mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 14:13:15 +08:00
304 lines
9.2 KiB
C
304 lines
9.2 KiB
C
/* sgebd2.f -- translated by f2c (version 20061008).
|
|
You must link the resulting object file with libf2c:
|
|
on Microsoft Windows system, link with libf2c.lib;
|
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
|
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
|
-- in that order, at the end of the command line, as in
|
|
cc *.o -lf2c -lm
|
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
|
|
|
http://www.netlib.org/f2c/libf2c.zip
|
|
*/
|
|
|
|
#include "clapack.h"
|
|
|
|
|
|
/* Table of constant values */
|
|
|
|
static integer c__1 = 1;
|
|
|
|
/* Subroutine */ int sgebd2_(integer *m, integer *n, real *a, integer *lda,
|
|
real *d__, real *e, real *tauq, real *taup, real *work, integer *info)
|
|
{
|
|
/* System generated locals */
|
|
integer a_dim1, a_offset, i__1, i__2, i__3;
|
|
|
|
/* Local variables */
|
|
integer i__;
|
|
extern /* Subroutine */ int slarf_(char *, integer *, integer *, real *,
|
|
integer *, real *, real *, integer *, real *), xerbla_(
|
|
char *, integer *), slarfg_(integer *, real *, real *,
|
|
integer *, real *);
|
|
|
|
|
|
/* -- LAPACK routine (version 3.2) -- */
|
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
|
|
/* November 2006 */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* .. */
|
|
|
|
/* Purpose */
|
|
/* ======= */
|
|
|
|
/* SGEBD2 reduces a real general m by n matrix A to upper or lower */
|
|
/* bidiagonal form B by an orthogonal transformation: Q' * A * P = B. */
|
|
|
|
/* If m >= n, B is upper bidiagonal; if m < n, B is lower bidiagonal. */
|
|
|
|
/* Arguments */
|
|
/* ========= */
|
|
|
|
/* M (input) INTEGER */
|
|
/* The number of rows in the matrix A. M >= 0. */
|
|
|
|
/* N (input) INTEGER */
|
|
/* The number of columns in the matrix A. N >= 0. */
|
|
|
|
/* A (input/output) REAL array, dimension (LDA,N) */
|
|
/* On entry, the m by n general matrix to be reduced. */
|
|
/* On exit, */
|
|
/* if m >= n, the diagonal and the first superdiagonal are */
|
|
/* overwritten with the upper bidiagonal matrix B; the */
|
|
/* elements below the diagonal, with the array TAUQ, represent */
|
|
/* the orthogonal matrix Q as a product of elementary */
|
|
/* reflectors, and the elements above the first superdiagonal, */
|
|
/* with the array TAUP, represent the orthogonal matrix P as */
|
|
/* a product of elementary reflectors; */
|
|
/* if m < n, the diagonal and the first subdiagonal are */
|
|
/* overwritten with the lower bidiagonal matrix B; the */
|
|
/* elements below the first subdiagonal, with the array TAUQ, */
|
|
/* represent the orthogonal matrix Q as a product of */
|
|
/* elementary reflectors, and the elements above the diagonal, */
|
|
/* with the array TAUP, represent the orthogonal matrix P as */
|
|
/* a product of elementary reflectors. */
|
|
/* See Further Details. */
|
|
|
|
/* LDA (input) INTEGER */
|
|
/* The leading dimension of the array A. LDA >= max(1,M). */
|
|
|
|
/* D (output) REAL array, dimension (min(M,N)) */
|
|
/* The diagonal elements of the bidiagonal matrix B: */
|
|
/* D(i) = A(i,i). */
|
|
|
|
/* E (output) REAL array, dimension (min(M,N)-1) */
|
|
/* The off-diagonal elements of the bidiagonal matrix B: */
|
|
/* if m >= n, E(i) = A(i,i+1) for i = 1,2,...,n-1; */
|
|
/* if m < n, E(i) = A(i+1,i) for i = 1,2,...,m-1. */
|
|
|
|
/* TAUQ (output) REAL array dimension (min(M,N)) */
|
|
/* The scalar factors of the elementary reflectors which */
|
|
/* represent the orthogonal matrix Q. See Further Details. */
|
|
|
|
/* TAUP (output) REAL array, dimension (min(M,N)) */
|
|
/* The scalar factors of the elementary reflectors which */
|
|
/* represent the orthogonal matrix P. See Further Details. */
|
|
|
|
/* WORK (workspace) REAL array, dimension (max(M,N)) */
|
|
|
|
/* INFO (output) INTEGER */
|
|
/* = 0: successful exit. */
|
|
/* < 0: if INFO = -i, the i-th argument had an illegal value. */
|
|
|
|
/* Further Details */
|
|
/* =============== */
|
|
|
|
/* The matrices Q and P are represented as products of elementary */
|
|
/* reflectors: */
|
|
|
|
/* If m >= n, */
|
|
|
|
/* Q = H(1) H(2) . . . H(n) and P = G(1) G(2) . . . G(n-1) */
|
|
|
|
/* Each H(i) and G(i) has the form: */
|
|
|
|
/* H(i) = I - tauq * v * v' and G(i) = I - taup * u * u' */
|
|
|
|
/* where tauq and taup are real scalars, and v and u are real vectors; */
|
|
/* v(1:i-1) = 0, v(i) = 1, and v(i+1:m) is stored on exit in A(i+1:m,i); */
|
|
/* u(1:i) = 0, u(i+1) = 1, and u(i+2:n) is stored on exit in A(i,i+2:n); */
|
|
/* tauq is stored in TAUQ(i) and taup in TAUP(i). */
|
|
|
|
/* If m < n, */
|
|
|
|
/* Q = H(1) H(2) . . . H(m-1) and P = G(1) G(2) . . . G(m) */
|
|
|
|
/* Each H(i) and G(i) has the form: */
|
|
|
|
/* H(i) = I - tauq * v * v' and G(i) = I - taup * u * u' */
|
|
|
|
/* where tauq and taup are real scalars, and v and u are real vectors; */
|
|
/* v(1:i) = 0, v(i+1) = 1, and v(i+2:m) is stored on exit in A(i+2:m,i); */
|
|
/* u(1:i-1) = 0, u(i) = 1, and u(i+1:n) is stored on exit in A(i,i+1:n); */
|
|
/* tauq is stored in TAUQ(i) and taup in TAUP(i). */
|
|
|
|
/* The contents of A on exit are illustrated by the following examples: */
|
|
|
|
/* m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n): */
|
|
|
|
/* ( d e u1 u1 u1 ) ( d u1 u1 u1 u1 u1 ) */
|
|
/* ( v1 d e u2 u2 ) ( e d u2 u2 u2 u2 ) */
|
|
/* ( v1 v2 d e u3 ) ( v1 e d u3 u3 u3 ) */
|
|
/* ( v1 v2 v3 d e ) ( v1 v2 e d u4 u4 ) */
|
|
/* ( v1 v2 v3 v4 d ) ( v1 v2 v3 e d u5 ) */
|
|
/* ( v1 v2 v3 v4 v5 ) */
|
|
|
|
/* where d and e denote diagonal and off-diagonal elements of B, vi */
|
|
/* denotes an element of the vector defining H(i), and ui an element of */
|
|
/* the vector defining G(i). */
|
|
|
|
/* ===================================================================== */
|
|
|
|
/* .. Parameters .. */
|
|
/* .. */
|
|
/* .. Local Scalars .. */
|
|
/* .. */
|
|
/* .. External Subroutines .. */
|
|
/* .. */
|
|
/* .. Intrinsic Functions .. */
|
|
/* .. */
|
|
/* .. Executable Statements .. */
|
|
|
|
/* Test the input parameters */
|
|
|
|
/* Parameter adjustments */
|
|
a_dim1 = *lda;
|
|
a_offset = 1 + a_dim1;
|
|
a -= a_offset;
|
|
--d__;
|
|
--e;
|
|
--tauq;
|
|
--taup;
|
|
--work;
|
|
|
|
/* Function Body */
|
|
*info = 0;
|
|
if (*m < 0) {
|
|
*info = -1;
|
|
} else if (*n < 0) {
|
|
*info = -2;
|
|
} else if (*lda < max(1,*m)) {
|
|
*info = -4;
|
|
}
|
|
if (*info < 0) {
|
|
i__1 = -(*info);
|
|
xerbla_("SGEBD2", &i__1);
|
|
return 0;
|
|
}
|
|
|
|
if (*m >= *n) {
|
|
|
|
/* Reduce to upper bidiagonal form */
|
|
|
|
i__1 = *n;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
|
|
/* Generate elementary reflector H(i) to annihilate A(i+1:m,i) */
|
|
|
|
i__2 = *m - i__ + 1;
|
|
/* Computing MIN */
|
|
i__3 = i__ + 1;
|
|
slarfg_(&i__2, &a[i__ + i__ * a_dim1], &a[min(i__3, *m)+ i__ *
|
|
a_dim1], &c__1, &tauq[i__]);
|
|
d__[i__] = a[i__ + i__ * a_dim1];
|
|
a[i__ + i__ * a_dim1] = 1.f;
|
|
|
|
/* Apply H(i) to A(i:m,i+1:n) from the left */
|
|
|
|
if (i__ < *n) {
|
|
i__2 = *m - i__ + 1;
|
|
i__3 = *n - i__;
|
|
slarf_("Left", &i__2, &i__3, &a[i__ + i__ * a_dim1], &c__1, &
|
|
tauq[i__], &a[i__ + (i__ + 1) * a_dim1], lda, &work[1]
|
|
);
|
|
}
|
|
a[i__ + i__ * a_dim1] = d__[i__];
|
|
|
|
if (i__ < *n) {
|
|
|
|
/* Generate elementary reflector G(i) to annihilate */
|
|
/* A(i,i+2:n) */
|
|
|
|
i__2 = *n - i__;
|
|
/* Computing MIN */
|
|
i__3 = i__ + 2;
|
|
slarfg_(&i__2, &a[i__ + (i__ + 1) * a_dim1], &a[i__ + min(
|
|
i__3, *n)* a_dim1], lda, &taup[i__]);
|
|
e[i__] = a[i__ + (i__ + 1) * a_dim1];
|
|
a[i__ + (i__ + 1) * a_dim1] = 1.f;
|
|
|
|
/* Apply G(i) to A(i+1:m,i+1:n) from the right */
|
|
|
|
i__2 = *m - i__;
|
|
i__3 = *n - i__;
|
|
slarf_("Right", &i__2, &i__3, &a[i__ + (i__ + 1) * a_dim1],
|
|
lda, &taup[i__], &a[i__ + 1 + (i__ + 1) * a_dim1],
|
|
lda, &work[1]);
|
|
a[i__ + (i__ + 1) * a_dim1] = e[i__];
|
|
} else {
|
|
taup[i__] = 0.f;
|
|
}
|
|
/* L10: */
|
|
}
|
|
} else {
|
|
|
|
/* Reduce to lower bidiagonal form */
|
|
|
|
i__1 = *m;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
|
|
/* Generate elementary reflector G(i) to annihilate A(i,i+1:n) */
|
|
|
|
i__2 = *n - i__ + 1;
|
|
/* Computing MIN */
|
|
i__3 = i__ + 1;
|
|
slarfg_(&i__2, &a[i__ + i__ * a_dim1], &a[i__ + min(i__3, *n)*
|
|
a_dim1], lda, &taup[i__]);
|
|
d__[i__] = a[i__ + i__ * a_dim1];
|
|
a[i__ + i__ * a_dim1] = 1.f;
|
|
|
|
/* Apply G(i) to A(i+1:m,i:n) from the right */
|
|
|
|
if (i__ < *m) {
|
|
i__2 = *m - i__;
|
|
i__3 = *n - i__ + 1;
|
|
slarf_("Right", &i__2, &i__3, &a[i__ + i__ * a_dim1], lda, &
|
|
taup[i__], &a[i__ + 1 + i__ * a_dim1], lda, &work[1]);
|
|
}
|
|
a[i__ + i__ * a_dim1] = d__[i__];
|
|
|
|
if (i__ < *m) {
|
|
|
|
/* Generate elementary reflector H(i) to annihilate */
|
|
/* A(i+2:m,i) */
|
|
|
|
i__2 = *m - i__;
|
|
/* Computing MIN */
|
|
i__3 = i__ + 2;
|
|
slarfg_(&i__2, &a[i__ + 1 + i__ * a_dim1], &a[min(i__3, *m)+
|
|
i__ * a_dim1], &c__1, &tauq[i__]);
|
|
e[i__] = a[i__ + 1 + i__ * a_dim1];
|
|
a[i__ + 1 + i__ * a_dim1] = 1.f;
|
|
|
|
/* Apply H(i) to A(i+1:m,i+1:n) from the left */
|
|
|
|
i__2 = *m - i__;
|
|
i__3 = *n - i__;
|
|
slarf_("Left", &i__2, &i__3, &a[i__ + 1 + i__ * a_dim1], &
|
|
c__1, &tauq[i__], &a[i__ + 1 + (i__ + 1) * a_dim1],
|
|
lda, &work[1]);
|
|
a[i__ + 1 + i__ * a_dim1] = e[i__];
|
|
} else {
|
|
tauq[i__] = 0.f;
|
|
}
|
|
/* L20: */
|
|
}
|
|
}
|
|
return 0;
|
|
|
|
/* End of SGEBD2 */
|
|
|
|
} /* sgebd2_ */
|