mirror of
https://github.com/opencv/opencv.git
synced 2025-01-10 22:28:13 +08:00
110b701bba
- Added function overload for the simple case - Added CV_Bool type support for masks - `parallel_for_` for intrinsics calibration for faster inference - Homogenize parameters order with other calibrateXXX functions
252 lines
10 KiB
C++
252 lines
10 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
#include <vector>
|
|
#include <string>
|
|
#include <opencv2/calib3d.hpp>
|
|
#include <opencv2/imgcodecs.hpp>
|
|
#include <opencv2/imgproc.hpp>
|
|
#include <opencv2/objdetect.hpp>
|
|
#include <iostream>
|
|
#include <fstream>
|
|
|
|
// ! [detectPointsAndCalibrate_signature]
|
|
static void detectPointsAndCalibrate (cv::Size pattern_size, float pattern_distance, const std::string &pattern_type,
|
|
const std::vector<uchar> &models, const std::vector<std::string> &filenames,
|
|
const cv::String* dict_path=nullptr)
|
|
// ! [detectPointsAndCalibrate_signature]
|
|
{
|
|
// ! [calib_init]
|
|
std::vector<cv::Point3f> board (pattern_size.area());
|
|
const int num_cameras = (int)models.size();
|
|
std::vector<std::vector<cv::Mat>> image_points_all;
|
|
std::vector<cv::Size> image_sizes;
|
|
std::vector<cv::Mat> Ks, distortions, Ts, Rs;
|
|
if (pattern_type == "checkerboard" || pattern_type == "charuco") {
|
|
for (int i = 0; i < pattern_size.height; i++) {
|
|
for (int j = 0; j < pattern_size.width; j++) {
|
|
board[i*pattern_size.width+j] = cv::Point3f((float)j, (float)i, 0.f) * pattern_distance;
|
|
}
|
|
}
|
|
} else if (pattern_type == "circles") {
|
|
for (int i = 0; i < pattern_size.height; i++) {
|
|
for (int j = 0; j < pattern_size.width; j++) {
|
|
board[i*pattern_size.width+j] = cv::Point3f((float)j, (float)i, 0.f) * pattern_distance;
|
|
}
|
|
}
|
|
} else if (pattern_type == "acircles") {
|
|
for (int i = 0; i < pattern_size.height; i++) {
|
|
for (int j = 0; j < pattern_size.width; j++) {
|
|
if (i % 2 == 1) {
|
|
board[i*pattern_size.width+j] = cv::Point3f((j + .5f)*pattern_distance, (i/2 + .5f) * pattern_distance, 0.f);
|
|
} else{
|
|
board[i*pattern_size.width+j] = cv::Point3f(j*pattern_distance, (i/2)*pattern_distance, 0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
CV_Error(cv::Error::StsNotImplemented, "pattern_type is not implemented!");
|
|
}
|
|
// ! [calib_init]
|
|
// ! [charuco_detector]
|
|
cv::Ptr<cv::aruco::CharucoDetector> detector;
|
|
if (pattern_type == "charuco") {
|
|
CV_Assert(dict_path != nullptr);
|
|
cv::FileStorage fs(*dict_path, cv::FileStorage::READ);
|
|
CV_Assert(fs.isOpened());
|
|
|
|
int dict_int;
|
|
double square_size, marker_size;
|
|
fs["dictionary"] >> dict_int;
|
|
fs["square_size"] >> square_size;
|
|
fs["marker_size"] >> marker_size;
|
|
|
|
auto dictionary = cv::aruco::getPredefinedDictionary(dict_int);
|
|
// For charuco board, the size is defined to be the number of box (not inner corner)
|
|
auto charuco_board = cv::aruco::CharucoBoard(
|
|
cv::Size(pattern_size.width+1, pattern_size.height+1),
|
|
static_cast<float>(square_size), static_cast<float>(marker_size), dictionary);
|
|
|
|
// It is suggested to use refinement in detecting charuco board
|
|
auto detector_params = cv::aruco::DetectorParameters();
|
|
auto charuco_params = cv::aruco::CharucoParameters();
|
|
charuco_params.tryRefineMarkers = true;
|
|
detector_params.cornerRefinementMethod = cv::aruco::CORNER_REFINE_CONTOUR;
|
|
detector = cv::makePtr<cv::aruco::CharucoDetector>(charuco_board, charuco_params, detector_params);
|
|
}
|
|
// ! [charuco_detector]
|
|
// ! [detect_pattern]
|
|
int num_frames = -1;
|
|
for (const auto &filename : filenames) {
|
|
std::fstream file(filename);
|
|
CV_Assert(file.is_open());
|
|
std::string img_file;
|
|
std::vector<cv::Mat> image_points_cameras;
|
|
bool save_img_size = true;
|
|
while (std::getline(file, img_file)) {
|
|
if (img_file.empty()){
|
|
image_points_cameras.emplace_back(cv::Mat());
|
|
continue;
|
|
}
|
|
cv::Mat img = cv::imread(img_file), corners;
|
|
if (save_img_size) {
|
|
image_sizes.emplace_back(cv::Size(img.cols, img.rows));
|
|
save_img_size = false;
|
|
}
|
|
|
|
bool success = false;
|
|
if (pattern_type == "checkerboard") {
|
|
cv::cvtColor(img, img, cv::COLOR_BGR2GRAY);
|
|
success = cv::findChessboardCorners(img, pattern_size, corners);
|
|
}
|
|
else if (pattern_type == "circles")
|
|
{
|
|
success = cv::findCirclesGrid(img, pattern_size, corners, cv::CALIB_CB_SYMMETRIC_GRID);
|
|
}
|
|
else if (pattern_type == "acircles")
|
|
{
|
|
success = cv::findCirclesGrid(img, pattern_size, corners, cv::CALIB_CB_ASYMMETRIC_GRID);
|
|
}
|
|
else if (pattern_type == "charuco")
|
|
{
|
|
std::vector<int> ids; cv::Mat corners_sub;
|
|
detector->detectBoard(img, corners_sub, ids);
|
|
corners.create(static_cast<int>(board.size()), 2, CV_32F);
|
|
if (ids.size() < 4)
|
|
success = false;
|
|
else {
|
|
success = true;
|
|
int head = 0;
|
|
for (int i = 0; i < static_cast<int>(board.size()); i++) {
|
|
if (head < static_cast<int>(ids.size()) && ids[head] == i) {
|
|
corners.at<float>(i, 0) = corners_sub.at<float>(head, 0);
|
|
corners.at<float>(i, 1) = corners_sub.at<float>(head, 1);
|
|
head++;
|
|
} else {
|
|
// points outside of frame border are dropped by calibrateMultiview
|
|
corners.at<float>(i, 0) = -1.;
|
|
corners.at<float>(i, 1) = -1.;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
cv::Mat corners2;
|
|
corners.convertTo(corners2, CV_32FC2);
|
|
|
|
if (success && corners.rows == pattern_size.area())
|
|
image_points_cameras.emplace_back(corners2);
|
|
else
|
|
image_points_cameras.emplace_back(cv::Mat());
|
|
}
|
|
if (num_frames == -1)
|
|
num_frames = (int)image_points_cameras.size();
|
|
else
|
|
CV_Assert(num_frames == (int)image_points_cameras.size());
|
|
image_points_all.emplace_back(image_points_cameras);
|
|
}
|
|
// ! [detect_pattern]
|
|
// ! [detection_matrix]
|
|
cv::Mat visibility(num_cameras, num_frames, CV_8UC1);
|
|
for (int i = 0; i < num_cameras; i++) {
|
|
for (int j = 0; j < num_frames; j++) {
|
|
visibility.at<unsigned char>(i,j) = image_points_all[i][j].empty() ? 0 : 1;
|
|
}
|
|
}
|
|
// ! [detection_matrix]
|
|
CV_Assert(num_frames != -1);
|
|
|
|
std::vector<std::vector<cv::Point3f>> objPoints(num_frames, board);
|
|
|
|
// ! [multiview_calib]
|
|
|
|
const double rmse = calibrateMultiview(objPoints, image_points_all, image_sizes, visibility,
|
|
models, Ks, distortions, Rs, Ts);
|
|
// ! [multiview_calib]
|
|
std::cout << "average RMSE over detection mask " << rmse << "\n";
|
|
for (int c = 0; c < (int)Rs.size(); c++) {
|
|
std::cout << "camera " << c << '\n';
|
|
std::cout << "rotation\n" << Rs[c] << "\n";
|
|
std::cout << "translation\n" << Ts[c] << "\n";
|
|
std::cout << "intrinsic matrix\n" << Ks[c] << "\n";
|
|
std::cout << "distortion\n" << distortions[c] << "\n";
|
|
}
|
|
}
|
|
|
|
int main (int argc, char **argv) {
|
|
cv::String keys =
|
|
"{help h usage ? || print help }"
|
|
"{pattern_size || (inner) grid width, (inner) grid height }"
|
|
"{pattern_distance || pattern scale}"
|
|
"{pattern_type | checkerboard | pattern type, e.g., checkerboard or acircles or charuco (recommended)}"
|
|
"{is_fisheye || cameras type fisheye (1), pinhole(0), separated by comma (no space)}"
|
|
"{filenames || files containing path to image names separated by comma (no space)}"
|
|
"{board_dict_path || file containing dictionary information (required field: dictionary, square_size, marker_size). Needed if pattern_type is charuco.}";
|
|
|
|
cv::CommandLineParser parser(argc, argv, keys);
|
|
if (parser.has("help")) {
|
|
parser.printMessage();
|
|
return 0;
|
|
}
|
|
|
|
CV_Assert(parser.has("pattern_size") && parser.has("pattern_type") &&
|
|
parser.has("is_fisheye") && parser.has("filenames"));
|
|
CV_Assert(parser.get<cv::String>("pattern_type") == "checkerboard" ||
|
|
parser.get<cv::String>("pattern_type") == "circles" ||
|
|
parser.get<cv::String>("pattern_type") == "acircles" ||
|
|
parser.get<cv::String>("pattern_type") == "charuco"
|
|
);
|
|
if (parser.get<cv::String>("pattern_type") == "charuco")
|
|
CV_Assert(parser.has("board_dict_path"));
|
|
|
|
cv::Size pattern_size;
|
|
const cv::String pattern_size_str = parser.get<cv::String>("pattern_size");
|
|
std::string temp_str;
|
|
int pattern_size_count = 0;
|
|
for (char i : pattern_size_str) {
|
|
if (i == ',') {
|
|
if (pattern_size_count == 0)
|
|
pattern_size.width = std::stoi(temp_str);
|
|
pattern_size_count++;
|
|
temp_str = "";
|
|
} else {
|
|
temp_str += i;
|
|
}
|
|
}
|
|
CV_Assert(pattern_size_count == 1);
|
|
pattern_size.height = std::stoi(temp_str);
|
|
|
|
std::vector<uchar> models;
|
|
const cv::String is_fisheye_str = parser.get<cv::String>("is_fisheye");
|
|
for (char i : is_fisheye_str) {
|
|
if (i == '0') {
|
|
models.push_back(cv::CALIB_MODEL_PINHOLE);
|
|
} else if (i == '1') {
|
|
models.push_back(cv::CALIB_MODEL_FISHEYE);
|
|
}
|
|
}
|
|
const cv::String filenames_str = parser.get<cv::String>("filenames");
|
|
std::vector<std::string> filenames;
|
|
temp_str = "";
|
|
for (char i : filenames_str) {
|
|
if (i == ',') {
|
|
filenames.emplace_back(temp_str);
|
|
temp_str = "";
|
|
} else {
|
|
temp_str += i;
|
|
}
|
|
}
|
|
filenames.emplace_back(temp_str);
|
|
CV_CheckEQ(filenames.size(), models.size(), "filenames size must be equal to number of cameras!");
|
|
|
|
if (parser.has("board_dict_path")) {
|
|
cv::String board_dict_path = parser.get<cv::String>("board_dict_path");
|
|
detectPointsAndCalibrate (pattern_size, parser.get<float>("pattern_distance"), parser.get<cv::String>("pattern_type"), models, filenames, &board_dict_path);
|
|
} else {
|
|
detectPointsAndCalibrate (pattern_size, parser.get<float>("pattern_distance"), parser.get<cv::String>("pattern_type"), models, filenames);
|
|
}
|
|
return 0;
|
|
}
|