mirror of
https://github.com/opencv/opencv.git
synced 2024-12-11 14:39:11 +08:00
329 lines
13 KiB
C++
329 lines
13 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#ifndef __OPENCV_CUDASTEREO_HPP__
|
|
#define __OPENCV_CUDASTEREO_HPP__
|
|
|
|
#ifndef __cplusplus
|
|
# error cudastereo.hpp header must be compiled as C++
|
|
#endif
|
|
|
|
#include "opencv2/core/cuda.hpp"
|
|
#include "opencv2/calib3d.hpp"
|
|
|
|
/**
|
|
@addtogroup cuda
|
|
@{
|
|
@defgroup cudastereo Stereo Correspondence
|
|
@}
|
|
*/
|
|
|
|
namespace cv { namespace cuda {
|
|
|
|
//! @addtogroup cudastereo
|
|
//! @{
|
|
|
|
/////////////////////////////////////////
|
|
// StereoBM
|
|
|
|
/** @brief Class computing stereo correspondence (disparity map) using the block matching algorithm. :
|
|
|
|
@sa StereoBM
|
|
*/
|
|
class CV_EXPORTS StereoBM : public cv::StereoBM
|
|
{
|
|
public:
|
|
using cv::StereoBM::compute;
|
|
|
|
virtual void compute(InputArray left, InputArray right, OutputArray disparity, Stream& stream) = 0;
|
|
};
|
|
|
|
/** @brief Creates StereoBM object.
|
|
|
|
@param numDisparities the disparity search range. For each pixel algorithm will find the best
|
|
disparity from 0 (default minimum disparity) to numDisparities. The search range can then be
|
|
shifted by changing the minimum disparity.
|
|
@param blockSize the linear size of the blocks compared by the algorithm. The size should be odd
|
|
(as the block is centered at the current pixel). Larger block size implies smoother, though less
|
|
accurate disparity map. Smaller block size gives more detailed disparity map, but there is higher
|
|
chance for algorithm to find a wrong correspondence.
|
|
*/
|
|
CV_EXPORTS Ptr<cuda::StereoBM> createStereoBM(int numDisparities = 64, int blockSize = 19);
|
|
|
|
/////////////////////////////////////////
|
|
// StereoBeliefPropagation
|
|
|
|
/** @brief Class computing stereo correspondence using the belief propagation algorithm. :
|
|
|
|
The class implements algorithm described in @cite Felzenszwalb2006 . It can compute own data cost
|
|
(using a truncated linear model) or use a user-provided data cost.
|
|
|
|
@note
|
|
StereoBeliefPropagation requires a lot of memory for message storage:
|
|
|
|
\f[width \_ step \cdot height \cdot ndisp \cdot 4 \cdot (1 + 0.25)\f]
|
|
|
|
and for data cost storage:
|
|
|
|
\f[width\_step \cdot height \cdot ndisp \cdot (1 + 0.25 + 0.0625 + \dotsm + \frac{1}{4^{levels}})\f]
|
|
|
|
width_step is the number of bytes in a line including padding.
|
|
|
|
StereoBeliefPropagation uses a truncated linear model for the data cost and discontinuity terms:
|
|
|
|
\f[DataCost = data \_ weight \cdot \min ( \lvert Img_Left(x,y)-Img_Right(x-d,y) \rvert , max \_ data \_ term)\f]
|
|
|
|
\f[DiscTerm = \min (disc \_ single \_ jump \cdot \lvert f_1-f_2 \rvert , max \_ disc \_ term)\f]
|
|
|
|
For more details, see @cite Felzenszwalb2006 .
|
|
|
|
By default, StereoBeliefPropagation uses floating-point arithmetics and the CV_32FC1 type for
|
|
messages. But it can also use fixed-point arithmetics and the CV_16SC1 message type for better
|
|
performance. To avoid an overflow in this case, the parameters must satisfy the following
|
|
requirement:
|
|
|
|
\f[10 \cdot 2^{levels-1} \cdot max \_ data \_ term < SHRT \_ MAX\f]
|
|
|
|
@sa StereoMatcher
|
|
*/
|
|
class CV_EXPORTS StereoBeliefPropagation : public cv::StereoMatcher
|
|
{
|
|
public:
|
|
using cv::StereoMatcher::compute;
|
|
|
|
/** @overload */
|
|
virtual void compute(InputArray left, InputArray right, OutputArray disparity, Stream& stream) = 0;
|
|
|
|
/** @brief Enables the stereo correspondence operator that finds the disparity for the specified data cost.
|
|
|
|
@param data User-specified data cost, a matrix of msg_type type and
|
|
Size(\<image columns\>\*ndisp, \<image rows\>) size.
|
|
@param disparity Output disparity map. If disparity is empty, the output type is CV_16SC1 .
|
|
Otherwise, the type is retained.
|
|
@param stream Stream for the asynchronous version.
|
|
*/
|
|
virtual void compute(InputArray data, OutputArray disparity, Stream& stream = Stream::Null()) = 0;
|
|
|
|
//! number of BP iterations on each level
|
|
virtual int getNumIters() const = 0;
|
|
virtual void setNumIters(int iters) = 0;
|
|
|
|
//! number of levels
|
|
virtual int getNumLevels() const = 0;
|
|
virtual void setNumLevels(int levels) = 0;
|
|
|
|
//! truncation of data cost
|
|
virtual double getMaxDataTerm() const = 0;
|
|
virtual void setMaxDataTerm(double max_data_term) = 0;
|
|
|
|
//! data weight
|
|
virtual double getDataWeight() const = 0;
|
|
virtual void setDataWeight(double data_weight) = 0;
|
|
|
|
//! truncation of discontinuity cost
|
|
virtual double getMaxDiscTerm() const = 0;
|
|
virtual void setMaxDiscTerm(double max_disc_term) = 0;
|
|
|
|
//! discontinuity single jump
|
|
virtual double getDiscSingleJump() const = 0;
|
|
virtual void setDiscSingleJump(double disc_single_jump) = 0;
|
|
|
|
//! type for messages (CV_16SC1 or CV_32FC1)
|
|
virtual int getMsgType() const = 0;
|
|
virtual void setMsgType(int msg_type) = 0;
|
|
|
|
/** @brief Uses a heuristic method to compute the recommended parameters ( ndisp, iters and levels ) for the
|
|
specified image size ( width and height ).
|
|
*/
|
|
static void estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels);
|
|
};
|
|
|
|
/** @brief Creates StereoBeliefPropagation object.
|
|
|
|
@param ndisp Number of disparities.
|
|
@param iters Number of BP iterations on each level.
|
|
@param levels Number of levels.
|
|
@param msg_type Type for messages. CV_16SC1 and CV_32FC1 types are supported.
|
|
*/
|
|
CV_EXPORTS Ptr<cuda::StereoBeliefPropagation>
|
|
createStereoBeliefPropagation(int ndisp = 64, int iters = 5, int levels = 5, int msg_type = CV_32F);
|
|
|
|
/////////////////////////////////////////
|
|
// StereoConstantSpaceBP
|
|
|
|
/** @brief Class computing stereo correspondence using the constant space belief propagation algorithm. :
|
|
|
|
The class implements algorithm described in @cite Yang2010 . StereoConstantSpaceBP supports both local
|
|
minimum and global minimum data cost initialization algorithms. For more details, see the paper
|
|
mentioned above. By default, a local algorithm is used. To enable a global algorithm, set
|
|
use_local_init_data_cost to false .
|
|
|
|
StereoConstantSpaceBP uses a truncated linear model for the data cost and discontinuity terms:
|
|
|
|
\f[DataCost = data \_ weight \cdot \min ( \lvert I_2-I_1 \rvert , max \_ data \_ term)\f]
|
|
|
|
\f[DiscTerm = \min (disc \_ single \_ jump \cdot \lvert f_1-f_2 \rvert , max \_ disc \_ term)\f]
|
|
|
|
For more details, see @cite Yang2010 .
|
|
|
|
By default, StereoConstantSpaceBP uses floating-point arithmetics and the CV_32FC1 type for
|
|
messages. But it can also use fixed-point arithmetics and the CV_16SC1 message type for better
|
|
performance. To avoid an overflow in this case, the parameters must satisfy the following
|
|
requirement:
|
|
|
|
\f[10 \cdot 2^{levels-1} \cdot max \_ data \_ term < SHRT \_ MAX\f]
|
|
|
|
*/
|
|
class CV_EXPORTS StereoConstantSpaceBP : public cuda::StereoBeliefPropagation
|
|
{
|
|
public:
|
|
//! number of active disparity on the first level
|
|
virtual int getNrPlane() const = 0;
|
|
virtual void setNrPlane(int nr_plane) = 0;
|
|
|
|
virtual bool getUseLocalInitDataCost() const = 0;
|
|
virtual void setUseLocalInitDataCost(bool use_local_init_data_cost) = 0;
|
|
|
|
/** @brief Uses a heuristic method to compute parameters (ndisp, iters, levelsand nrplane) for the specified
|
|
image size (widthand height).
|
|
*/
|
|
static void estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels, int& nr_plane);
|
|
};
|
|
|
|
/** @brief Creates StereoConstantSpaceBP object.
|
|
|
|
@param ndisp Number of disparities.
|
|
@param iters Number of BP iterations on each level.
|
|
@param levels Number of levels.
|
|
@param nr_plane Number of disparity levels on the first level.
|
|
@param msg_type Type for messages. CV_16SC1 and CV_32FC1 types are supported.
|
|
*/
|
|
CV_EXPORTS Ptr<cuda::StereoConstantSpaceBP>
|
|
createStereoConstantSpaceBP(int ndisp = 128, int iters = 8, int levels = 4, int nr_plane = 4, int msg_type = CV_32F);
|
|
|
|
/////////////////////////////////////////
|
|
// DisparityBilateralFilter
|
|
|
|
/** @brief Class refining a disparity map using joint bilateral filtering. :
|
|
|
|
The class implements @cite Yang2010 algorithm.
|
|
*/
|
|
class CV_EXPORTS DisparityBilateralFilter : public cv::Algorithm
|
|
{
|
|
public:
|
|
/** @brief Refines a disparity map using joint bilateral filtering.
|
|
|
|
@param disparity Input disparity map. CV_8UC1 and CV_16SC1 types are supported.
|
|
@param image Input image. CV_8UC1 and CV_8UC3 types are supported.
|
|
@param dst Destination disparity map. It has the same size and type as disparity .
|
|
@param stream Stream for the asynchronous version.
|
|
*/
|
|
virtual void apply(InputArray disparity, InputArray image, OutputArray dst, Stream& stream = Stream::Null()) = 0;
|
|
|
|
virtual int getNumDisparities() const = 0;
|
|
virtual void setNumDisparities(int numDisparities) = 0;
|
|
|
|
virtual int getRadius() const = 0;
|
|
virtual void setRadius(int radius) = 0;
|
|
|
|
virtual int getNumIters() const = 0;
|
|
virtual void setNumIters(int iters) = 0;
|
|
|
|
//! truncation of data continuity
|
|
virtual double getEdgeThreshold() const = 0;
|
|
virtual void setEdgeThreshold(double edge_threshold) = 0;
|
|
|
|
//! truncation of disparity continuity
|
|
virtual double getMaxDiscThreshold() const = 0;
|
|
virtual void setMaxDiscThreshold(double max_disc_threshold) = 0;
|
|
|
|
//! filter range sigma
|
|
virtual double getSigmaRange() const = 0;
|
|
virtual void setSigmaRange(double sigma_range) = 0;
|
|
};
|
|
|
|
/** @brief Creates DisparityBilateralFilter object.
|
|
|
|
@param ndisp Number of disparities.
|
|
@param radius Filter radius.
|
|
@param iters Number of iterations.
|
|
*/
|
|
CV_EXPORTS Ptr<cuda::DisparityBilateralFilter>
|
|
createDisparityBilateralFilter(int ndisp = 64, int radius = 3, int iters = 1);
|
|
|
|
/////////////////////////////////////////
|
|
// Utility
|
|
|
|
/** @brief Reprojects a disparity image to 3D space.
|
|
|
|
@param disp Input disparity image. CV_8U and CV_16S types are supported.
|
|
@param xyzw Output 3- or 4-channel floating-point image of the same size as disp . Each element of
|
|
xyzw(x,y) contains 3D coordinates (x,y,z) or (x,y,z,1) of the point (x,y) , computed from the
|
|
disparity map.
|
|
@param Q \f$4 \times 4\f$ perspective transformation matrix that can be obtained via stereoRectify .
|
|
@param dst_cn The number of channels for output image. Can be 3 or 4.
|
|
@param stream Stream for the asynchronous version.
|
|
|
|
@sa reprojectImageTo3D
|
|
*/
|
|
CV_EXPORTS void reprojectImageTo3D(InputArray disp, OutputArray xyzw, InputArray Q, int dst_cn = 4, Stream& stream = Stream::Null());
|
|
|
|
/** @brief Colors a disparity image.
|
|
|
|
@param src_disp Source disparity image. CV_8UC1 and CV_16SC1 types are supported.
|
|
@param dst_disp Output disparity image. It has the same size as src_disp . The type is CV_8UC4
|
|
in BGRA format (alpha = 255).
|
|
@param ndisp Number of disparities.
|
|
@param stream Stream for the asynchronous version.
|
|
|
|
This function draws a colored disparity map by converting disparity values from [0..ndisp) interval
|
|
first to HSV color space (where different disparity values correspond to different hues) and then
|
|
converting the pixels to RGB for visualization.
|
|
*/
|
|
CV_EXPORTS void drawColorDisp(InputArray src_disp, OutputArray dst_disp, int ndisp, Stream& stream = Stream::Null());
|
|
|
|
//! @}
|
|
|
|
}} // namespace cv { namespace cuda {
|
|
|
|
#endif /* __OPENCV_CUDASTEREO_HPP__ */
|