mirror of
https://github.com/opencv/opencv.git
synced 2025-01-08 03:57:58 +08:00
8eeacc8cc8
add channel 3 support add fast way Between CPU and GPU for the data which is aligned
511 lines
14 KiB
C++
511 lines
14 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
|
|
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// @Authors
|
|
// Jia Haipeng, jiahaipeng95@gmail.com
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other oclMaterials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
|
|
#ifdef HAVE_OPENCL
|
|
|
|
using namespace cvtest;
|
|
using namespace testing;
|
|
using namespace std;
|
|
|
|
////////////////////////////////converto/////////////////////////////////////////////////
|
|
PARAM_TEST_CASE(ConvertToTestBase, MatType, MatType)
|
|
{
|
|
int type;
|
|
int dst_type;
|
|
|
|
//src mat
|
|
cv::Mat mat;
|
|
cv::Mat dst;
|
|
|
|
// set up roi
|
|
int roicols;
|
|
int roirows;
|
|
int srcx;
|
|
int srcy;
|
|
int dstx;
|
|
int dsty;
|
|
|
|
//src mat with roi
|
|
cv::Mat mat_roi;
|
|
cv::Mat dst_roi;
|
|
std::vector<cv::ocl::Info> oclinfo;
|
|
//ocl dst mat for testing
|
|
cv::ocl::oclMat gdst_whole;
|
|
|
|
//ocl mat with roi
|
|
cv::ocl::oclMat gmat;
|
|
cv::ocl::oclMat gdst;
|
|
|
|
virtual void SetUp()
|
|
{
|
|
type = GET_PARAM(0);
|
|
dst_type = GET_PARAM(1);
|
|
|
|
cv::RNG &rng = TS::ptr()->get_rng();
|
|
cv::Size size(MWIDTH, MHEIGHT);
|
|
|
|
mat = randomMat(rng, size, type, 5, 16, false);
|
|
dst = randomMat(rng, size, type, 5, 16, false);
|
|
//std::vector<cv::ocl::Info> oclinfo;
|
|
int devnums = getDevice(oclinfo, OPENCV_DEFAULT_OPENCL_DEVICE);
|
|
CV_Assert(devnums > 0);
|
|
//if you want to use undefault device, set it here
|
|
//setDevice(oclinfo[0]);
|
|
}
|
|
|
|
void random_roi()
|
|
{
|
|
#ifdef RANDOMROI
|
|
//randomize ROI
|
|
cv::RNG &rng = TS::ptr()->get_rng();
|
|
roicols = rng.uniform(1, mat.cols);
|
|
roirows = rng.uniform(1, mat.rows);
|
|
srcx = rng.uniform(0, mat.cols - roicols);
|
|
srcy = rng.uniform(0, mat.rows - roirows);
|
|
dstx = rng.uniform(0, dst.cols - roicols);
|
|
dsty = rng.uniform(0, dst.rows - roirows);
|
|
#else
|
|
roicols = mat.cols;
|
|
roirows = mat.rows;
|
|
srcx = 0;
|
|
srcy = 0;
|
|
dstx = 0;
|
|
dsty = 0;
|
|
#endif
|
|
|
|
mat_roi = mat(Rect(srcx, srcy, roicols, roirows));
|
|
dst_roi = dst(Rect(dstx, dsty, roicols, roirows));
|
|
|
|
gdst_whole = dst;
|
|
gdst = gdst_whole(Rect(dstx, dsty, roicols, roirows));
|
|
|
|
gmat = mat_roi;
|
|
}
|
|
};
|
|
|
|
|
|
struct ConvertTo : ConvertToTestBase {};
|
|
|
|
TEST_P(ConvertTo, Accuracy)
|
|
{
|
|
for(int j = 0; j < LOOP_TIMES; j++)
|
|
{
|
|
random_roi();
|
|
|
|
mat_roi.convertTo(dst_roi, dst_type);
|
|
gmat.convertTo(gdst, dst_type);
|
|
|
|
cv::Mat cpu_dst;
|
|
gdst_whole.download(cpu_dst);
|
|
char sss[1024];
|
|
sprintf(sss, "roicols=%d,roirows=%d,srcx =%d,srcy=%d,dstx=%d,dsty=%d", roicols, roirows, srcx , srcy, dstx, dsty);
|
|
|
|
EXPECT_MAT_NEAR(dst, cpu_dst, 0.0, sss);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
///////////////////////////////////////////copyto/////////////////////////////////////////////////////////////
|
|
|
|
PARAM_TEST_CASE(CopyToTestBase, MatType, bool)
|
|
{
|
|
int type;
|
|
|
|
cv::Mat mat;
|
|
cv::Mat mask;
|
|
cv::Mat dst;
|
|
|
|
// set up roi
|
|
int roicols;
|
|
int roirows;
|
|
int srcx;
|
|
int srcy;
|
|
int dstx;
|
|
int dsty;
|
|
int maskx;
|
|
int masky;
|
|
|
|
//src mat with roi
|
|
cv::Mat mat_roi;
|
|
cv::Mat mask_roi;
|
|
cv::Mat dst_roi;
|
|
std::vector<cv::ocl::Info> oclinfo;
|
|
//ocl dst mat for testing
|
|
cv::ocl::oclMat gdst_whole;
|
|
|
|
//ocl mat with roi
|
|
cv::ocl::oclMat gmat;
|
|
cv::ocl::oclMat gdst;
|
|
cv::ocl::oclMat gmask;
|
|
|
|
virtual void SetUp()
|
|
{
|
|
type = GET_PARAM(0);
|
|
|
|
cv::RNG &rng = TS::ptr()->get_rng();
|
|
cv::Size size(MWIDTH, MHEIGHT);
|
|
|
|
mat = randomMat(rng, size, type, 5, 16, false);
|
|
dst = randomMat(rng, size, type, 5, 16, false);
|
|
mask = randomMat(rng, size, CV_8UC1, 0, 2, false);
|
|
|
|
cv::threshold(mask, mask, 0.5, 255., CV_8UC1);
|
|
|
|
int devnums = getDevice(oclinfo, OPENCV_DEFAULT_OPENCL_DEVICE);
|
|
CV_Assert(devnums > 0);
|
|
//if you want to use undefault device, set it here
|
|
//setDevice(oclinfo[0]);
|
|
}
|
|
|
|
void random_roi()
|
|
{
|
|
#ifdef RANDOMROI
|
|
//randomize ROI
|
|
cv::RNG &rng = TS::ptr()->get_rng();
|
|
roicols = rng.uniform(1, mat.cols);
|
|
roirows = rng.uniform(1, mat.rows);
|
|
srcx = rng.uniform(0, mat.cols - roicols);
|
|
srcy = rng.uniform(0, mat.rows - roirows);
|
|
dstx = rng.uniform(0, dst.cols - roicols);
|
|
dsty = rng.uniform(0, dst.rows - roirows);
|
|
maskx = rng.uniform(0, mask.cols - roicols);
|
|
masky = rng.uniform(0, mask.rows - roirows);
|
|
#else
|
|
roicols = mat.cols;
|
|
roirows = mat.rows;
|
|
srcx = 0;
|
|
srcy = 0;
|
|
dstx = 0;
|
|
dsty = 0;
|
|
maskx = 0;
|
|
masky = 0;
|
|
#endif
|
|
|
|
mat_roi = mat(Rect(srcx, srcy, roicols, roirows));
|
|
mask_roi = mask(Rect(maskx, masky, roicols, roirows));
|
|
dst_roi = dst(Rect(dstx, dsty, roicols, roirows));
|
|
|
|
gdst_whole = dst;
|
|
gdst = gdst_whole(Rect(dstx, dsty, roicols, roirows));
|
|
|
|
gmat = mat_roi;
|
|
gmask = mask_roi;
|
|
}
|
|
};
|
|
|
|
struct CopyTo : CopyToTestBase {};
|
|
|
|
TEST_P(CopyTo, Without_mask)
|
|
{
|
|
for(int j = 0; j < LOOP_TIMES; j++)
|
|
{
|
|
random_roi();
|
|
|
|
mat_roi.copyTo(dst_roi);
|
|
gmat.copyTo(gdst);
|
|
|
|
cv::Mat cpu_dst;
|
|
gdst_whole.download(cpu_dst);
|
|
char sss[1024];
|
|
sprintf(sss, "roicols=%d,roirows=%d,srcx =%d,srcy=%d,dstx=%d,dsty=%d,maskx=%d,masky=%d", roicols, roirows, srcx , srcy, dstx, dsty, maskx, masky);
|
|
|
|
EXPECT_MAT_NEAR(dst, cpu_dst, 0.0, sss);
|
|
}
|
|
}
|
|
|
|
TEST_P(CopyTo, With_mask)
|
|
{
|
|
for(int j = 0; j < LOOP_TIMES; j++)
|
|
{
|
|
random_roi();
|
|
|
|
mat_roi.copyTo(dst_roi, mask_roi);
|
|
gmat.copyTo(gdst, gmask);
|
|
|
|
cv::Mat cpu_dst;
|
|
gdst_whole.download(cpu_dst);
|
|
char sss[1024];
|
|
sprintf(sss, "roicols=%d,roirows=%d,srcx =%d,srcy=%d,dstx=%d,dsty=%d,maskx=%d,masky=%d", roicols, roirows, srcx , srcy, dstx, dsty, maskx, masky);
|
|
|
|
EXPECT_MAT_NEAR(dst, cpu_dst, 0.0, sss);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
///////////////////////////////////////////copyto/////////////////////////////////////////////////////////////
|
|
|
|
PARAM_TEST_CASE(SetToTestBase, MatType, bool)
|
|
{
|
|
int type;
|
|
cv::Scalar val;
|
|
|
|
cv::Mat mat;
|
|
cv::Mat mask;
|
|
|
|
// set up roi
|
|
int roicols;
|
|
int roirows;
|
|
int srcx;
|
|
int srcy;
|
|
int maskx;
|
|
int masky;
|
|
|
|
//src mat with roi
|
|
cv::Mat mat_roi;
|
|
cv::Mat mask_roi;
|
|
std::vector<cv::ocl::Info> oclinfo;
|
|
//ocl dst mat for testing
|
|
cv::ocl::oclMat gmat_whole;
|
|
|
|
//ocl mat with roi
|
|
cv::ocl::oclMat gmat;
|
|
cv::ocl::oclMat gmask;
|
|
|
|
virtual void SetUp()
|
|
{
|
|
type = GET_PARAM(0);
|
|
|
|
cv::RNG &rng = TS::ptr()->get_rng();
|
|
cv::Size size(MWIDTH, MHEIGHT);
|
|
|
|
mat = randomMat(rng, size, type, 5, 16, false);
|
|
mask = randomMat(rng, size, CV_8UC1, 0, 2, false);
|
|
|
|
cv::threshold(mask, mask, 0.5, 255., CV_8UC1);
|
|
val = cv::Scalar(rng.uniform(-10.0, 10.0), rng.uniform(-10.0, 10.0), rng.uniform(-10.0, 10.0), rng.uniform(-10.0, 10.0));
|
|
|
|
int devnums = getDevice(oclinfo, OPENCV_DEFAULT_OPENCL_DEVICE);
|
|
CV_Assert(devnums > 0);
|
|
//if you want to use undefault device, set it here
|
|
//setDevice(oclinfo[0]);
|
|
}
|
|
|
|
void random_roi()
|
|
{
|
|
#ifdef RANDOMROI
|
|
//randomize ROI
|
|
cv::RNG &rng = TS::ptr()->get_rng();
|
|
roicols = rng.uniform(1, mat.cols);
|
|
roirows = rng.uniform(1, mat.rows);
|
|
srcx = rng.uniform(0, mat.cols - roicols);
|
|
srcy = rng.uniform(0, mat.rows - roirows);
|
|
maskx = rng.uniform(0, mask.cols - roicols);
|
|
masky = rng.uniform(0, mask.rows - roirows);
|
|
#else
|
|
roicols = mat.cols;
|
|
roirows = mat.rows;
|
|
srcx = 0;
|
|
srcy = 0;
|
|
maskx = 0;
|
|
masky = 0;
|
|
#endif
|
|
|
|
mat_roi = mat(Rect(srcx, srcy, roicols, roirows));
|
|
mask_roi = mask(Rect(maskx, masky, roicols, roirows));
|
|
|
|
gmat_whole = mat;
|
|
gmat = gmat_whole(Rect(srcx, srcy, roicols, roirows));
|
|
|
|
gmask = mask_roi;
|
|
}
|
|
};
|
|
|
|
struct SetTo : SetToTestBase {};
|
|
|
|
TEST_P(SetTo, Without_mask)
|
|
{
|
|
for(int j = 0; j < LOOP_TIMES; j++)
|
|
{
|
|
random_roi();
|
|
|
|
mat_roi.setTo(val);
|
|
gmat.setTo(val);
|
|
|
|
cv::Mat cpu_dst;
|
|
gmat_whole.download(cpu_dst);
|
|
char sss[1024];
|
|
sprintf(sss, "roicols=%d,roirows=%d,srcx =%d,srcy=%d,maskx=%d,masky=%d", roicols, roirows, srcx , srcy, maskx, masky);
|
|
|
|
EXPECT_MAT_NEAR(mat, cpu_dst, 1., sss);
|
|
}
|
|
}
|
|
|
|
TEST_P(SetTo, With_mask)
|
|
{
|
|
for(int j = 0; j < LOOP_TIMES; j++)
|
|
{
|
|
random_roi();
|
|
|
|
mat_roi.setTo(val, mask_roi);
|
|
gmat.setTo(val, gmask);
|
|
|
|
cv::Mat cpu_dst;
|
|
gmat_whole.download(cpu_dst);
|
|
char sss[1024];
|
|
sprintf(sss, "roicols=%d,roirows=%d,srcx =%d,srcy=%d,maskx=%d,masky=%d", roicols, roirows, srcx , srcy, maskx, masky);
|
|
|
|
EXPECT_MAT_NEAR(mat, cpu_dst, 1., sss);
|
|
}
|
|
}
|
|
|
|
//convertC3C4
|
|
PARAM_TEST_CASE(convertC3C4, MatType, cv::Size)
|
|
{
|
|
int type;
|
|
cv::Size ksize;
|
|
|
|
//src mat
|
|
cv::Mat mat1;
|
|
cv::Mat dst;
|
|
|
|
// set up roi
|
|
int roicols;
|
|
int roirows;
|
|
int src1x;
|
|
int src1y;
|
|
int dstx;
|
|
int dsty;
|
|
|
|
//src mat with roi
|
|
cv::Mat mat1_roi;
|
|
cv::Mat dst_roi;
|
|
std::vector<cv::ocl::Info> oclinfo;
|
|
//ocl dst mat for testing
|
|
cv::ocl::oclMat gdst_whole;
|
|
|
|
//ocl mat with roi
|
|
cv::ocl::oclMat gmat1;
|
|
cv::ocl::oclMat gdst;
|
|
|
|
virtual void SetUp()
|
|
{
|
|
type = GET_PARAM(0);
|
|
ksize = GET_PARAM(1);
|
|
|
|
|
|
|
|
//dst = randomMat(rng, size, type, 5, 16, false);
|
|
int devnums = getDevice(oclinfo);
|
|
CV_Assert(devnums > 0);
|
|
//if you want to use undefault device, set it here
|
|
//setDevice(oclinfo[1]);
|
|
}
|
|
|
|
void random_roi()
|
|
{
|
|
#ifdef RANDOMROI
|
|
//randomize ROI
|
|
cv::RNG &rng = TS::ptr()->get_rng();
|
|
roicols = rng.uniform(2, mat1.cols);
|
|
roirows = rng.uniform(2, mat1.rows);
|
|
src1x = rng.uniform(0, mat1.cols - roicols);
|
|
src1y = rng.uniform(0, mat1.rows - roirows);
|
|
dstx = rng.uniform(0, dst.cols - roicols);
|
|
dsty = rng.uniform(0, dst.rows - roirows);
|
|
#else
|
|
roicols = mat1.cols;
|
|
roirows = mat1.rows;
|
|
src1x = 0;
|
|
src1y = 0;
|
|
dstx = 0;
|
|
dsty = 0;
|
|
#endif
|
|
|
|
mat1_roi = mat1(Rect(src1x, src1y, roicols, roirows));
|
|
dst_roi = dst(Rect(dstx, dsty, roicols, roirows));
|
|
|
|
gdst_whole = dst;
|
|
gdst = gdst_whole(Rect(dstx, dsty, roicols, roirows));
|
|
|
|
|
|
gmat1 = mat1_roi;
|
|
}
|
|
|
|
};
|
|
|
|
TEST_P(convertC3C4, Accuracy)
|
|
{
|
|
cv::RNG &rng = TS::ptr()->get_rng();
|
|
for(int j = 0; j < LOOP_TIMES; j++)
|
|
{
|
|
//random_roi();
|
|
int width = rng.uniform(2, MWIDTH);
|
|
int height = rng.uniform(2, MHEIGHT);
|
|
cv::Size size(width, height);
|
|
|
|
mat1 = randomMat(rng, size, type, 0, 40, false);
|
|
gmat1 = mat1;
|
|
cv::Mat cpu_dst;
|
|
gmat1.download(cpu_dst);
|
|
char sss[1024];
|
|
sprintf(sss, "cols=%d,rows=%d", mat1.cols, mat1.rows);
|
|
EXPECT_MAT_NEAR(mat1, cpu_dst, 0.0, sss);
|
|
}
|
|
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(MatrixOperation, ConvertTo, Combine(
|
|
Values(CV_8UC1, CV_8UC4, CV_32SC1, CV_32SC4, CV_32FC1, CV_32FC4),
|
|
Values(CV_8UC1, CV_8UC4, CV_32SC1, CV_32SC4, CV_32FC1, CV_32FC4)));
|
|
|
|
INSTANTIATE_TEST_CASE_P(MatrixOperation, CopyTo, Combine(
|
|
Values(CV_8UC1, CV_8UC4, CV_32SC1, CV_32SC4, CV_32FC1, CV_32FC4),
|
|
Values(false))); // Values(false) is the reserved parameter
|
|
|
|
INSTANTIATE_TEST_CASE_P(MatrixOperation, SetTo, Combine(
|
|
Values(CV_8UC1, CV_8UC4, CV_32SC1, CV_32SC4, CV_32FC1, CV_32FC4),
|
|
Values(false))); // Values(false) is the reserved parameter
|
|
|
|
INSTANTIATE_TEST_CASE_P(MatrixOperation, convertC3C4, Combine(
|
|
Values(CV_8UC3, CV_32SC3, CV_32FC3),
|
|
Values(cv::Size())));
|
|
#endif
|