mirror of
https://github.com/opencv/opencv.git
synced 2025-01-07 02:58:01 +08:00
286 lines
14 KiB
Common Lisp
286 lines
14 KiB
Common Lisp
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
|
|
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// @Authors
|
|
// Wu Xinglong, wxl370@126.com
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other oclMaterials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors as is and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
// Enter your kernel in this window
|
|
//#pragma OPENCL EXTENSION cl_amd_printf:enable
|
|
#define CV_HAAR_FEATURE_MAX 3
|
|
typedef int sumtype;
|
|
typedef float sqsumtype;
|
|
typedef struct __attribute__((aligned(128))) GpuHidHaarFeature
|
|
{
|
|
struct __attribute__((aligned(32)))
|
|
{
|
|
int p0 __attribute__((aligned(4)));
|
|
int p1 __attribute__((aligned(4)));
|
|
int p2 __attribute__((aligned(4)));
|
|
int p3 __attribute__((aligned(4)));
|
|
float weight __attribute__((aligned(4)));
|
|
}
|
|
rect[CV_HAAR_FEATURE_MAX] __attribute__((aligned(32)));
|
|
}
|
|
GpuHidHaarFeature;
|
|
typedef struct __attribute__((aligned(128))) GpuHidHaarTreeNode
|
|
{
|
|
int p[CV_HAAR_FEATURE_MAX][4] __attribute__((aligned(64)));
|
|
float weight[CV_HAAR_FEATURE_MAX] /*__attribute__((aligned (16)))*/;
|
|
float threshold /*__attribute__((aligned (4)))*/;
|
|
float alpha[2] __attribute__((aligned(8)));
|
|
int left __attribute__((aligned(4)));
|
|
int right __attribute__((aligned(4)));
|
|
}
|
|
GpuHidHaarTreeNode;
|
|
typedef struct __attribute__((aligned(32))) GpuHidHaarClassifier
|
|
{
|
|
int count __attribute__((aligned(4)));
|
|
GpuHidHaarTreeNode *node __attribute__((aligned(8)));
|
|
float *alpha __attribute__((aligned(8)));
|
|
}
|
|
GpuHidHaarClassifier;
|
|
typedef struct __attribute__((aligned(64))) GpuHidHaarStageClassifier
|
|
{
|
|
int count __attribute__((aligned(4)));
|
|
float threshold __attribute__((aligned(4)));
|
|
int two_rects __attribute__((aligned(4)));
|
|
int reserved0 __attribute__((aligned(8)));
|
|
int reserved1 __attribute__((aligned(8)));
|
|
int reserved2 __attribute__((aligned(8)));
|
|
int reserved3 __attribute__((aligned(8)));
|
|
}
|
|
GpuHidHaarStageClassifier;
|
|
typedef struct __attribute__((aligned(64))) GpuHidHaarClassifierCascade
|
|
{
|
|
int count __attribute__((aligned(4)));
|
|
int is_stump_based __attribute__((aligned(4)));
|
|
int has_tilted_features __attribute__((aligned(4)));
|
|
int is_tree __attribute__((aligned(4)));
|
|
int pq0 __attribute__((aligned(4)));
|
|
int pq1 __attribute__((aligned(4)));
|
|
int pq2 __attribute__((aligned(4)));
|
|
int pq3 __attribute__((aligned(4)));
|
|
int p0 __attribute__((aligned(4)));
|
|
int p1 __attribute__((aligned(4)));
|
|
int p2 __attribute__((aligned(4)));
|
|
int p3 __attribute__((aligned(4)));
|
|
float inv_window_area __attribute__((aligned(4)));
|
|
} GpuHidHaarClassifierCascade;
|
|
|
|
__kernel void gpuRunHaarClassifierCascade_scaled2(
|
|
global GpuHidHaarStageClassifier *stagecascadeptr,
|
|
global int4 *info,
|
|
global GpuHidHaarTreeNode *nodeptr,
|
|
global const int *restrict sum,
|
|
global const float *restrict sqsum,
|
|
global int4 *candidate,
|
|
const int step,
|
|
const int loopcount,
|
|
const int start_stage,
|
|
const int split_stage,
|
|
const int end_stage,
|
|
const int startnode,
|
|
const int splitnode,
|
|
global int4 *p,
|
|
//const int4 * pq,
|
|
global float *correction,
|
|
const int nodecount)
|
|
{
|
|
int grpszx = get_local_size(0);
|
|
int grpszy = get_local_size(1);
|
|
int grpnumx = get_num_groups(0);
|
|
int grpidx = get_group_id(0);
|
|
int lclidx = get_local_id(0);
|
|
int lclidy = get_local_id(1);
|
|
int lcl_sz = mul24(grpszx, grpszy);
|
|
int lcl_id = mad24(lclidy, grpszx, lclidx);
|
|
__local int lclshare[1024];
|
|
__local int *glboutindex = lclshare + 0;
|
|
__local int *lclcount = glboutindex + 1;
|
|
__local int *lcloutindex = lclcount + 1;
|
|
__local float *partialsum = (__local float *)(lcloutindex + (lcl_sz << 1));
|
|
glboutindex[0] = 0;
|
|
int outputoff = mul24(grpidx, 256);
|
|
candidate[outputoff + (lcl_id << 2)] = (int4)0;
|
|
candidate[outputoff + (lcl_id << 2) + 1] = (int4)0;
|
|
candidate[outputoff + (lcl_id << 2) + 2] = (int4)0;
|
|
candidate[outputoff + (lcl_id << 2) + 3] = (int4)0;
|
|
|
|
for (int scalei = 0; scalei < loopcount; scalei++)
|
|
{
|
|
int4 scaleinfo1;
|
|
scaleinfo1 = info[scalei];
|
|
int width = (scaleinfo1.x & 0xffff0000) >> 16;
|
|
int height = scaleinfo1.x & 0xffff;
|
|
int grpnumperline = (scaleinfo1.y & 0xffff0000) >> 16;
|
|
int totalgrp = scaleinfo1.y & 0xffff;
|
|
float factor = as_float(scaleinfo1.w);
|
|
float correction_t = correction[scalei];
|
|
int ystep = (int)(max(2.0f, factor) + 0.5f);
|
|
|
|
for (int grploop = get_group_id(0); grploop < totalgrp; grploop += grpnumx)
|
|
{
|
|
int4 cascadeinfo = p[scalei];
|
|
int grpidy = grploop / grpnumperline;
|
|
int grpidx = grploop - mul24(grpidy, grpnumperline);
|
|
int ix = mad24(grpidx, grpszx, lclidx);
|
|
int iy = mad24(grpidy, grpszy, lclidy);
|
|
int x = ix * ystep;
|
|
int y = iy * ystep;
|
|
lcloutindex[lcl_id] = 0;
|
|
lclcount[0] = 0;
|
|
int result = 1, nodecounter;
|
|
float mean, variance_norm_factor;
|
|
//if((ix < width) && (iy < height))
|
|
{
|
|
const int p_offset = mad24(y, step, x);
|
|
cascadeinfo.x += p_offset;
|
|
cascadeinfo.z += p_offset;
|
|
mean = (sum[mad24(cascadeinfo.y, step, cascadeinfo.x)] - sum[mad24(cascadeinfo.y, step, cascadeinfo.z)] -
|
|
sum[mad24(cascadeinfo.w, step, cascadeinfo.x)] + sum[mad24(cascadeinfo.w, step, cascadeinfo.z)])
|
|
* correction_t;
|
|
variance_norm_factor = sqsum[mad24(cascadeinfo.y, step, cascadeinfo.x)] - sqsum[mad24(cascadeinfo.y, step, cascadeinfo.z)] -
|
|
sqsum[mad24(cascadeinfo.w, step, cascadeinfo.x)] + sqsum[mad24(cascadeinfo.w, step, cascadeinfo.z)];
|
|
variance_norm_factor = variance_norm_factor * correction_t - mean * mean;
|
|
variance_norm_factor = variance_norm_factor >= 0.f ? sqrt(variance_norm_factor) : 1.f;
|
|
result = 1;
|
|
nodecounter = startnode + nodecount * scalei;
|
|
|
|
for (int stageloop = start_stage; stageloop < end_stage && result; stageloop++)
|
|
{
|
|
float stage_sum = 0.f;
|
|
int4 stageinfo = *(global int4 *)(stagecascadeptr + stageloop);
|
|
float stagethreshold = as_float(stageinfo.y);
|
|
|
|
for (int nodeloop = 0; nodeloop < stageinfo.x; nodeloop++)
|
|
{
|
|
__global GpuHidHaarTreeNode *currentnodeptr = (nodeptr + nodecounter);
|
|
int4 info1 = *(__global int4 *)(&(currentnodeptr->p[0][0]));
|
|
int4 info2 = *(__global int4 *)(&(currentnodeptr->p[1][0]));
|
|
int4 info3 = *(__global int4 *)(&(currentnodeptr->p[2][0]));
|
|
float4 w = *(__global float4 *)(&(currentnodeptr->weight[0]));
|
|
float2 alpha2 = *(__global float2 *)(&(currentnodeptr->alpha[0]));
|
|
float nodethreshold = w.w * variance_norm_factor;
|
|
info1.x += p_offset;
|
|
info1.z += p_offset;
|
|
info2.x += p_offset;
|
|
info2.z += p_offset;
|
|
float classsum = (sum[mad24(info1.y, step, info1.x)] - sum[mad24(info1.y, step, info1.z)] -
|
|
sum[mad24(info1.w, step, info1.x)] + sum[mad24(info1.w, step, info1.z)]) * w.x;
|
|
classsum += (sum[mad24(info2.y, step, info2.x)] - sum[mad24(info2.y, step, info2.z)] -
|
|
sum[mad24(info2.w, step, info2.x)] + sum[mad24(info2.w, step, info2.z)]) * w.y;
|
|
info3.x += p_offset;
|
|
info3.z += p_offset;
|
|
classsum += (sum[mad24(info3.y, step, info3.x)] - sum[mad24(info3.y, step, info3.z)] -
|
|
sum[mad24(info3.w, step, info3.x)] + sum[mad24(info3.w, step, info3.z)]) * w.z;
|
|
stage_sum += classsum >= nodethreshold ? alpha2.y : alpha2.x;
|
|
nodecounter++;
|
|
}
|
|
|
|
result = (stage_sum >= stagethreshold);
|
|
}
|
|
|
|
if (result && (ix < width) && (iy < height))
|
|
{
|
|
int queueindex = atomic_inc(lclcount);
|
|
lcloutindex[queueindex << 1] = (y << 16) | x;
|
|
lcloutindex[(queueindex << 1) + 1] = as_int(variance_norm_factor);
|
|
}
|
|
|
|
barrier(CLK_LOCAL_MEM_FENCE);
|
|
int queuecount = lclcount[0];
|
|
nodecounter = splitnode + nodecount * scalei;
|
|
|
|
if (lcl_id < queuecount)
|
|
{
|
|
int temp = lcloutindex[lcl_id << 1];
|
|
int x = temp & 0xffff;
|
|
int y = (temp & (int)0xffff0000) >> 16;
|
|
temp = glboutindex[0];
|
|
int4 candidate_result;
|
|
candidate_result.zw = (int2)convert_int_rtn(factor * 20.f);
|
|
candidate_result.x = x;
|
|
candidate_result.y = y;
|
|
atomic_inc(glboutindex);
|
|
candidate[outputoff + temp + lcl_id] = candidate_result;
|
|
}
|
|
|
|
barrier(CLK_LOCAL_MEM_FENCE);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
__kernel void gpuscaleclassifier(global GpuHidHaarTreeNode *orinode, global GpuHidHaarTreeNode *newnode, float scale, float weight_scale, int nodenum)
|
|
{
|
|
int counter = get_global_id(0);
|
|
int tr_x[3], tr_y[3], tr_h[3], tr_w[3], i = 0;
|
|
GpuHidHaarTreeNode t1 = *(orinode + counter);
|
|
#pragma unroll
|
|
|
|
for (i = 0; i < 3; i++)
|
|
{
|
|
tr_x[i] = (int)(t1.p[i][0] * scale + 0.5f);
|
|
tr_y[i] = (int)(t1.p[i][1] * scale + 0.5f);
|
|
tr_w[i] = (int)(t1.p[i][2] * scale + 0.5f);
|
|
tr_h[i] = (int)(t1.p[i][3] * scale + 0.5f);
|
|
}
|
|
|
|
t1.weight[0] = t1.p[2][0] ? -(t1.weight[1] * tr_h[1] * tr_w[1] + t1.weight[2] * tr_h[2] * tr_w[2]) / (tr_h[0] * tr_w[0]) : -t1.weight[1] * tr_h[1] * tr_w[1] / (tr_h[0] * tr_w[0]);
|
|
counter += nodenum;
|
|
#pragma unroll
|
|
|
|
for (i = 0; i < 3; i++)
|
|
{
|
|
newnode[counter].p[i][0] = tr_x[i];
|
|
newnode[counter].p[i][1] = tr_y[i];
|
|
newnode[counter].p[i][2] = tr_x[i] + tr_w[i];
|
|
newnode[counter].p[i][3] = tr_y[i] + tr_h[i];
|
|
newnode[counter].weight[i] = t1.weight[i] * weight_scale;
|
|
}
|
|
|
|
newnode[counter].left = t1.left;
|
|
newnode[counter].right = t1.right;
|
|
newnode[counter].threshold = t1.threshold;
|
|
newnode[counter].alpha[0] = t1.alpha[0];
|
|
newnode[counter].alpha[1] = t1.alpha[1];
|
|
}
|