mirror of
https://github.com/opencv/opencv.git
synced 2025-01-07 19:54:18 +08:00
160 lines
4.8 KiB
C++
160 lines
4.8 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
// Copyright (C) 2016, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
/*
|
|
Sample of using OpenCV dnn module with Tensorflow Inception model.
|
|
*/
|
|
|
|
#include <opencv2/dnn.hpp>
|
|
#include <opencv2/imgproc.hpp>
|
|
#include <opencv2/highgui.hpp>
|
|
using namespace cv;
|
|
using namespace cv::dnn;
|
|
|
|
#include <fstream>
|
|
#include <iostream>
|
|
#include <cstdlib>
|
|
using namespace std;
|
|
|
|
const String keys =
|
|
"{help h || Sample app for loading Inception TensorFlow model. "
|
|
"The model and class names list can be downloaded here: "
|
|
"https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip }"
|
|
"{model m |tensorflow_inception_graph.pb| path to TensorFlow .pb model file }"
|
|
"{image i || path to image file }"
|
|
"{i_blob | input | input blob name) }"
|
|
"{o_blob | softmax2 | output blob name) }"
|
|
"{c_names c | imagenet_comp_graph_label_strings.txt | path to file with classnames for class id }"
|
|
"{result r || path to save output blob (optional, binary format, NCHW order) }"
|
|
;
|
|
|
|
void getMaxClass(const Mat &probBlob, int *classId, double *classProb);
|
|
std::vector<String> readClassNames(const char *filename);
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
cv::CommandLineParser parser(argc, argv, keys);
|
|
|
|
if (parser.has("help"))
|
|
{
|
|
parser.printMessage();
|
|
return 0;
|
|
}
|
|
|
|
String modelFile = parser.get<String>("model");
|
|
String imageFile = parser.get<String>("image");
|
|
String inBlobName = parser.get<String>("i_blob");
|
|
String outBlobName = parser.get<String>("o_blob");
|
|
|
|
if (!parser.check())
|
|
{
|
|
parser.printErrors();
|
|
return 0;
|
|
}
|
|
|
|
String classNamesFile = parser.get<String>("c_names");
|
|
String resultFile = parser.get<String>("result");
|
|
|
|
//! [Initialize network]
|
|
dnn::Net net = readNetFromTensorflow(modelFile);
|
|
//! [Initialize network]
|
|
|
|
if (net.empty())
|
|
{
|
|
std::cerr << "Can't load network by using the mode file: " << std::endl;
|
|
std::cerr << modelFile << std::endl;
|
|
exit(-1);
|
|
}
|
|
|
|
//! [Prepare blob]
|
|
Mat img = imread(imageFile);
|
|
if (img.empty())
|
|
{
|
|
std::cerr << "Can't read image from the file: " << imageFile << std::endl;
|
|
exit(-1);
|
|
}
|
|
|
|
cv::Size inputImgSize = cv::Size(224, 224);
|
|
|
|
if (inputImgSize != img.size())
|
|
resize(img, img, inputImgSize); //Resize image to input size
|
|
|
|
Mat inputBlob = blobFromImage(img); //Convert Mat to image batch
|
|
//! [Prepare blob]
|
|
inputBlob -= 117.0;
|
|
//! [Set input blob]
|
|
net.setInput(inputBlob, inBlobName); //set the network input
|
|
//! [Set input blob]
|
|
|
|
cv::TickMeter tm;
|
|
tm.start();
|
|
|
|
//! [Make forward pass]
|
|
Mat result = net.forward(outBlobName); //compute output
|
|
//! [Make forward pass]
|
|
|
|
tm.stop();
|
|
|
|
if (!resultFile.empty()) {
|
|
CV_Assert(result.isContinuous());
|
|
|
|
ofstream fout(resultFile.c_str(), ios::out | ios::binary);
|
|
fout.write((char*)result.data, result.total() * sizeof(float));
|
|
fout.close();
|
|
}
|
|
|
|
std::cout << "Output blob shape " << result.size[0] << " x " << result.size[1] << " x " << result.size[2] << " x " << result.size[3] << std::endl;
|
|
std::cout << "Inference time, ms: " << tm.getTimeMilli() << std::endl;
|
|
|
|
if (!classNamesFile.empty()) {
|
|
std::vector<String> classNames = readClassNames(classNamesFile.c_str());
|
|
|
|
int classId;
|
|
double classProb;
|
|
getMaxClass(result, &classId, &classProb);//find the best class
|
|
|
|
//! [Print results]
|
|
std::cout << "Best class: #" << classId << " '" << classNames.at(classId) << "'" << std::endl;
|
|
std::cout << "Probability: " << classProb * 100 << "%" << std::endl;
|
|
}
|
|
return 0;
|
|
} //main
|
|
|
|
|
|
/* Find best class for the blob (i. e. class with maximal probability) */
|
|
void getMaxClass(const Mat &probBlob, int *classId, double *classProb)
|
|
{
|
|
Mat probMat = probBlob.reshape(1, 1); //reshape the blob to 1x1000 matrix
|
|
Point classNumber;
|
|
|
|
minMaxLoc(probMat, NULL, classProb, NULL, &classNumber);
|
|
*classId = classNumber.x;
|
|
}
|
|
|
|
std::vector<String> readClassNames(const char *filename)
|
|
{
|
|
std::vector<String> classNames;
|
|
|
|
std::ifstream fp(filename);
|
|
if (!fp.is_open())
|
|
{
|
|
std::cerr << "File with classes labels not found: " << filename << std::endl;
|
|
exit(-1);
|
|
}
|
|
|
|
std::string name;
|
|
while (!fp.eof())
|
|
{
|
|
std::getline(fp, name);
|
|
if (name.length())
|
|
classNames.push_back( name );
|
|
}
|
|
|
|
fp.close();
|
|
return classNames;
|
|
}
|