parser.get<string>("proto");
String modelBinary = parser.get<string>("model");
//! [Initialize network]
dnn::Net net = readNetFromCaffe(modelConfiguration, modelBinary);
//! [Initialize network]
if (parser.get<bool>("opencl"))
{
net.setPreferableTarget(DNN_TARGET_OPENCL);
}
if (net.empty())
{
cerr << "Can't load network by using the following files: " << endl;
cerr << "prototxt: " << modelConfiguration << endl;
cerr << "caffemodel: " << modelBinary << endl;
cerr << "Models can be downloaded here:" << endl;
cerr << "https://github.com/chuanqi305/MobileNet-SSD" << endl;
exit(-1);
}
VideoCapture cap;
if (parser.get<String>("video").empty())
{
int cameraDevice = parser.get<int>("camera_device");
cap = VideoCapture(cameraDevice);
if(!cap.isOpened())
{
cout << "Couldn't find camera: " << cameraDevice << endl;
return -1;
}
}
else
{
cap.open(parser.get<String>("video"));
if(!cap.isOpened())
{
cout << "Couldn't open image or video: " << parser.get<String>("video") << endl;
return -1;
}
}
Size inVideoSize;
inVideoSize = Size((int) cap.get(CV_CAP_PROP_FRAME_WIDTH), //Acquire input size
(int) cap.get(CV_CAP_PROP_FRAME_HEIGHT));
Size cropSize;
if (inVideoSize.width / (float)inVideoSize.height > WHRatio)
{
cropSize = Size(static_cast<int>(inVideoSize.height * WHRatio),
inVideoSize.height);
}
else
{
cropSize = Size(inVideoSize.width,
static_cast<int>(inVideoSize.width / WHRatio));
}
Rect crop(Point((inVideoSize.width - cropSize.width) / 2,
(inVideoSize.height - cropSize.height) / 2),
cropSize);
VideoWriter outputVideo;
outputVideo.open(parser.get<String>("out") ,
static_cast<int>(cap.get(CV_CAP_PROP_FOURCC)),
cap.get(CV_CAP_PROP_FPS), cropSize, true);
for(;;)
{
Mat frame;
cap >> frame; // get a new frame from camera/video or read image
if (frame.empty())
{
waitKey();
break;
}
if (frame.channels() == 4)
cvtColor(frame, frame, COLOR_BGRA2BGR);
//! [Prepare blob]
Mat inputBlob = blobFromImage(frame, inScaleFactor,
Size(inWidth, inHeight), meanVal, false); //Convert Mat to batch of images
//! [Prepare blob]
//! [Set input blob]
net.setInput(inputBlob, "data"); //set the network input
//! [Set input blob]
//! [Make forward pass]
Mat detection = net.forward("detection_out"); //compute output
//! [Make forward pass]
vector<double> layersTimings;
double freq = getTickFrequency() / 1000;
double time = net.getPerfProfile(layersTimings) / freq;
Mat detectionMat(detection.size[2], detection.size[3], CV_32F, detection.ptr<float>());
frame = frame(crop);
ostringstream ss;
if (!outputVideo.isOpened())
{
ss << "FPS: " << 1000/time << " ; time: " << time << " ms";
putText(frame, ss.str(), Point(20,20), 0, 0.5, Scalar(0,0,255));
}
else
cout << "Inference time, ms: " << time << endl;
float confidenceThreshold = parser.get<float>("min_confidence");
for(int i = 0; i < detectionMat.rows; i++)
{
float confidence = detectionMat.at<float>(i, 2);
if(confidence > confidenceThreshold)
{
size_t objectClass = (size_t)(detectionMat.at<float>(i, 1));
int xLeftBottom = static_cast<int>(detectionMat.at<float>(i, 3) * frame.cols);
int yLeftBottom = static_cast<int>(detectionMat.at<float>(i, 4) * frame.rows);
int xRightTop = static_cast<int>(detectionMat.at<float>(i, 5) * frame.cols);
int yRightTop = static_cast<int>(detectionMat.at<float>(i, 6) * frame.rows);
ss.str("");
ss << confidence;
String conf(ss.str());
Rect object((int)xLeftBottom, (int)yLeftBottom,
(int)(xRightTop - xLeftBottom),
(int)(yRightTop - yLeftBottom));
rectangle(frame, object, Scalar(0, 255, 0));
String label = String(classNames[objectClass]) + ": " + conf;
int baseLine = 0;
Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
rectangle(frame, Rect(Point(xLeftBottom, yLeftBottom - labelSize.height),
Size(labelSize.width, labelSize.height + baseLine)),
Scalar(255, 255, 255), CV_FILLED);
putText(frame, label, Point(xLeftBottom, yLeftBottom),
FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0,0,0));
}
}
if (outputVideo.isOpened())
outputVideo << frame;
imshow("detections", frame);
if (waitKey(1) >= 0) break;
}
return 0;
} // main