mirror of
https://github.com/opencv/opencv.git
synced 2025-01-05 09:30:14 +08:00
392 lines
18 KiB
C++
392 lines
18 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
|
|
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// @Authors
|
|
// Jia Haipeng, jiahaipeng95@gmail.com
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other oclMaterials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
#include <vector>
|
|
|
|
using namespace cv;
|
|
using namespace cv::ocl;
|
|
using namespace std;
|
|
|
|
|
|
using std::cout;
|
|
using std::endl;
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
///////////////// oclMat merge and split ///////////////////////////////
|
|
////////////////////////////////////////////////////////////////////////
|
|
|
|
namespace cv
|
|
{
|
|
namespace ocl
|
|
{
|
|
///////////////////////////OpenCL kernel strings///////////////////////////
|
|
extern const char *merge_mat;
|
|
extern const char *split_mat;
|
|
}
|
|
}
|
|
namespace cv
|
|
{
|
|
namespace ocl
|
|
{
|
|
namespace split_merge
|
|
{
|
|
///////////////////////////////////////////////////////////
|
|
///////////////common/////////////////////////////////////
|
|
/////////////////////////////////////////////////////////
|
|
inline int divUp(int total, int grain)
|
|
{
|
|
return (total + grain - 1) / grain;
|
|
}
|
|
////////////////////////////////////////////////////////////////////////////
|
|
////////////////////merge//////////////////////////////////////////////////
|
|
////////////////////////////////////////////////////////////////////////////
|
|
// static void merge_vector_run_no_roi(const oclMat *mat_src, size_t n, oclMat &mat_dst)
|
|
// {
|
|
// Context *clCxt = mat_dst.clCxt;
|
|
// int channels = mat_dst.oclchannels();
|
|
// int depth = mat_dst.depth();
|
|
|
|
// string kernelName = "merge_vector";
|
|
|
|
// int indexes[4][7] = {{0, 0, 0, 0, 0, 0, 0},
|
|
// {4, 4, 2, 2, 1, 1, 1},
|
|
// {4, 4, 2, 2 , 1, 1, 1},
|
|
// {4, 4, 2, 2, 1, 1, 1}
|
|
// };
|
|
|
|
// size_t index = indexes[channels - 1][mat_dst.depth()];
|
|
// int cols = divUp(mat_dst.cols, index);
|
|
// size_t localThreads[3] = { 64, 4, 1 };
|
|
// size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0],
|
|
// divUp(mat_dst.rows, localThreads[1]) *localThreads[1],
|
|
// 1
|
|
// };
|
|
|
|
// vector<pair<size_t , const void *> > args;
|
|
// args.push_back( make_pair( sizeof(cl_int), (void *)&mat_dst.rows));
|
|
// args.push_back( make_pair( sizeof(cl_int), (void *)&cols));
|
|
// args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_dst.data));
|
|
// args.push_back( make_pair( sizeof(cl_int), (void *)&mat_dst.step));
|
|
// args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_src[0].data));
|
|
// args.push_back( make_pair( sizeof(cl_int), (void *)&mat_src[0].step));
|
|
// args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_src[1].data));
|
|
// args.push_back( make_pair( sizeof(cl_int), (void *)&mat_src[1].step));
|
|
// if(n >= 3)
|
|
// {
|
|
// args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_src[2].data));
|
|
// args.push_back( make_pair( sizeof(cl_int), (void *)&mat_src[2].step));
|
|
// }
|
|
// if(n >= 4)
|
|
// {
|
|
// args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_src[3].data));
|
|
// args.push_back( make_pair( sizeof(cl_int), (void *)&mat_src[3].step));
|
|
// }
|
|
|
|
// openCLExecuteKernel(clCxt, &merge_mat, kernelName, globalThreads, localThreads, args, channels, depth);
|
|
// }
|
|
|
|
static void merge_vector_run(const oclMat *mat_src, size_t n, oclMat &mat_dst)
|
|
{
|
|
if(!mat_dst.clCxt->supportsFeature(Context::CL_DOUBLE) && mat_dst.type() == CV_64F)
|
|
{
|
|
CV_Error(CV_GpuNotSupported, "Selected device don't support double\r\n");
|
|
return;
|
|
}
|
|
|
|
Context *clCxt = mat_dst.clCxt;
|
|
int channels = mat_dst.oclchannels();
|
|
int depth = mat_dst.depth();
|
|
|
|
string kernelName = "merge_vector";
|
|
|
|
int vector_lengths[4][7] = {{0, 0, 0, 0, 0, 0, 0},
|
|
{2, 2, 1, 1, 1, 1, 1},
|
|
{4, 4, 2, 2 , 1, 1, 1},
|
|
{1, 1, 1, 1, 1, 1, 1}
|
|
};
|
|
|
|
size_t vector_length = vector_lengths[channels - 1][depth];
|
|
int offset_cols = (mat_dst.offset / mat_dst.elemSize()) & (vector_length - 1);
|
|
int cols = divUp(mat_dst.cols + offset_cols, vector_length);
|
|
|
|
size_t localThreads[3] = { 64, 4, 1 };
|
|
size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0],
|
|
divUp(mat_dst.rows, localThreads[1]) *localThreads[1],
|
|
1
|
|
};
|
|
|
|
int dst_step1 = mat_dst.cols * mat_dst.elemSize();
|
|
vector<pair<size_t , const void *> > args;
|
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_dst.data));
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_dst.step));
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_dst.offset));
|
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_src[0].data));
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_src[0].step));
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_src[0].offset));
|
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_src[1].data));
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_src[1].step));
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_src[1].offset));
|
|
|
|
if(channels == 4)
|
|
{
|
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_src[2].data));
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_src[2].step));
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_src[2].offset));
|
|
|
|
// if channel == 3, then the matrix will convert to channel =4
|
|
//if(n == 3)
|
|
// args.push_back( make_pair( sizeof(cl_int), (void *)&offset_cols));
|
|
|
|
if(n == 3)
|
|
{
|
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_src[2].data));
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_src[2].step));
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_src[2].offset));
|
|
}
|
|
else if( n == 4)
|
|
{
|
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_src[3].data));
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_src[3].step));
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_src[3].offset));
|
|
}
|
|
}
|
|
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_dst.rows));
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&cols));
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst_step1));
|
|
|
|
openCLExecuteKernel(clCxt, &merge_mat, kernelName, globalThreads, localThreads, args, channels, depth);
|
|
}
|
|
static void merge(const oclMat *mat_src, size_t n, oclMat &mat_dst)
|
|
{
|
|
CV_Assert(mat_src);
|
|
CV_Assert(n > 0);
|
|
|
|
int depth = mat_src[0].depth();
|
|
Size size = mat_src[0].size();
|
|
|
|
int total_channels = 0;
|
|
|
|
for(size_t i = 0; i < n; ++i)
|
|
{
|
|
CV_Assert(depth == mat_src[i].depth());
|
|
CV_Assert(size == mat_src[i].size());
|
|
|
|
total_channels += mat_src[i].oclchannels();
|
|
}
|
|
|
|
CV_Assert(total_channels <= 4);
|
|
|
|
if(total_channels == 1)
|
|
{
|
|
mat_src[0].copyTo(mat_dst);
|
|
return;
|
|
}
|
|
|
|
mat_dst.create(size, CV_MAKETYPE(depth, total_channels));
|
|
merge_vector_run(mat_src, n, mat_dst);
|
|
}
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
//////////////////////////////////////split/////////////////////////////////////////////////////////////
|
|
//////////////////////////////////////////////////////////////////////////////////////////////////
|
|
// static void split_vector_run_no_roi(const oclMat &mat_src, oclMat *mat_dst)
|
|
// {
|
|
// Context *clCxt = mat_src.clCxt;
|
|
// int channels = mat_src.oclchannels();
|
|
// int depth = mat_src.depth();
|
|
|
|
// string kernelName = "split_vector";
|
|
|
|
// int indexes[4][7] = {{0, 0, 0, 0, 0, 0, 0},
|
|
// {8, 8, 8, 8, 4, 4, 2},
|
|
// {8, 8, 8, 8 , 4, 4, 4},
|
|
// {4, 4, 2, 2, 1, 1, 1}
|
|
// };
|
|
|
|
// size_t index = indexes[channels - 1][mat_dst[0].depth()];
|
|
// int cols = divUp(mat_src.cols, index);
|
|
// size_t localThreads[3] = { 64, 4, 1 };
|
|
// size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0],
|
|
// divUp(mat_src.rows, localThreads[1]) *localThreads[1],
|
|
// 1
|
|
// };
|
|
|
|
// vector<pair<size_t , const void *> > args;
|
|
// args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_src.data));
|
|
// args.push_back( make_pair( sizeof(cl_int), (void *)&mat_src.step));
|
|
// args.push_back( make_pair( sizeof(cl_int), (void *)&mat_src.rows));
|
|
// args.push_back( make_pair( sizeof(cl_int), (void *)&cols));
|
|
// args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_dst[0].data));
|
|
// args.push_back( make_pair( sizeof(cl_int), (void *)&mat_dst[0].step));
|
|
// args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_dst[1].data));
|
|
// args.push_back( make_pair( sizeof(cl_int), (void *)&mat_dst[1].step));
|
|
// if(channels >= 3)
|
|
// {
|
|
// args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_dst[2].data));
|
|
// args.push_back( make_pair( sizeof(cl_int), (void *)&mat_dst[2].step));
|
|
// }
|
|
// if(channels >= 4)
|
|
// {
|
|
// args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_dst[3].data));
|
|
// args.push_back( make_pair( sizeof(cl_int), (void *)&mat_dst[3].step));
|
|
// }
|
|
|
|
// openCLExecuteKernel(clCxt, &split_mat, kernelName, globalThreads, localThreads, args, channels, depth);
|
|
// }
|
|
static void split_vector_run(const oclMat &mat_src, oclMat *mat_dst)
|
|
{
|
|
|
|
if(!mat_src.clCxt->supportsFeature(Context::CL_DOUBLE) && mat_src.type() == CV_64F)
|
|
{
|
|
CV_Error(CV_GpuNotSupported, "Selected device don't support double\r\n");
|
|
return;
|
|
}
|
|
|
|
Context *clCxt = mat_src.clCxt;
|
|
int channels = mat_src.oclchannels();
|
|
int depth = mat_src.depth();
|
|
|
|
string kernelName = "split_vector";
|
|
|
|
int vector_lengths[4][7] = {{0, 0, 0, 0, 0, 0, 0},
|
|
{4, 4, 2, 2, 1, 1, 1},
|
|
{4, 4, 2, 2 , 1, 1, 1},
|
|
{4, 4, 2, 2, 1, 1, 1}
|
|
};
|
|
|
|
size_t vector_length = vector_lengths[channels - 1][mat_dst[0].depth()];
|
|
|
|
int max_offset_cols = 0;
|
|
for(int i = 0; i < channels; i++)
|
|
{
|
|
int offset_cols = (mat_dst[i].offset / mat_dst[i].elemSize()) & (vector_length - 1);
|
|
if(max_offset_cols < offset_cols)
|
|
max_offset_cols = offset_cols;
|
|
}
|
|
|
|
int cols = vector_length == 1 ? divUp(mat_src.cols, vector_length)
|
|
: divUp(mat_src.cols + max_offset_cols, vector_length);
|
|
|
|
size_t localThreads[3] = { 64, 4, 1 };
|
|
size_t globalThreads[3] = { divUp(cols, localThreads[0]) *localThreads[0],
|
|
divUp(mat_src.rows, localThreads[1]) *localThreads[1], 1
|
|
};
|
|
|
|
int dst_step1 = mat_dst[0].cols * mat_dst[0].elemSize();
|
|
vector<pair<size_t , const void *> > args;
|
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_src.data));
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_src.step));
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_src.offset));
|
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_dst[0].data));
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_dst[0].step));
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_dst[0].offset));
|
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_dst[1].data));
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_dst[1].step));
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_dst[1].offset));
|
|
if(channels >= 3)
|
|
{
|
|
|
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_dst[2].data));
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_dst[2].step));
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_dst[2].offset));
|
|
}
|
|
if(channels >= 4)
|
|
{
|
|
args.push_back( make_pair( sizeof(cl_mem), (void *)&mat_dst[3].data));
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_dst[3].step));
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_dst[3].offset));
|
|
}
|
|
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&mat_src.rows));
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&cols));
|
|
args.push_back( make_pair( sizeof(cl_int), (void *)&dst_step1));
|
|
|
|
openCLExecuteKernel(clCxt, &split_mat, kernelName, globalThreads, localThreads, args, channels, depth);
|
|
}
|
|
static void split(const oclMat &mat_src, oclMat *mat_dst)
|
|
{
|
|
CV_Assert(mat_dst);
|
|
|
|
int depth = mat_src.depth();
|
|
int num_channels = mat_src.oclchannels();
|
|
Size size = mat_src.size();
|
|
|
|
if(num_channels == 1)
|
|
{
|
|
mat_src.copyTo(mat_dst[0]);
|
|
return;
|
|
}
|
|
|
|
int i;
|
|
for(i = 0; i < num_channels; i++)
|
|
mat_dst[i].create(size, CV_MAKETYPE(depth, 1));
|
|
|
|
split_vector_run(mat_src, mat_dst);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void cv::ocl::merge(const oclMat *src, size_t n, oclMat &dst)
|
|
{
|
|
split_merge::merge(src, n, dst);
|
|
}
|
|
void cv::ocl::merge(const vector<oclMat> &src, oclMat &dst)
|
|
{
|
|
split_merge::merge(&src[0], src.size(), dst);
|
|
}
|
|
|
|
void cv::ocl::split(const oclMat &src, oclMat *dst)
|
|
{
|
|
split_merge::split(src, dst);
|
|
}
|
|
void cv::ocl::split(const oclMat &src, vector<oclMat> &dst)
|
|
{
|
|
dst.resize(src.oclchannels());
|
|
if(src.oclchannels() > 0)
|
|
split_merge::split(src, &dst[0]);
|
|
}
|