opencv/modules/dnn/src/layers/lrn_layer.cpp
2019-01-17 14:28:48 +03:00

457 lines
16 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Copyright (C) 2017, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "../precomp.hpp"
#include "layers_common.hpp"
#include "../op_halide.hpp"
#include "../op_inf_engine.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/dnn/shape_utils.hpp"
#include "opencv2/core/hal/hal.hpp"
#include <algorithm>
#ifdef HAVE_OPENCL
#include "opencl_kernels_dnn.hpp"
using namespace cv::dnn::ocl4dnn;
#endif
namespace cv
{
namespace dnn
{
class LRNLayerImpl CV_FINAL : public LRNLayer
{
public:
LRNLayerImpl(const LayerParams& params)
{
setParamsFrom(params);
type = -1;
String nrmType = params.get<String>("norm_region", "ACROSS_CHANNELS");
if (nrmType == "ACROSS_CHANNELS")
type = CHANNEL_NRM;
else if (nrmType == "WITHIN_CHANNEL")
type = SPATIAL_NRM;
else
CV_Error(Error::StsBadArg, "Unknown region type \"" + nrmType + "\"");
size = params.get<int>("local_size", 5);
if (size % 2 != 1 || size <= 0)
CV_Error(Error::StsBadArg, "LRN layer supports only positive odd values for local_size");
alpha = params.get<double>("alpha", 1);
beta = params.get<double>("beta", 0.75);
bias = params.get<double>("bias", 1);
normBySize = params.get<bool>("norm_by_size", true);
}
#ifdef HAVE_OPENCL
Ptr<OCL4DNNLRN<float> > lrnOp;
#endif
virtual bool supportBackend(int backendId) CV_OVERRIDE
{
return backendId == DNN_BACKEND_OPENCV ||
backendId == DNN_BACKEND_HALIDE ||
(backendId == DNN_BACKEND_INFERENCE_ENGINE && (preferableTarget != DNN_TARGET_MYRIAD || type == CHANNEL_NRM));
}
#ifdef HAVE_OPENCL
virtual void finalize(InputArrayOfArrays, OutputArrayOfArrays) CV_OVERRIDE
{
lrnOp.release();
}
bool forward_ocl(InputArrayOfArrays inps, OutputArrayOfArrays outs, OutputArrayOfArrays internals)
{
std::vector<UMat> inputs;
std::vector<UMat> outputs;
bool use_half = (inps.depth() == CV_16S);
inps.getUMatVector(inputs);
outs.getUMatVector(outputs);
if (lrnOp.empty())
{
OCL4DNNLRNConfig config;
config.lrn_type = type == CHANNEL_NRM ?
LRNParameter_NormRegion_ACROSS_CHANNELS :
LRNParameter_NormRegion_WITHIN_CHANNEL;
CHECK_EQ(size % 2, 1)<< "LRN only supports odd values for local_size";
config.local_size = size;
config.alpha = alpha;
config.beta = beta;
config.k = bias;
CHECK_EQ(4, inputs[0].dims) << "Input must have 4 axes, "
<< "corresponding to (num, channels, height, width)";
config.batch_size = inputs[0].size[0];
config.channels = inputs[0].size[1];
config.height = inputs[0].size[2];
config.width = inputs[0].size[3];
config.norm_by_size = normBySize;
config.use_half = use_half;
lrnOp = Ptr<OCL4DNNLRN<float> >(new OCL4DNNLRN<float>(config));
}
if (!lrnOp->Forward(inputs[0], outputs[0]))
return false;
return true;
}
#endif
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
CV_Assert(inputs_arr.total() == outputs_arr.total());
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget),
forward_ocl(inputs_arr, outputs_arr, internals_arr))
if (inputs_arr.depth() == CV_16S)
{
forward_fallback(inputs_arr, outputs_arr, internals_arr);
return;
}
std::vector<Mat> inputs, outputs;
inputs_arr.getMatVector(inputs);
outputs_arr.getMatVector(outputs);
CV_Assert(inputs.size() == outputs.size());
for (int i = 0; i < inputs.size(); i++)
{
CV_Assert(inputs[i].dims == 4);
Mat &src = inputs[i];
Mat &dst = outputs[i];
switch (type)
{
case CHANNEL_NRM:
channelNormalization(src, dst);
break;
case SPATIAL_NRM:
spatialNormalization(src, dst);
break;
default:
CV_Error(Error::StsNotImplemented, "Unimplemented mode of LRN layer");
break;
}
}
}
class ChannelLRN : public ParallelLoopBody
{
public:
ChannelLRN(const float* src, float* dst, int channels, int ksize,
float alpha1, float bias1, float beta1,
size_t planeSize, int nsamples, int nstripes)
{
src_ = src; dst_ = dst;
channels_ = channels;
ksize_ = ksize;
alpha1_ = alpha1; bias1_ = bias1; beta1_ = beta1;
planeSize_ = planeSize; nsamples_ = nsamples; nstripes_ = nstripes;
}
void operator()(const Range& r) const CV_OVERRIDE
{
int nsamples = nsamples_, nstripes = nstripes_;
size_t planeSize = planeSize_, planeSize_n = planeSize * nsamples;
size_t elemsPerStripe = (planeSize_n + nstripes - 1)/nstripes;
size_t rstart = r.start*elemsPerStripe;
size_t rend = r.end == nstripes ? planeSize_n : r.end*elemsPerStripe;
rstart = std::min(rstart, planeSize_n);
rend = std::min(rend, planeSize_n);
float alpha1 = alpha1_, bias1 = bias1_, beta1 = beta1_;
int k, channels = channels_, ksize = ksize_;
AutoBuffer<float> buf_((channels + ksize + 1)*2);
float* acc = buf_.data();
float* buf = acc + channels + ksize + 1;
for( k = 0; k <= ksize; k++ )
buf[-k-1] = buf[channels + k] = 0.f;
for( size_t ofs = rstart; ofs < rend; )
{
int sampleIdx = (int)(ofs/planeSize);
if( sampleIdx >= nsamples )
break;
size_t ofs0 = ofs - sampleIdx*planeSize;
size_t ofs1 = std::min(planeSize - ofs0, rend - ofs) + ofs;
const float* src = src_ + sampleIdx*planeSize*channels + ofs0;
float* dst = dst_ + sampleIdx*planeSize*channels + ofs0;
for( ; ofs < ofs1; ofs++, src++, dst++ )
{
for( k = 0; k < channels; k++ )
buf[k] = src[k*planeSize];
float s = 0;
for( k = 0; k < ksize; k++ )
s += buf[k]*buf[k];
for( k = 0; k < channels; k++ )
{
float x1 = buf[k + ksize];
float x0 = buf[k - ksize - 1];
s = std::max(s + (x1 + x0)*(x1 - x0), 0.f);
acc[k] = (float)(alpha1*s + bias1);
}
hal::log32f(acc, acc, channels);
for( k = 0; k < channels; k++ )
acc[k] *= beta1;
hal::exp32f(acc, acc, channels);
for( k = 0; k < channels; k++ )
dst[k*planeSize] = buf[k]*acc[k];
}
}
}
const float* src_;
float* dst_;
float alpha1_, bias1_, beta1_;
size_t planeSize_;
int channels_, ksize_, nsamples_, nstripes_;
};
void channelNormalization(Mat &srcBlob, Mat &dstBlob)
{
int num = srcBlob.size[0];
int channels = srcBlob.size[1];
int ksize = (size - 1) / 2;
int sizeNormFactor = normBySize ? size : 1;
size_t planeSize = srcBlob.size[2]*srcBlob.size[3];
int nstripes = std::max(getNumThreads(), 1);
ChannelLRN clrn(srcBlob.ptr<float>(), dstBlob.ptr<float>(), channels,
ksize, alpha/sizeNormFactor, bias, -beta, planeSize, num, nstripes);
parallel_for_(Range(0, nstripes), clrn, nstripes);
}
void sqrBoxFilter_(const Mat &src, Mat &dst)
{
Mat srcRawWrapper(src.rows, src.cols, src.type(), src.data, src.step[0]);
cv::sqrBoxFilter(srcRawWrapper, dst, dst.depth(), Size(size, size), Point(-1, -1), false, BORDER_CONSTANT);
}
void spatialNormalization(Mat &srcBlob, Mat &dstBlob)
{
int num = srcBlob.size[0];
int channels = srcBlob.size[1];
int sizeNormFactor = normBySize ? size*size : 1;
Mat srcMat = srcBlob;
Mat dstMat = dstBlob;
for (int n = 0; n < num; n++)
{
for (int cn = 0; cn < channels; cn++)
{
Mat src = getPlane(srcMat, n, cn);
Mat dst = getPlane(dstMat, n, cn);
sqrBoxFilter_(src, dst);
dst.convertTo(dst, dst.type(), alpha/sizeNormFactor, bias);
cv::pow(dst, beta, dst);
cv::divide(src, dst, dst);
}
}
}
virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &inputs) CV_OVERRIDE
{
#ifdef HAVE_HALIDE
float alphaSize = alpha;
if (normBySize)
alphaSize /= (type == CHANNEL_NRM ? size : size * size);
int width, height, channels, numImgs;
Halide::Buffer<float> inputBuffer = halideBuffer(inputs[0]);
getCanonicalSize(inputBuffer, &width, &height, &channels, &numImgs);
Halide::Var x("x"), y("y"), c("c"), n("n");
Halide::Func top = (name.empty() ? Halide::Func() : Halide::Func(name));
Halide::Func padded_sq(name + "_padded_sq");
Halide::Func sq("sq");
sq(x, y, c, n) = inputBuffer(x, y, c, n) * inputBuffer(x, y, c, n);
Halide::Func bounded =
Halide::BoundaryConditions::constant_exterior(sq, 0, 0, width,
0, height,
0, channels,
0, numImgs);
padded_sq(x, y, c, n) = bounded(x, y, c, n);
Halide::Expr base;
if (type == CHANNEL_NRM)
{
Halide::RDom r((1 - size) / 2, size);
base = alphaSize * sum(padded_sq(x, y, c + r, n));
}
else // SPATIAL_NRM
{
Halide::RDom r((1 - size) / 2, size, (1 - size) / 2, size);
base = alphaSize * sum(padded_sq(x + r.x, y + r.y, c, n));
}
base += static_cast<float>(bias);
top(x, y, c, n) = inputBuffer(x, y, c, n) / pow(base, beta);
return Ptr<BackendNode>(new HalideBackendNode({ padded_sq, top }));
#endif // HAVE_HALIDE
return Ptr<BackendNode>();
}
virtual void applyHalideScheduler(Ptr<BackendNode>& node,
const std::vector<Mat*> &inputs,
const std::vector<Mat> &outputs,
int targetId) const CV_OVERRIDE
{
#ifdef HAVE_HALIDE
if (targetId != DNN_TARGET_CPU)
{
Layer::applyHalideScheduler(node, inputs, outputs, targetId);
return;
}
int outW, outH, outC, outN;
getCanonicalSize(outputs[0].size, &outW, &outH, &outC, &outN);
Halide::Var x("x"), y("y"), c("c"), n("n"), yo("yo"), yi("yi"), tile("tile");
Halide::Func& top = node.dynamicCast<HalideBackendNode>()->funcs[1];
Halide::Func& padded_sq = node.dynamicCast<HalideBackendNode>()->funcs[0];
if (outW < 8 || outH <= 2)
return;
top.reorder(x, c, y, n)
.split(y, yo, yi, 2)
.fuse(yo, n, tile)
.parallel(tile)
.unroll(yi)
.vectorize(x, 8);
padded_sq.store_at(top, tile)
.compute_at(top, yi);
#endif // HAVE_HALIDE
}
virtual Ptr<BackendNode> initInfEngine(const std::vector<Ptr<BackendWrapper> >&) CV_OVERRIDE
{
#ifdef HAVE_INF_ENGINE
#if INF_ENGINE_VER_MAJOR_GE(INF_ENGINE_RELEASE_2018R5)
InferenceEngine::Builder::NormLayer ieLayer(name);
ieLayer.setSize(size);
ieLayer.setAlpha(alpha);
ieLayer.setBeta(beta);
ieLayer.setAcrossMaps(type == CHANNEL_NRM);
InferenceEngine::Builder::Layer l = ieLayer;
l.getParameters()["k"] = bias;
return Ptr<BackendNode>(new InfEngineBackendNode(l));
#else
InferenceEngine::LayerParams lp;
lp.name = name;
lp.type = "Norm";
lp.precision = InferenceEngine::Precision::FP32;
std::shared_ptr<InferenceEngine::NormLayer> ieLayer(new InferenceEngine::NormLayer(lp));
ieLayer->_size = size;
ieLayer->_k = (int)bias;
ieLayer->_beta = beta;
ieLayer->_alpha = alpha;
ieLayer->_isAcrossMaps = (type == CHANNEL_NRM);
return Ptr<BackendNode>(new InfEngineBackendNode(ieLayer));
#endif
#endif // HAVE_INF_ENGINE
return Ptr<BackendNode>();
}
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
const std::vector<MatShape> &outputs) const CV_OVERRIDE
{
CV_UNUSED(outputs); // suppress unused variable warning
CV_Assert(inputs.size() > 0);
long flops = 0;
for(int i = 0; i < inputs.size(); i++)
{
if (type == CHANNEL_NRM)
{
int channels = inputs[i][1];
int ksize = (size - 1) / 2;
flops += inputs[i][0]*(std::min(ksize, channels)*2*total(inputs[i], 2) + channels*4*total(inputs[i], 2));
if (ksize < channels)
{
flops += (size + 2*(channels - size))*total(inputs[i], 2);
}
}
else
{
flops += total(inputs[i])*(2*size*size + 2);
}
}
return flops;
}
private:
enum Type
{
CHANNEL_NRM,
SPATIAL_NRM
};
};
Ptr<LRNLayer> LRNLayer::create(const LayerParams& params)
{
return Ptr<LRNLayer>(new LRNLayerImpl(params));
}
}
}