opencv/modules/dnn/src/model.cpp
Lubov Batanina f1ea9d86b9 Merge pull request #15203 from l-bat:determine_inp_shape
* Determine input shapes

* Add test

* Remove getInputShapes

* Fix model

* Fix constructors

* Add Caffe test

* Fix predict
2019-08-09 19:51:42 +03:00

279 lines
8.5 KiB
C++

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "precomp.hpp"
#include <algorithm>
#include <iostream>
#include <utility>
#include <iterator>
#include <opencv2/imgproc.hpp>
namespace cv {
namespace dnn {
struct Model::Impl
{
Size size;
Scalar mean;
double scale = 1.0;
bool swapRB = false;
bool crop = false;
Mat blob;
std::vector<String> outNames;
void predict(Net& net, const Mat& frame, OutputArrayOfArrays outs)
{
if (size.empty())
CV_Error(Error::StsBadSize, "Input size not specified");
blob = blobFromImage(frame, scale, size, mean, swapRB, crop);
net.setInput(blob);
// Faster-RCNN or R-FCN
if (net.getLayer(0)->outputNameToIndex("im_info") != -1)
{
Mat imInfo = (Mat_<float>(1, 3) << size.height, size.width, 1.6f);
net.setInput(imInfo, "im_info");
}
net.forward(outs, outNames);
}
};
Model::Model() : impl(new Impl) {}
Model::Model(const String& model, const String& config)
: Net(readNet(model, config)), impl(new Impl)
{
impl->outNames = getUnconnectedOutLayersNames();
std::vector<MatShape> inLayerShapes;
std::vector<MatShape> outLayerShapes;
getLayerShapes(MatShape(), 0, inLayerShapes, outLayerShapes);
if (!inLayerShapes.empty() && inLayerShapes[0].size() == 4)
impl->size = Size(inLayerShapes[0][3], inLayerShapes[0][2]);
};
Model::Model(const Net& network) : Net(network), impl(new Impl)
{
impl->outNames = getUnconnectedOutLayersNames();
std::vector<MatShape> inLayerShapes;
std::vector<MatShape> outLayerShapes;
getLayerShapes(MatShape(), 0, inLayerShapes, outLayerShapes);
if (!inLayerShapes.empty() && inLayerShapes[0].size() == 4)
impl->size = Size(inLayerShapes[0][3], inLayerShapes[0][2]);
};
Model& Model::setInputSize(const Size& size)
{
impl->size = size;
return *this;
}
Model& Model::setInputSize(int width, int height)
{
impl->size = Size(width, height);
return *this;
}
Model& Model::setInputMean(const Scalar& mean)
{
impl->mean = mean;
return *this;
}
Model& Model::setInputScale(double scale)
{
impl->scale = scale;
return *this;
}
Model& Model::setInputCrop(bool crop)
{
impl->crop = crop;
return *this;
}
Model& Model::setInputSwapRB(bool swapRB)
{
impl->swapRB = swapRB;
return *this;
}
void Model::setInputParams(double scale, const Size& size, const Scalar& mean,
bool swapRB, bool crop)
{
impl->size = size;
impl->mean = mean;
impl->scale = scale;
impl->crop = crop;
impl->swapRB = swapRB;
}
void Model::predict(InputArray frame, OutputArrayOfArrays outs)
{
impl->predict(*this, frame.getMat(), outs);
}
ClassificationModel::ClassificationModel(const String& model, const String& config)
: Model(model, config) {};
ClassificationModel::ClassificationModel(const Net& network) : Model(network) {};
std::pair<int, float> ClassificationModel::classify(InputArray frame)
{
std::vector<Mat> outs;
impl->predict(*this, frame.getMat(), outs);
CV_Assert(outs.size() == 1);
double conf;
cv::Point maxLoc;
minMaxLoc(outs[0].reshape(1, 1), nullptr, &conf, nullptr, &maxLoc);
return {maxLoc.x, static_cast<float>(conf)};
}
void ClassificationModel::classify(InputArray frame, int& classId, float& conf)
{
std::tie(classId, conf) = classify(frame);
}
DetectionModel::DetectionModel(const String& model, const String& config)
: Model(model, config) {};
DetectionModel::DetectionModel(const Net& network) : Model(network) {};
void DetectionModel::detect(InputArray frame, CV_OUT std::vector<int>& classIds,
CV_OUT std::vector<float>& confidences, CV_OUT std::vector<Rect>& boxes,
float confThreshold, float nmsThreshold)
{
std::vector<Mat> detections;
impl->predict(*this, frame.getMat(), detections);
boxes.clear();
confidences.clear();
classIds.clear();
int frameWidth = frame.cols();
int frameHeight = frame.rows();
if (getLayer(0)->outputNameToIndex("im_info") != -1)
{
frameWidth = impl->size.width;
frameHeight = impl->size.height;
}
std::vector<String> layerNames = getLayerNames();
int lastLayerId = getLayerId(layerNames.back());
Ptr<Layer> lastLayer = getLayer(lastLayerId);
std::vector<int> predClassIds;
std::vector<Rect> predBoxes;
std::vector<float> predConf;
if (lastLayer->type == "DetectionOutput")
{
// Network produces output blob with a shape 1x1xNx7 where N is a number of
// detections and an every detection is a vector of values
// [batchId, classId, confidence, left, top, right, bottom]
for (int i = 0; i < detections.size(); ++i)
{
float* data = (float*)detections[i].data;
for (int j = 0; j < detections[i].total(); j += 7)
{
float conf = data[j + 2];
if (conf < confThreshold)
continue;
int left = data[j + 3];
int top = data[j + 4];
int right = data[j + 5];
int bottom = data[j + 6];
int width = right - left + 1;
int height = bottom - top + 1;
if (width * height <= 1)
{
left = data[j + 3] * frameWidth;
top = data[j + 4] * frameHeight;
right = data[j + 5] * frameWidth;
bottom = data[j + 6] * frameHeight;
width = right - left + 1;
height = bottom - top + 1;
}
left = std::max(0, std::min(left, frameWidth - 1));
top = std::max(0, std::min(top, frameHeight - 1));
width = std::max(1, std::min(width, frameWidth - left));
height = std::max(1, std::min(height, frameHeight - top));
predBoxes.emplace_back(left, top, width, height);
predClassIds.push_back(static_cast<int>(data[j + 1]));
predConf.push_back(conf);
}
}
}
else if (lastLayer->type == "Region")
{
for (int i = 0; i < detections.size(); ++i)
{
// Network produces output blob with a shape NxC where N is a number of
// detected objects and C is a number of classes + 4 where the first 4
// numbers are [center_x, center_y, width, height]
float* data = (float*)detections[i].data;
for (int j = 0; j < detections[i].rows; ++j, data += detections[i].cols)
{
Mat scores = detections[i].row(j).colRange(5, detections[i].cols);
Point classIdPoint;
double conf;
minMaxLoc(scores, nullptr, &conf, nullptr, &classIdPoint);
if (static_cast<float>(conf) < confThreshold)
continue;
int centerX = data[0] * frameWidth;
int centerY = data[1] * frameHeight;
int width = data[2] * frameWidth;
int height = data[3] * frameHeight;
int left = std::max(0, std::min(centerX - width / 2, frameWidth - 1));
int top = std::max(0, std::min(centerY - height / 2, frameHeight - 1));
width = std::max(1, std::min(width, frameWidth - left));
height = std::max(1, std::min(height, frameHeight - top));
predClassIds.push_back(classIdPoint.x);
predConf.push_back(static_cast<float>(conf));
predBoxes.emplace_back(left, top, width, height);
}
}
}
else
CV_Error(Error::StsNotImplemented, "Unknown output layer type: \"" + lastLayer->type + "\"");
if (nmsThreshold)
{
std::vector<int> indices;
NMSBoxes(predBoxes, predConf, confThreshold, nmsThreshold, indices);
boxes.reserve(indices.size());
confidences.reserve(indices.size());
classIds.reserve(indices.size());
for (int idx : indices)
{
boxes.push_back(predBoxes[idx]);
confidences.push_back(predConf[idx]);
classIds.push_back(predClassIds[idx]);
}
}
else
{
boxes = std::move(predBoxes);
classIds = std::move(predClassIds);
confidences = std::move(predConf);
}
}
}} // namespace