opencv/modules/objdetect/include/opencv2/objdetect.hpp
2013-04-04 00:51:52 -07:00

1048 lines
36 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_OBJDETECT_HPP__
#define __OPENCV_OBJDETECT_HPP__
#ifdef __cplusplus
# include "opencv2/core.hpp"
#endif
#include "opencv2/core/core_c.h"
#ifdef __cplusplus
#include <map>
#include <deque>
extern "C" {
#endif
/****************************************************************************************\
* Haar-like Object Detection functions *
\****************************************************************************************/
#define CV_HAAR_MAGIC_VAL 0x42500000
#define CV_TYPE_NAME_HAAR "opencv-haar-classifier"
#define CV_IS_HAAR_CLASSIFIER( haar ) \
((haar) != NULL && \
(((const CvHaarClassifierCascade*)(haar))->flags & CV_MAGIC_MASK)==CV_HAAR_MAGIC_VAL)
#define CV_HAAR_FEATURE_MAX 3
typedef struct CvHaarFeature
{
int tilted;
struct
{
CvRect r;
float weight;
} rect[CV_HAAR_FEATURE_MAX];
} CvHaarFeature;
typedef struct CvHaarClassifier
{
int count;
CvHaarFeature* haar_feature;
float* threshold;
int* left;
int* right;
float* alpha;
} CvHaarClassifier;
typedef struct CvHaarStageClassifier
{
int count;
float threshold;
CvHaarClassifier* classifier;
int next;
int child;
int parent;
} CvHaarStageClassifier;
typedef struct CvHidHaarClassifierCascade CvHidHaarClassifierCascade;
typedef struct CvHaarClassifierCascade
{
int flags;
int count;
CvSize orig_window_size;
CvSize real_window_size;
double scale;
CvHaarStageClassifier* stage_classifier;
CvHidHaarClassifierCascade* hid_cascade;
} CvHaarClassifierCascade;
typedef struct CvAvgComp
{
CvRect rect;
int neighbors;
} CvAvgComp;
/* Loads haar classifier cascade from a directory.
It is obsolete: convert your cascade to xml and use cvLoad instead */
CVAPI(CvHaarClassifierCascade*) cvLoadHaarClassifierCascade(
const char* directory, CvSize orig_window_size);
CVAPI(void) cvReleaseHaarClassifierCascade( CvHaarClassifierCascade** cascade );
#define CV_HAAR_DO_CANNY_PRUNING 1
#define CV_HAAR_SCALE_IMAGE 2
#define CV_HAAR_FIND_BIGGEST_OBJECT 4
#define CV_HAAR_DO_ROUGH_SEARCH 8
//CVAPI(CvSeq*) cvHaarDetectObjectsForROC( const CvArr* image,
// CvHaarClassifierCascade* cascade, CvMemStorage* storage,
// CvSeq** rejectLevels, CvSeq** levelWeightds,
// double scale_factor CV_DEFAULT(1.1),
// int min_neighbors CV_DEFAULT(3), int flags CV_DEFAULT(0),
// CvSize min_size CV_DEFAULT(cvSize(0,0)), CvSize max_size CV_DEFAULT(cvSize(0,0)),
// bool outputRejectLevels = false );
CVAPI(CvSeq*) cvHaarDetectObjects( const CvArr* image,
CvHaarClassifierCascade* cascade, CvMemStorage* storage,
double scale_factor CV_DEFAULT(1.1),
int min_neighbors CV_DEFAULT(3), int flags CV_DEFAULT(0),
CvSize min_size CV_DEFAULT(cvSize(0,0)), CvSize max_size CV_DEFAULT(cvSize(0,0)));
/* sets images for haar classifier cascade */
CVAPI(void) cvSetImagesForHaarClassifierCascade( CvHaarClassifierCascade* cascade,
const CvArr* sum, const CvArr* sqsum,
const CvArr* tilted_sum, double scale );
/* runs the cascade on the specified window */
CVAPI(int) cvRunHaarClassifierCascade( const CvHaarClassifierCascade* cascade,
CvPoint pt, int start_stage CV_DEFAULT(0));
/****************************************************************************************\
* Latent SVM Object Detection functions *
\****************************************************************************************/
// DataType: STRUCT position
// Structure describes the position of the filter in the feature pyramid
// l - level in the feature pyramid
// (x, y) - coordinate in level l
typedef struct CvLSVMFilterPosition
{
int x;
int y;
int l;
} CvLSVMFilterPosition;
// DataType: STRUCT filterObject
// Description of the filter, which corresponds to the part of the object
// V - ideal (penalty = 0) position of the partial filter
// from the root filter position (V_i in the paper)
// penaltyFunction - vector describes penalty function (d_i in the paper)
// pf[0] * x + pf[1] * y + pf[2] * x^2 + pf[3] * y^2
// FILTER DESCRIPTION
// Rectangular map (sizeX x sizeY),
// every cell stores feature vector (dimension = p)
// H - matrix of feature vectors
// to set and get feature vectors (i,j)
// used formula H[(j * sizeX + i) * p + k], where
// k - component of feature vector in cell (i, j)
// END OF FILTER DESCRIPTION
typedef struct CvLSVMFilterObject{
CvLSVMFilterPosition V;
float fineFunction[4];
int sizeX;
int sizeY;
int numFeatures;
float *H;
} CvLSVMFilterObject;
// data type: STRUCT CvLatentSvmDetector
// structure contains internal representation of trained Latent SVM detector
// num_filters - total number of filters (root plus part) in model
// num_components - number of components in model
// num_part_filters - array containing number of part filters for each component
// filters - root and part filters for all model components
// b - biases for all model components
// score_threshold - confidence level threshold
typedef struct CvLatentSvmDetector
{
int num_filters;
int num_components;
int* num_part_filters;
CvLSVMFilterObject** filters;
float* b;
float score_threshold;
}
CvLatentSvmDetector;
// data type: STRUCT CvObjectDetection
// structure contains the bounding box and confidence level for detected object
// rect - bounding box for a detected object
// score - confidence level
typedef struct CvObjectDetection
{
CvRect rect;
float score;
} CvObjectDetection;
//////////////// Object Detection using Latent SVM //////////////
/*
// load trained detector from a file
//
// API
// CvLatentSvmDetector* cvLoadLatentSvmDetector(const char* filename);
// INPUT
// filename - path to the file containing the parameters of
- trained Latent SVM detector
// OUTPUT
// trained Latent SVM detector in internal representation
*/
CVAPI(CvLatentSvmDetector*) cvLoadLatentSvmDetector(const char* filename);
/*
// release memory allocated for CvLatentSvmDetector structure
//
// API
// void cvReleaseLatentSvmDetector(CvLatentSvmDetector** detector);
// INPUT
// detector - CvLatentSvmDetector structure to be released
// OUTPUT
*/
CVAPI(void) cvReleaseLatentSvmDetector(CvLatentSvmDetector** detector);
/*
// find rectangular regions in the given image that are likely
// to contain objects and corresponding confidence levels
//
// API
// CvSeq* cvLatentSvmDetectObjects(const IplImage* image,
// CvLatentSvmDetector* detector,
// CvMemStorage* storage,
// float overlap_threshold = 0.5f,
// int numThreads = -1);
// INPUT
// image - image to detect objects in
// detector - Latent SVM detector in internal representation
// storage - memory storage to store the resultant sequence
// of the object candidate rectangles
// overlap_threshold - threshold for the non-maximum suppression algorithm
= 0.5f [here will be the reference to original paper]
// OUTPUT
// sequence of detected objects (bounding boxes and confidence levels stored in CvObjectDetection structures)
*/
CVAPI(CvSeq*) cvLatentSvmDetectObjects(IplImage* image,
CvLatentSvmDetector* detector,
CvMemStorage* storage,
float overlap_threshold CV_DEFAULT(0.5f),
int numThreads CV_DEFAULT(-1));
#ifdef __cplusplus
}
CV_EXPORTS CvSeq* cvHaarDetectObjectsForROC( const CvArr* image,
CvHaarClassifierCascade* cascade, CvMemStorage* storage,
std::vector<int>& rejectLevels, std::vector<double>& levelWeightds,
double scale_factor CV_DEFAULT(1.1),
int min_neighbors CV_DEFAULT(3), int flags CV_DEFAULT(0),
CvSize min_size CV_DEFAULT(cvSize(0,0)), CvSize max_size CV_DEFAULT(cvSize(0,0)),
bool outputRejectLevels = false );
namespace cv
{
///////////////////////////// Object Detection ////////////////////////////
/*
* This is a class wrapping up the structure CvLatentSvmDetector and functions working with it.
* The class goals are:
* 1) provide c++ interface;
* 2) make it possible to load and detect more than one class (model) unlike CvLatentSvmDetector.
*/
class CV_EXPORTS LatentSvmDetector
{
public:
struct CV_EXPORTS ObjectDetection
{
ObjectDetection();
ObjectDetection( const Rect& rect, float score, int classID=-1 );
Rect rect;
float score;
int classID;
};
LatentSvmDetector();
LatentSvmDetector( const std::vector<String>& filenames, const std::vector<String>& classNames=std::vector<String>() );
virtual ~LatentSvmDetector();
virtual void clear();
virtual bool empty() const;
bool load( const std::vector<String>& filenames, const std::vector<String>& classNames=std::vector<String>() );
virtual void detect( const Mat& image,
std::vector<ObjectDetection>& objectDetections,
float overlapThreshold=0.5f,
int numThreads=-1 );
const std::vector<String>& getClassNames() const;
size_t getClassCount() const;
private:
std::vector<CvLatentSvmDetector*> detectors;
std::vector<String> classNames;
};
CV_EXPORTS void groupRectangles(CV_OUT CV_IN_OUT std::vector<Rect>& rectList, int groupThreshold, double eps=0.2);
CV_EXPORTS_W void groupRectangles(CV_OUT CV_IN_OUT std::vector<Rect>& rectList, CV_OUT std::vector<int>& weights, int groupThreshold, double eps=0.2);
CV_EXPORTS void groupRectangles( std::vector<Rect>& rectList, int groupThreshold, double eps, std::vector<int>* weights, std::vector<double>* levelWeights );
CV_EXPORTS void groupRectangles(std::vector<Rect>& rectList, std::vector<int>& rejectLevels,
std::vector<double>& levelWeights, int groupThreshold, double eps=0.2);
CV_EXPORTS void groupRectangles_meanshift(std::vector<Rect>& rectList, std::vector<double>& foundWeights, std::vector<double>& foundScales,
double detectThreshold = 0.0, Size winDetSize = Size(64, 128));
class CV_EXPORTS FeatureEvaluator
{
public:
enum { HAAR = 0, LBP = 1, HOG = 2 };
virtual ~FeatureEvaluator();
virtual bool read(const FileNode& node);
virtual Ptr<FeatureEvaluator> clone() const;
virtual int getFeatureType() const;
virtual bool setImage(const Mat& img, Size origWinSize);
virtual bool setWindow(Point p);
virtual double calcOrd(int featureIdx) const;
virtual int calcCat(int featureIdx) const;
static Ptr<FeatureEvaluator> create(int type);
};
template<> CV_EXPORTS void Ptr<CvHaarClassifierCascade>::delete_obj();
enum
{
CASCADE_DO_CANNY_PRUNING=1,
CASCADE_SCALE_IMAGE=2,
CASCADE_FIND_BIGGEST_OBJECT=4,
CASCADE_DO_ROUGH_SEARCH=8
};
class CV_EXPORTS_W CascadeClassifier
{
public:
CV_WRAP CascadeClassifier();
CV_WRAP CascadeClassifier( const String& filename );
virtual ~CascadeClassifier();
CV_WRAP virtual bool empty() const;
CV_WRAP bool load( const String& filename );
virtual bool read( const FileNode& node );
CV_WRAP virtual void detectMultiScale( const Mat& image,
CV_OUT std::vector<Rect>& objects,
double scaleFactor=1.1,
int minNeighbors=3, int flags=0,
Size minSize=Size(),
Size maxSize=Size() );
CV_WRAP virtual void detectMultiScale( const Mat& image,
CV_OUT std::vector<Rect>& objects,
CV_OUT std::vector<int>& rejectLevels,
CV_OUT std::vector<double>& levelWeights,
double scaleFactor=1.1,
int minNeighbors=3, int flags=0,
Size minSize=Size(),
Size maxSize=Size(),
bool outputRejectLevels=false );
bool isOldFormatCascade() const;
virtual Size getOriginalWindowSize() const;
int getFeatureType() const;
bool setImage( const Mat& );
protected:
//virtual bool detectSingleScale( const Mat& image, int stripCount, Size processingRectSize,
// int stripSize, int yStep, double factor, std::vector<Rect>& candidates );
virtual bool detectSingleScale( const Mat& image, int stripCount, Size processingRectSize,
int stripSize, int yStep, double factor, std::vector<Rect>& candidates,
std::vector<int>& rejectLevels, std::vector<double>& levelWeights, bool outputRejectLevels=false);
protected:
enum { BOOST = 0 };
enum { DO_CANNY_PRUNING = 1, SCALE_IMAGE = 2,
FIND_BIGGEST_OBJECT = 4, DO_ROUGH_SEARCH = 8 };
friend class CascadeClassifierInvoker;
template<class FEval>
friend int predictOrdered( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &featureEvaluator, double& weight);
template<class FEval>
friend int predictCategorical( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &featureEvaluator, double& weight);
template<class FEval>
friend int predictOrderedStump( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &featureEvaluator, double& weight);
template<class FEval>
friend int predictCategoricalStump( CascadeClassifier& cascade, Ptr<FeatureEvaluator> &featureEvaluator, double& weight);
bool setImage( Ptr<FeatureEvaluator>& feval, const Mat& image);
virtual int runAt( Ptr<FeatureEvaluator>& feval, Point pt, double& weight );
class Data
{
public:
struct CV_EXPORTS DTreeNode
{
int featureIdx;
float threshold; // for ordered features only
int left;
int right;
};
struct CV_EXPORTS DTree
{
int nodeCount;
};
struct CV_EXPORTS Stage
{
int first;
int ntrees;
float threshold;
};
bool read(const FileNode &node);
bool isStumpBased;
int stageType;
int featureType;
int ncategories;
Size origWinSize;
std::vector<Stage> stages;
std::vector<DTree> classifiers;
std::vector<DTreeNode> nodes;
std::vector<float> leaves;
std::vector<int> subsets;
};
Data data;
Ptr<FeatureEvaluator> featureEvaluator;
Ptr<CvHaarClassifierCascade> oldCascade;
public:
class CV_EXPORTS MaskGenerator
{
public:
virtual ~MaskGenerator() {}
virtual cv::Mat generateMask(const cv::Mat& src)=0;
virtual void initializeMask(const cv::Mat& /*src*/) {};
};
void setMaskGenerator(Ptr<MaskGenerator> maskGenerator);
Ptr<MaskGenerator> getMaskGenerator();
void setFaceDetectionMaskGenerator();
protected:
Ptr<MaskGenerator> maskGenerator;
};
//////////////// HOG (Histogram-of-Oriented-Gradients) Descriptor and Object Detector //////////////
// struct for detection region of interest (ROI)
struct DetectionROI
{
// scale(size) of the bounding box
double scale;
// set of requrested locations to be evaluated
std::vector<cv::Point> locations;
// vector that will contain confidence values for each location
std::vector<double> confidences;
};
struct CV_EXPORTS_W HOGDescriptor
{
public:
enum { L2Hys=0 };
enum { DEFAULT_NLEVELS=64 };
CV_WRAP HOGDescriptor() : winSize(64,128), blockSize(16,16), blockStride(8,8),
cellSize(8,8), nbins(9), derivAperture(1), winSigma(-1),
histogramNormType(HOGDescriptor::L2Hys), L2HysThreshold(0.2), gammaCorrection(true),
nlevels(HOGDescriptor::DEFAULT_NLEVELS)
{}
CV_WRAP HOGDescriptor(Size _winSize, Size _blockSize, Size _blockStride,
Size _cellSize, int _nbins, int _derivAperture=1, double _winSigma=-1,
int _histogramNormType=HOGDescriptor::L2Hys,
double _L2HysThreshold=0.2, bool _gammaCorrection=false,
int _nlevels=HOGDescriptor::DEFAULT_NLEVELS)
: winSize(_winSize), blockSize(_blockSize), blockStride(_blockStride), cellSize(_cellSize),
nbins(_nbins), derivAperture(_derivAperture), winSigma(_winSigma),
histogramNormType(_histogramNormType), L2HysThreshold(_L2HysThreshold),
gammaCorrection(_gammaCorrection), nlevels(_nlevels)
{}
CV_WRAP HOGDescriptor(const String& filename)
{
load(filename);
}
HOGDescriptor(const HOGDescriptor& d)
{
d.copyTo(*this);
}
virtual ~HOGDescriptor() {}
CV_WRAP size_t getDescriptorSize() const;
CV_WRAP bool checkDetectorSize() const;
CV_WRAP double getWinSigma() const;
CV_WRAP virtual void setSVMDetector(InputArray _svmdetector);
virtual bool read(FileNode& fn);
virtual void write(FileStorage& fs, const String& objname) const;
CV_WRAP virtual bool load(const String& filename, const String& objname=String());
CV_WRAP virtual void save(const String& filename, const String& objname=String()) const;
virtual void copyTo(HOGDescriptor& c) const;
CV_WRAP virtual void compute(const Mat& img,
CV_OUT std::vector<float>& descriptors,
Size winStride=Size(), Size padding=Size(),
const std::vector<Point>& locations=std::vector<Point>()) const;
//with found weights output
CV_WRAP virtual void detect(const Mat& img, CV_OUT std::vector<Point>& foundLocations,
CV_OUT std::vector<double>& weights,
double hitThreshold=0, Size winStride=Size(),
Size padding=Size(),
const std::vector<Point>& searchLocations=std::vector<Point>()) const;
//without found weights output
virtual void detect(const Mat& img, CV_OUT std::vector<Point>& foundLocations,
double hitThreshold=0, Size winStride=Size(),
Size padding=Size(),
const std::vector<Point>& searchLocations=std::vector<Point>()) const;
//with result weights output
CV_WRAP virtual void detectMultiScale(const Mat& img, CV_OUT std::vector<Rect>& foundLocations,
CV_OUT std::vector<double>& foundWeights, double hitThreshold=0,
Size winStride=Size(), Size padding=Size(), double scale=1.05,
double finalThreshold=2.0,bool useMeanshiftGrouping = false) const;
//without found weights output
virtual void detectMultiScale(const Mat& img, CV_OUT std::vector<Rect>& foundLocations,
double hitThreshold=0, Size winStride=Size(),
Size padding=Size(), double scale=1.05,
double finalThreshold=2.0, bool useMeanshiftGrouping = false) const;
CV_WRAP virtual void computeGradient(const Mat& img, CV_OUT Mat& grad, CV_OUT Mat& angleOfs,
Size paddingTL=Size(), Size paddingBR=Size()) const;
CV_WRAP static std::vector<float> getDefaultPeopleDetector();
CV_WRAP static std::vector<float> getDaimlerPeopleDetector();
CV_PROP Size winSize;
CV_PROP Size blockSize;
CV_PROP Size blockStride;
CV_PROP Size cellSize;
CV_PROP int nbins;
CV_PROP int derivAperture;
CV_PROP double winSigma;
CV_PROP int histogramNormType;
CV_PROP double L2HysThreshold;
CV_PROP bool gammaCorrection;
CV_PROP std::vector<float> svmDetector;
CV_PROP int nlevels;
// evaluate specified ROI and return confidence value for each location
virtual void detectROI(const cv::Mat& img, const std::vector<cv::Point> &locations,
CV_OUT std::vector<cv::Point>& foundLocations, CV_OUT std::vector<double>& confidences,
double hitThreshold = 0, cv::Size winStride = Size(),
cv::Size padding = Size()) const;
// evaluate specified ROI and return confidence value for each location in multiple scales
virtual void detectMultiScaleROI(const cv::Mat& img,
CV_OUT std::vector<cv::Rect>& foundLocations,
std::vector<DetectionROI>& locations,
double hitThreshold = 0,
int groupThreshold = 0) const;
// read/parse Dalal's alt model file
void readALTModel(String modelfile);
};
CV_EXPORTS_W void findDataMatrix(InputArray image,
CV_OUT std::vector<String>& codes,
OutputArray corners=noArray(),
OutputArrayOfArrays dmtx=noArray());
CV_EXPORTS_W void drawDataMatrixCodes(InputOutputArray image,
const std::vector<String>& codes,
InputArray corners);
}
/****************************************************************************************\
* Datamatrix *
\****************************************************************************************/
struct CV_EXPORTS CvDataMatrixCode {
char msg[4];
CvMat *original;
CvMat *corners;
};
CV_EXPORTS std::deque<CvDataMatrixCode> cvFindDataMatrix(CvMat *im);
/****************************************************************************************\
* LINE-MOD *
\****************************************************************************************/
namespace cv {
namespace linemod {
/// @todo Convert doxy comments to rst
/**
* \brief Discriminant feature described by its location and label.
*/
struct CV_EXPORTS Feature
{
int x; ///< x offset
int y; ///< y offset
int label; ///< Quantization
Feature() : x(0), y(0), label(0) {}
Feature(int x, int y, int label);
void read(const FileNode& fn);
void write(FileStorage& fs) const;
};
inline Feature::Feature(int _x, int _y, int _label) : x(_x), y(_y), label(_label) {}
struct CV_EXPORTS Template
{
int width;
int height;
int pyramid_level;
std::vector<Feature> features;
void read(const FileNode& fn);
void write(FileStorage& fs) const;
};
/**
* \brief Represents a modality operating over an image pyramid.
*/
class QuantizedPyramid
{
public:
// Virtual destructor
virtual ~QuantizedPyramid() {}
/**
* \brief Compute quantized image at current pyramid level for online detection.
*
* \param[out] dst The destination 8-bit image. For each pixel at most one bit is set,
* representing its classification.
*/
virtual void quantize(Mat& dst) const =0;
/**
* \brief Extract most discriminant features at current pyramid level to form a new template.
*
* \param[out] templ The new template.
*/
virtual bool extractTemplate(Template& templ) const =0;
/**
* \brief Go to the next pyramid level.
*
* \todo Allow pyramid scale factor other than 2
*/
virtual void pyrDown() =0;
protected:
/// Candidate feature with a score
struct Candidate
{
Candidate(int x, int y, int label, float score);
/// Sort candidates with high score to the front
bool operator<(const Candidate& rhs) const
{
return score > rhs.score;
}
Feature f;
float score;
};
/**
* \brief Choose candidate features so that they are not bunched together.
*
* \param[in] candidates Candidate features sorted by score.
* \param[out] features Destination vector of selected features.
* \param[in] num_features Number of candidates to select.
* \param[in] distance Hint for desired distance between features.
*/
static void selectScatteredFeatures(const std::vector<Candidate>& candidates,
std::vector<Feature>& features,
size_t num_features, float distance);
};
inline QuantizedPyramid::Candidate::Candidate(int x, int y, int label, float _score) : f(x, y, label), score(_score) {}
/**
* \brief Interface for modalities that plug into the LINE template matching representation.
*
* \todo Max response, to allow optimization of summing (255/MAX) features as uint8
*/
class CV_EXPORTS Modality
{
public:
// Virtual destructor
virtual ~Modality() {}
/**
* \brief Form a quantized image pyramid from a source image.
*
* \param[in] src The source image. Type depends on the modality.
* \param[in] mask Optional mask. If not empty, unmasked pixels are set to zero
* in quantized image and cannot be extracted as features.
*/
Ptr<QuantizedPyramid> process(const Mat& src,
const Mat& mask = Mat()) const
{
return processImpl(src, mask);
}
virtual String name() const =0;
virtual void read(const FileNode& fn) =0;
virtual void write(FileStorage& fs) const =0;
/**
* \brief Create modality by name.
*
* The following modality types are supported:
* - "ColorGradient"
* - "DepthNormal"
*/
static Ptr<Modality> create(const String& modality_type);
/**
* \brief Load a modality from file.
*/
static Ptr<Modality> create(const FileNode& fn);
protected:
// Indirection is because process() has a default parameter.
virtual Ptr<QuantizedPyramid> processImpl(const Mat& src,
const Mat& mask) const =0;
};
/**
* \brief Modality that computes quantized gradient orientations from a color image.
*/
class CV_EXPORTS ColorGradient : public Modality
{
public:
/**
* \brief Default constructor. Uses reasonable default parameter values.
*/
ColorGradient();
/**
* \brief Constructor.
*
* \param weak_threshold When quantizing, discard gradients with magnitude less than this.
* \param num_features How many features a template must contain.
* \param strong_threshold Consider as candidate features only gradients whose norms are
* larger than this.
*/
ColorGradient(float weak_threshold, size_t num_features, float strong_threshold);
virtual String name() const;
virtual void read(const FileNode& fn);
virtual void write(FileStorage& fs) const;
float weak_threshold;
size_t num_features;
float strong_threshold;
protected:
virtual Ptr<QuantizedPyramid> processImpl(const Mat& src,
const Mat& mask) const;
};
/**
* \brief Modality that computes quantized surface normals from a dense depth map.
*/
class CV_EXPORTS DepthNormal : public Modality
{
public:
/**
* \brief Default constructor. Uses reasonable default parameter values.
*/
DepthNormal();
/**
* \brief Constructor.
*
* \param distance_threshold Ignore pixels beyond this distance.
* \param difference_threshold When computing normals, ignore contributions of pixels whose
* depth difference with the central pixel is above this threshold.
* \param num_features How many features a template must contain.
* \param extract_threshold Consider as candidate feature only if there are no differing
* orientations within a distance of extract_threshold.
*/
DepthNormal(int distance_threshold, int difference_threshold, size_t num_features,
int extract_threshold);
virtual String name() const;
virtual void read(const FileNode& fn);
virtual void write(FileStorage& fs) const;
int distance_threshold;
int difference_threshold;
size_t num_features;
int extract_threshold;
protected:
virtual Ptr<QuantizedPyramid> processImpl(const Mat& src,
const Mat& mask) const;
};
/**
* \brief Debug function to colormap a quantized image for viewing.
*/
void colormap(const Mat& quantized, Mat& dst);
/**
* \brief Represents a successful template match.
*/
struct CV_EXPORTS Match
{
Match()
{
}
Match(int x, int y, float similarity, const String& class_id, int template_id);
/// Sort matches with high similarity to the front
bool operator<(const Match& rhs) const
{
// Secondarily sort on template_id for the sake of duplicate removal
if (similarity != rhs.similarity)
return similarity > rhs.similarity;
else
return template_id < rhs.template_id;
}
bool operator==(const Match& rhs) const
{
return x == rhs.x && y == rhs.y && similarity == rhs.similarity && class_id == rhs.class_id;
}
int x;
int y;
float similarity;
String class_id;
int template_id;
};
inline Match::Match(int _x, int _y, float _similarity, const String& _class_id, int _template_id)
: x(_x), y(_y), similarity(_similarity), class_id(_class_id), template_id(_template_id)
{
}
/**
* \brief Object detector using the LINE template matching algorithm with any set of
* modalities.
*/
class CV_EXPORTS Detector
{
public:
/**
* \brief Empty constructor, initialize with read().
*/
Detector();
/**
* \brief Constructor.
*
* \param modalities Modalities to use (color gradients, depth normals, ...).
* \param T_pyramid Value of the sampling step T at each pyramid level. The
* number of pyramid levels is T_pyramid.size().
*/
Detector(const std::vector< Ptr<Modality> >& modalities, const std::vector<int>& T_pyramid);
/**
* \brief Detect objects by template matching.
*
* Matches globally at the lowest pyramid level, then refines locally stepping up the pyramid.
*
* \param sources Source images, one for each modality.
* \param threshold Similarity threshold, a percentage between 0 and 100.
* \param[out] matches Template matches, sorted by similarity score.
* \param class_ids If non-empty, only search for the desired object classes.
* \param[out] quantized_images Optionally return vector<Mat> of quantized images.
* \param masks The masks for consideration during matching. The masks should be CV_8UC1
* where 255 represents a valid pixel. If non-empty, the vector must be
* the same size as sources. Each element must be
* empty or the same size as its corresponding source.
*/
void match(const std::vector<Mat>& sources, float threshold, std::vector<Match>& matches,
const std::vector<String>& class_ids = std::vector<String>(),
OutputArrayOfArrays quantized_images = noArray(),
const std::vector<Mat>& masks = std::vector<Mat>()) const;
/**
* \brief Add new object template.
*
* \param sources Source images, one for each modality.
* \param class_id Object class ID.
* \param object_mask Mask separating object from background.
* \param[out] bounding_box Optionally return bounding box of the extracted features.
*
* \return Template ID, or -1 if failed to extract a valid template.
*/
int addTemplate(const std::vector<Mat>& sources, const String& class_id,
const Mat& object_mask, Rect* bounding_box = NULL);
/**
* \brief Add a new object template computed by external means.
*/
int addSyntheticTemplate(const std::vector<Template>& templates, const String& class_id);
/**
* \brief Get the modalities used by this detector.
*
* You are not permitted to add/remove modalities, but you may dynamic_cast them to
* tweak parameters.
*/
const std::vector< Ptr<Modality> >& getModalities() const { return modalities; }
/**
* \brief Get sampling step T at pyramid_level.
*/
int getT(int pyramid_level) const { return T_at_level[pyramid_level]; }
/**
* \brief Get number of pyramid levels used by this detector.
*/
int pyramidLevels() const { return pyramid_levels; }
/**
* \brief Get the template pyramid identified by template_id.
*
* For example, with 2 modalities (Gradient, Normal) and two pyramid levels
* (L0, L1), the order is (GradientL0, NormalL0, GradientL1, NormalL1).
*/
const std::vector<Template>& getTemplates(const String& class_id, int template_id) const;
int numTemplates() const;
int numTemplates(const String& class_id) const;
int numClasses() const { return static_cast<int>(class_templates.size()); }
std::vector<String> classIds() const;
void read(const FileNode& fn);
void write(FileStorage& fs) const;
String readClass(const FileNode& fn, const String &class_id_override = "");
void writeClass(const String& class_id, FileStorage& fs) const;
void readClasses(const std::vector<String>& class_ids,
const String& format = "templates_%s.yml.gz");
void writeClasses(const String& format = "templates_%s.yml.gz") const;
protected:
std::vector< Ptr<Modality> > modalities;
int pyramid_levels;
std::vector<int> T_at_level;
typedef std::vector<Template> TemplatePyramid;
typedef std::map<String, std::vector<TemplatePyramid> > TemplatesMap;
TemplatesMap class_templates;
typedef std::vector<Mat> LinearMemories;
// Indexed as [pyramid level][modality][quantized label]
typedef std::vector< std::vector<LinearMemories> > LinearMemoryPyramid;
void matchClass(const LinearMemoryPyramid& lm_pyramid,
const std::vector<Size>& sizes,
float threshold, std::vector<Match>& matches,
const String& class_id,
const std::vector<TemplatePyramid>& template_pyramids) const;
};
/**
* \brief Factory function for detector using LINE algorithm with color gradients.
*
* Default parameter settings suitable for VGA images.
*/
CV_EXPORTS Ptr<Detector> getDefaultLINE();
/**
* \brief Factory function for detector using LINE-MOD algorithm with color gradients
* and depth normals.
*
* Default parameter settings suitable for VGA images.
*/
CV_EXPORTS Ptr<Detector> getDefaultLINEMOD();
} // namespace linemod
} // namespace cv
#endif
#endif