mirror of
https://github.com/opencv/opencv.git
synced 2025-01-11 23:18:11 +08:00
f76dd99299
Conflicts: cmake/OpenCVModule.cmake doc/tutorials/calib3d/camera_calibration/camera_calibration.rst doc/tutorials/features2d/feature_detection/feature_detection.rst doc/tutorials/features2d/feature_flann_matcher/feature_flann_matcher.rst doc/tutorials/features2d/feature_homography/feature_homography.rst modules/core/include/opencv2/core/operations.hpp modules/core/src/arithm.cpp modules/gpu/perf/perf_video.cpp modules/imgproc/include/opencv2/imgproc/imgproc.hpp modules/java/generator/gen_java.py modules/java/generator/src/cpp/VideoCapture.cpp modules/nonfree/src/opencl/surf.cl modules/ocl/include/opencv2/ocl/ocl.hpp modules/ocl/perf/perf_haar.cpp modules/ocl/perf/perf_precomp.hpp modules/ocl/src/color.cpp modules/ocl/src/filtering.cpp modules/ocl/test/test_color.cpp modules/ocl/test/test_objdetect.cpp modules/python/src2/cv2.cpp samples/gpu/CMakeLists.txt samples/gpu/super_resolution.cpp
1399 lines
46 KiB
C++
1399 lines
46 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009-2011, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
|
|
namespace cv
|
|
{
|
|
|
|
/****************************************************************************************\
|
|
* split & merge *
|
|
\****************************************************************************************/
|
|
|
|
template<typename T> static void
|
|
split_( const T* src, T** dst, int len, int cn )
|
|
{
|
|
int k = cn % 4 ? cn % 4 : 4;
|
|
int i, j;
|
|
if( k == 1 )
|
|
{
|
|
T* dst0 = dst[0];
|
|
for( i = j = 0; i < len; i++, j += cn )
|
|
dst0[i] = src[j];
|
|
}
|
|
else if( k == 2 )
|
|
{
|
|
T *dst0 = dst[0], *dst1 = dst[1];
|
|
for( i = j = 0; i < len; i++, j += cn )
|
|
{
|
|
dst0[i] = src[j];
|
|
dst1[i] = src[j+1];
|
|
}
|
|
}
|
|
else if( k == 3 )
|
|
{
|
|
T *dst0 = dst[0], *dst1 = dst[1], *dst2 = dst[2];
|
|
for( i = j = 0; i < len; i++, j += cn )
|
|
{
|
|
dst0[i] = src[j];
|
|
dst1[i] = src[j+1];
|
|
dst2[i] = src[j+2];
|
|
}
|
|
}
|
|
else
|
|
{
|
|
T *dst0 = dst[0], *dst1 = dst[1], *dst2 = dst[2], *dst3 = dst[3];
|
|
for( i = j = 0; i < len; i++, j += cn )
|
|
{
|
|
dst0[i] = src[j]; dst1[i] = src[j+1];
|
|
dst2[i] = src[j+2]; dst3[i] = src[j+3];
|
|
}
|
|
}
|
|
|
|
for( ; k < cn; k += 4 )
|
|
{
|
|
T *dst0 = dst[k], *dst1 = dst[k+1], *dst2 = dst[k+2], *dst3 = dst[k+3];
|
|
for( i = 0, j = k; i < len; i++, j += cn )
|
|
{
|
|
dst0[i] = src[j]; dst1[i] = src[j+1];
|
|
dst2[i] = src[j+2]; dst3[i] = src[j+3];
|
|
}
|
|
}
|
|
}
|
|
|
|
template<typename T> static void
|
|
merge_( const T** src, T* dst, int len, int cn )
|
|
{
|
|
int k = cn % 4 ? cn % 4 : 4;
|
|
int i, j;
|
|
if( k == 1 )
|
|
{
|
|
const T* src0 = src[0];
|
|
for( i = j = 0; i < len; i++, j += cn )
|
|
dst[j] = src0[i];
|
|
}
|
|
else if( k == 2 )
|
|
{
|
|
const T *src0 = src[0], *src1 = src[1];
|
|
for( i = j = 0; i < len; i++, j += cn )
|
|
{
|
|
dst[j] = src0[i];
|
|
dst[j+1] = src1[i];
|
|
}
|
|
}
|
|
else if( k == 3 )
|
|
{
|
|
const T *src0 = src[0], *src1 = src[1], *src2 = src[2];
|
|
for( i = j = 0; i < len; i++, j += cn )
|
|
{
|
|
dst[j] = src0[i];
|
|
dst[j+1] = src1[i];
|
|
dst[j+2] = src2[i];
|
|
}
|
|
}
|
|
else
|
|
{
|
|
const T *src0 = src[0], *src1 = src[1], *src2 = src[2], *src3 = src[3];
|
|
for( i = j = 0; i < len; i++, j += cn )
|
|
{
|
|
dst[j] = src0[i]; dst[j+1] = src1[i];
|
|
dst[j+2] = src2[i]; dst[j+3] = src3[i];
|
|
}
|
|
}
|
|
|
|
for( ; k < cn; k += 4 )
|
|
{
|
|
const T *src0 = src[k], *src1 = src[k+1], *src2 = src[k+2], *src3 = src[k+3];
|
|
for( i = 0, j = k; i < len; i++, j += cn )
|
|
{
|
|
dst[j] = src0[i]; dst[j+1] = src1[i];
|
|
dst[j+2] = src2[i]; dst[j+3] = src3[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
static void split8u(const uchar* src, uchar** dst, int len, int cn )
|
|
{
|
|
split_(src, dst, len, cn);
|
|
}
|
|
|
|
static void split16u(const ushort* src, ushort** dst, int len, int cn )
|
|
{
|
|
split_(src, dst, len, cn);
|
|
}
|
|
|
|
static void split32s(const int* src, int** dst, int len, int cn )
|
|
{
|
|
split_(src, dst, len, cn);
|
|
}
|
|
|
|
static void split64s(const int64* src, int64** dst, int len, int cn )
|
|
{
|
|
split_(src, dst, len, cn);
|
|
}
|
|
|
|
static void merge8u(const uchar** src, uchar* dst, int len, int cn )
|
|
{
|
|
merge_(src, dst, len, cn);
|
|
}
|
|
|
|
static void merge16u(const ushort** src, ushort* dst, int len, int cn )
|
|
{
|
|
merge_(src, dst, len, cn);
|
|
}
|
|
|
|
static void merge32s(const int** src, int* dst, int len, int cn )
|
|
{
|
|
merge_(src, dst, len, cn);
|
|
}
|
|
|
|
static void merge64s(const int64** src, int64* dst, int len, int cn )
|
|
{
|
|
merge_(src, dst, len, cn);
|
|
}
|
|
|
|
typedef void (*SplitFunc)(const uchar* src, uchar** dst, int len, int cn);
|
|
typedef void (*MergeFunc)(const uchar** src, uchar* dst, int len, int cn);
|
|
|
|
static SplitFunc getSplitFunc(int depth)
|
|
{
|
|
static SplitFunc splitTab[] =
|
|
{
|
|
(SplitFunc)GET_OPTIMIZED(split8u), (SplitFunc)GET_OPTIMIZED(split8u), (SplitFunc)GET_OPTIMIZED(split16u), (SplitFunc)GET_OPTIMIZED(split16u),
|
|
(SplitFunc)GET_OPTIMIZED(split32s), (SplitFunc)GET_OPTIMIZED(split32s), (SplitFunc)GET_OPTIMIZED(split64s), 0
|
|
};
|
|
|
|
return splitTab[depth];
|
|
}
|
|
|
|
static MergeFunc getMergeFunc(int depth)
|
|
{
|
|
static MergeFunc mergeTab[] =
|
|
{
|
|
(MergeFunc)GET_OPTIMIZED(merge8u), (MergeFunc)GET_OPTIMIZED(merge8u), (MergeFunc)GET_OPTIMIZED(merge16u), (MergeFunc)GET_OPTIMIZED(merge16u),
|
|
(MergeFunc)GET_OPTIMIZED(merge32s), (MergeFunc)GET_OPTIMIZED(merge32s), (MergeFunc)GET_OPTIMIZED(merge64s), 0
|
|
};
|
|
|
|
return mergeTab[depth];
|
|
}
|
|
|
|
}
|
|
|
|
void cv::split(const Mat& src, Mat* mv)
|
|
{
|
|
int k, depth = src.depth(), cn = src.channels();
|
|
if( cn == 1 )
|
|
{
|
|
src.copyTo(mv[0]);
|
|
return;
|
|
}
|
|
|
|
SplitFunc func = getSplitFunc(depth);
|
|
CV_Assert( func != 0 );
|
|
|
|
int esz = (int)src.elemSize(), esz1 = (int)src.elemSize1();
|
|
int blocksize0 = (BLOCK_SIZE + esz-1)/esz;
|
|
AutoBuffer<uchar> _buf((cn+1)*(sizeof(Mat*) + sizeof(uchar*)) + 16);
|
|
const Mat** arrays = (const Mat**)(uchar*)_buf;
|
|
uchar** ptrs = (uchar**)alignPtr(arrays + cn + 1, 16);
|
|
|
|
arrays[0] = &src;
|
|
for( k = 0; k < cn; k++ )
|
|
{
|
|
mv[k].create(src.dims, src.size, depth);
|
|
arrays[k+1] = &mv[k];
|
|
}
|
|
|
|
NAryMatIterator it(arrays, ptrs, cn+1);
|
|
int total = (int)it.size, blocksize = cn <= 4 ? total : std::min(total, blocksize0);
|
|
|
|
for( size_t i = 0; i < it.nplanes; i++, ++it )
|
|
{
|
|
for( int j = 0; j < total; j += blocksize )
|
|
{
|
|
int bsz = std::min(total - j, blocksize);
|
|
func( ptrs[0], &ptrs[1], bsz, cn );
|
|
|
|
if( j + blocksize < total )
|
|
{
|
|
ptrs[0] += bsz*esz;
|
|
for( k = 0; k < cn; k++ )
|
|
ptrs[k+1] += bsz*esz1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void cv::split(InputArray _m, OutputArrayOfArrays _mv)
|
|
{
|
|
Mat m = _m.getMat();
|
|
if( m.empty() )
|
|
{
|
|
_mv.release();
|
|
return;
|
|
}
|
|
CV_Assert( !_mv.fixedType() || CV_MAT_TYPE(_mv.flags) == m.depth() );
|
|
_mv.create(m.channels(), 1, m.depth());
|
|
Mat* dst = &_mv.getMatRef(0);
|
|
split(m, dst);
|
|
}
|
|
|
|
void cv::merge(const Mat* mv, size_t n, OutputArray _dst)
|
|
{
|
|
CV_Assert( mv && n > 0 );
|
|
|
|
int depth = mv[0].depth();
|
|
bool allch1 = true;
|
|
int k, cn = 0;
|
|
size_t i;
|
|
|
|
for( i = 0; i < n; i++ )
|
|
{
|
|
CV_Assert(mv[i].size == mv[0].size && mv[i].depth() == depth);
|
|
allch1 = allch1 && mv[i].channels() == 1;
|
|
cn += mv[i].channels();
|
|
}
|
|
|
|
CV_Assert( 0 < cn && cn <= CV_CN_MAX );
|
|
_dst.create(mv[0].dims, mv[0].size, CV_MAKETYPE(depth, cn));
|
|
Mat dst = _dst.getMat();
|
|
|
|
if( n == 1 )
|
|
{
|
|
mv[0].copyTo(dst);
|
|
return;
|
|
}
|
|
|
|
if( !allch1 )
|
|
{
|
|
AutoBuffer<int> pairs(cn*2);
|
|
int j, ni=0;
|
|
|
|
for( i = 0, j = 0; i < n; i++, j += ni )
|
|
{
|
|
ni = mv[i].channels();
|
|
for( k = 0; k < ni; k++ )
|
|
{
|
|
pairs[(j+k)*2] = j + k;
|
|
pairs[(j+k)*2+1] = j + k;
|
|
}
|
|
}
|
|
mixChannels( mv, n, &dst, 1, &pairs[0], cn );
|
|
return;
|
|
}
|
|
|
|
size_t esz = dst.elemSize(), esz1 = dst.elemSize1();
|
|
int blocksize0 = (int)((BLOCK_SIZE + esz-1)/esz);
|
|
AutoBuffer<uchar> _buf((cn+1)*(sizeof(Mat*) + sizeof(uchar*)) + 16);
|
|
const Mat** arrays = (const Mat**)(uchar*)_buf;
|
|
uchar** ptrs = (uchar**)alignPtr(arrays + cn + 1, 16);
|
|
|
|
arrays[0] = &dst;
|
|
for( k = 0; k < cn; k++ )
|
|
arrays[k+1] = &mv[k];
|
|
|
|
NAryMatIterator it(arrays, ptrs, cn+1);
|
|
int total = (int)it.size, blocksize = cn <= 4 ? total : std::min(total, blocksize0);
|
|
MergeFunc func = getMergeFunc(depth);
|
|
|
|
for( i = 0; i < it.nplanes; i++, ++it )
|
|
{
|
|
for( int j = 0; j < total; j += blocksize )
|
|
{
|
|
int bsz = std::min(total - j, blocksize);
|
|
func( (const uchar**)&ptrs[1], ptrs[0], bsz, cn );
|
|
|
|
if( j + blocksize < total )
|
|
{
|
|
ptrs[0] += bsz*esz;
|
|
for( int t = 0; t < cn; t++ )
|
|
ptrs[t+1] += bsz*esz1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void cv::merge(InputArrayOfArrays _mv, OutputArray _dst)
|
|
{
|
|
std::vector<Mat> mv;
|
|
_mv.getMatVector(mv);
|
|
merge(!mv.empty() ? &mv[0] : 0, mv.size(), _dst);
|
|
}
|
|
|
|
/****************************************************************************************\
|
|
* Generalized split/merge: mixing channels *
|
|
\****************************************************************************************/
|
|
|
|
namespace cv
|
|
{
|
|
|
|
template<typename T> static void
|
|
mixChannels_( const T** src, const int* sdelta,
|
|
T** dst, const int* ddelta,
|
|
int len, int npairs )
|
|
{
|
|
int i, k;
|
|
for( k = 0; k < npairs; k++ )
|
|
{
|
|
const T* s = src[k];
|
|
T* d = dst[k];
|
|
int ds = sdelta[k], dd = ddelta[k];
|
|
if( s )
|
|
{
|
|
for( i = 0; i <= len - 2; i += 2, s += ds*2, d += dd*2 )
|
|
{
|
|
T t0 = s[0], t1 = s[ds];
|
|
d[0] = t0; d[dd] = t1;
|
|
}
|
|
if( i < len )
|
|
d[0] = s[0];
|
|
}
|
|
else
|
|
{
|
|
for( i = 0; i <= len - 2; i += 2, d += dd*2 )
|
|
d[0] = d[dd] = 0;
|
|
if( i < len )
|
|
d[0] = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static void mixChannels8u( const uchar** src, const int* sdelta,
|
|
uchar** dst, const int* ddelta,
|
|
int len, int npairs )
|
|
{
|
|
mixChannels_(src, sdelta, dst, ddelta, len, npairs);
|
|
}
|
|
|
|
static void mixChannels16u( const ushort** src, const int* sdelta,
|
|
ushort** dst, const int* ddelta,
|
|
int len, int npairs )
|
|
{
|
|
mixChannels_(src, sdelta, dst, ddelta, len, npairs);
|
|
}
|
|
|
|
static void mixChannels32s( const int** src, const int* sdelta,
|
|
int** dst, const int* ddelta,
|
|
int len, int npairs )
|
|
{
|
|
mixChannels_(src, sdelta, dst, ddelta, len, npairs);
|
|
}
|
|
|
|
static void mixChannels64s( const int64** src, const int* sdelta,
|
|
int64** dst, const int* ddelta,
|
|
int len, int npairs )
|
|
{
|
|
mixChannels_(src, sdelta, dst, ddelta, len, npairs);
|
|
}
|
|
|
|
typedef void (*MixChannelsFunc)( const uchar** src, const int* sdelta,
|
|
uchar** dst, const int* ddelta, int len, int npairs );
|
|
|
|
static MixChannelsFunc getMixchFunc(int depth)
|
|
{
|
|
static MixChannelsFunc mixchTab[] =
|
|
{
|
|
(MixChannelsFunc)mixChannels8u, (MixChannelsFunc)mixChannels8u, (MixChannelsFunc)mixChannels16u,
|
|
(MixChannelsFunc)mixChannels16u, (MixChannelsFunc)mixChannels32s, (MixChannelsFunc)mixChannels32s,
|
|
(MixChannelsFunc)mixChannels64s, 0
|
|
};
|
|
|
|
return mixchTab[depth];
|
|
}
|
|
|
|
}
|
|
|
|
void cv::mixChannels( const Mat* src, size_t nsrcs, Mat* dst, size_t ndsts, const int* fromTo, size_t npairs )
|
|
{
|
|
if( npairs == 0 )
|
|
return;
|
|
CV_Assert( src && nsrcs > 0 && dst && ndsts > 0 && fromTo && npairs > 0 );
|
|
|
|
size_t i, j, k, esz1 = dst[0].elemSize1();
|
|
int depth = dst[0].depth();
|
|
|
|
AutoBuffer<uchar> buf((nsrcs + ndsts + 1)*(sizeof(Mat*) + sizeof(uchar*)) + npairs*(sizeof(uchar*)*2 + sizeof(int)*6));
|
|
const Mat** arrays = (const Mat**)(uchar*)buf;
|
|
uchar** ptrs = (uchar**)(arrays + nsrcs + ndsts);
|
|
const uchar** srcs = (const uchar**)(ptrs + nsrcs + ndsts + 1);
|
|
uchar** dsts = (uchar**)(srcs + npairs);
|
|
int* tab = (int*)(dsts + npairs);
|
|
int *sdelta = (int*)(tab + npairs*4), *ddelta = sdelta + npairs;
|
|
|
|
for( i = 0; i < nsrcs; i++ )
|
|
arrays[i] = &src[i];
|
|
for( i = 0; i < ndsts; i++ )
|
|
arrays[i + nsrcs] = &dst[i];
|
|
ptrs[nsrcs + ndsts] = 0;
|
|
|
|
for( i = 0; i < npairs; i++ )
|
|
{
|
|
int i0 = fromTo[i*2], i1 = fromTo[i*2+1];
|
|
if( i0 >= 0 )
|
|
{
|
|
for( j = 0; j < nsrcs; i0 -= src[j].channels(), j++ )
|
|
if( i0 < src[j].channels() )
|
|
break;
|
|
CV_Assert(j < nsrcs && src[j].depth() == depth);
|
|
tab[i*4] = (int)j; tab[i*4+1] = (int)(i0*esz1);
|
|
sdelta[i] = src[j].channels();
|
|
}
|
|
else
|
|
{
|
|
tab[i*4] = (int)(nsrcs + ndsts); tab[i*4+1] = 0;
|
|
sdelta[i] = 0;
|
|
}
|
|
|
|
for( j = 0; j < ndsts; i1 -= dst[j].channels(), j++ )
|
|
if( i1 < dst[j].channels() )
|
|
break;
|
|
CV_Assert(i1 >= 0 && j < ndsts && dst[j].depth() == depth);
|
|
tab[i*4+2] = (int)(j + nsrcs); tab[i*4+3] = (int)(i1*esz1);
|
|
ddelta[i] = dst[j].channels();
|
|
}
|
|
|
|
NAryMatIterator it(arrays, ptrs, (int)(nsrcs + ndsts));
|
|
int total = (int)it.size, blocksize = std::min(total, (int)((BLOCK_SIZE + esz1-1)/esz1));
|
|
MixChannelsFunc func = getMixchFunc(depth);
|
|
|
|
for( i = 0; i < it.nplanes; i++, ++it )
|
|
{
|
|
for( k = 0; k < npairs; k++ )
|
|
{
|
|
srcs[k] = ptrs[tab[k*4]] + tab[k*4+1];
|
|
dsts[k] = ptrs[tab[k*4+2]] + tab[k*4+3];
|
|
}
|
|
|
|
for( int t = 0; t < total; t += blocksize )
|
|
{
|
|
int bsz = std::min(total - t, blocksize);
|
|
func( srcs, sdelta, dsts, ddelta, bsz, (int)npairs );
|
|
|
|
if( t + blocksize < total )
|
|
for( k = 0; k < npairs; k++ )
|
|
{
|
|
srcs[k] += blocksize*sdelta[k]*esz1;
|
|
dsts[k] += blocksize*ddelta[k]*esz1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void cv::mixChannels(InputArrayOfArrays src, InputOutputArrayOfArrays dst,
|
|
const int* fromTo, size_t npairs)
|
|
{
|
|
if(npairs == 0)
|
|
return;
|
|
bool src_is_mat = src.kind() != _InputArray::STD_VECTOR_MAT &&
|
|
src.kind() != _InputArray::STD_VECTOR_VECTOR;
|
|
bool dst_is_mat = dst.kind() != _InputArray::STD_VECTOR_MAT &&
|
|
dst.kind() != _InputArray::STD_VECTOR_VECTOR;
|
|
int i;
|
|
int nsrc = src_is_mat ? 1 : (int)src.total();
|
|
int ndst = dst_is_mat ? 1 : (int)dst.total();
|
|
|
|
CV_Assert(nsrc > 0 && ndst > 0);
|
|
cv::AutoBuffer<Mat> _buf(nsrc + ndst);
|
|
Mat* buf = _buf;
|
|
for( i = 0; i < nsrc; i++ )
|
|
buf[i] = src.getMat(src_is_mat ? -1 : i);
|
|
for( i = 0; i < ndst; i++ )
|
|
buf[nsrc + i] = dst.getMat(dst_is_mat ? -1 : i);
|
|
mixChannels(&buf[0], nsrc, &buf[nsrc], ndst, fromTo, npairs);
|
|
}
|
|
|
|
void cv::mixChannels(InputArrayOfArrays src, InputOutputArrayOfArrays dst,
|
|
const std::vector<int>& fromTo)
|
|
{
|
|
if(fromTo.empty())
|
|
return;
|
|
bool src_is_mat = src.kind() != _InputArray::STD_VECTOR_MAT &&
|
|
src.kind() != _InputArray::STD_VECTOR_VECTOR;
|
|
bool dst_is_mat = dst.kind() != _InputArray::STD_VECTOR_MAT &&
|
|
dst.kind() != _InputArray::STD_VECTOR_VECTOR;
|
|
int i;
|
|
int nsrc = src_is_mat ? 1 : (int)src.total();
|
|
int ndst = dst_is_mat ? 1 : (int)dst.total();
|
|
|
|
CV_Assert(fromTo.size()%2 == 0 && nsrc > 0 && ndst > 0);
|
|
cv::AutoBuffer<Mat> _buf(nsrc + ndst);
|
|
Mat* buf = _buf;
|
|
for( i = 0; i < nsrc; i++ )
|
|
buf[i] = src.getMat(src_is_mat ? -1 : i);
|
|
for( i = 0; i < ndst; i++ )
|
|
buf[nsrc + i] = dst.getMat(dst_is_mat ? -1 : i);
|
|
mixChannels(&buf[0], nsrc, &buf[nsrc], ndst, &fromTo[0], fromTo.size()/2);
|
|
}
|
|
|
|
void cv::extractChannel(InputArray _src, OutputArray _dst, int coi)
|
|
{
|
|
Mat src = _src.getMat();
|
|
CV_Assert( 0 <= coi && coi < src.channels() );
|
|
_dst.create(src.dims, &src.size[0], src.depth());
|
|
Mat dst = _dst.getMat();
|
|
int ch[] = { coi, 0 };
|
|
mixChannels(&src, 1, &dst, 1, ch, 1);
|
|
}
|
|
|
|
void cv::insertChannel(InputArray _src, InputOutputArray _dst, int coi)
|
|
{
|
|
Mat src = _src.getMat(), dst = _dst.getMat();
|
|
CV_Assert( src.size == dst.size && src.depth() == dst.depth() );
|
|
CV_Assert( 0 <= coi && coi < dst.channels() && src.channels() == 1 );
|
|
int ch[] = { 0, coi };
|
|
mixChannels(&src, 1, &dst, 1, ch, 1);
|
|
}
|
|
|
|
/****************************************************************************************\
|
|
* convertScale[Abs] *
|
|
\****************************************************************************************/
|
|
|
|
namespace cv
|
|
{
|
|
|
|
template<typename T, typename DT, typename WT> static void
|
|
cvtScaleAbs_( const T* src, size_t sstep,
|
|
DT* dst, size_t dstep, Size size,
|
|
WT scale, WT shift )
|
|
{
|
|
sstep /= sizeof(src[0]);
|
|
dstep /= sizeof(dst[0]);
|
|
|
|
for( ; size.height--; src += sstep, dst += dstep )
|
|
{
|
|
int x = 0;
|
|
#if CV_ENABLE_UNROLLED
|
|
for( ; x <= size.width - 4; x += 4 )
|
|
{
|
|
DT t0, t1;
|
|
t0 = saturate_cast<DT>(std::abs(src[x]*scale + shift));
|
|
t1 = saturate_cast<DT>(std::abs(src[x+1]*scale + shift));
|
|
dst[x] = t0; dst[x+1] = t1;
|
|
t0 = saturate_cast<DT>(std::abs(src[x+2]*scale + shift));
|
|
t1 = saturate_cast<DT>(std::abs(src[x+3]*scale + shift));
|
|
dst[x+2] = t0; dst[x+3] = t1;
|
|
}
|
|
#endif
|
|
for( ; x < size.width; x++ )
|
|
dst[x] = saturate_cast<DT>(std::abs(src[x]*scale + shift));
|
|
}
|
|
}
|
|
|
|
|
|
template<typename T, typename DT, typename WT> static void
|
|
cvtScale_( const T* src, size_t sstep,
|
|
DT* dst, size_t dstep, Size size,
|
|
WT scale, WT shift )
|
|
{
|
|
sstep /= sizeof(src[0]);
|
|
dstep /= sizeof(dst[0]);
|
|
|
|
for( ; size.height--; src += sstep, dst += dstep )
|
|
{
|
|
int x = 0;
|
|
#if CV_ENABLE_UNROLLED
|
|
for( ; x <= size.width - 4; x += 4 )
|
|
{
|
|
DT t0, t1;
|
|
t0 = saturate_cast<DT>(src[x]*scale + shift);
|
|
t1 = saturate_cast<DT>(src[x+1]*scale + shift);
|
|
dst[x] = t0; dst[x+1] = t1;
|
|
t0 = saturate_cast<DT>(src[x+2]*scale + shift);
|
|
t1 = saturate_cast<DT>(src[x+3]*scale + shift);
|
|
dst[x+2] = t0; dst[x+3] = t1;
|
|
}
|
|
#endif
|
|
|
|
for( ; x < size.width; x++ )
|
|
dst[x] = saturate_cast<DT>(src[x]*scale + shift);
|
|
}
|
|
}
|
|
|
|
//vz optimized template specialization
|
|
template<> void
|
|
cvtScale_<short, short, float>( const short* src, size_t sstep,
|
|
short* dst, size_t dstep, Size size,
|
|
float scale, float shift )
|
|
{
|
|
sstep /= sizeof(src[0]);
|
|
dstep /= sizeof(dst[0]);
|
|
|
|
for( ; size.height--; src += sstep, dst += dstep )
|
|
{
|
|
int x = 0;
|
|
#if CV_SSE2
|
|
if(USE_SSE2)
|
|
{
|
|
__m128 scale128 = _mm_set1_ps (scale);
|
|
__m128 shift128 = _mm_set1_ps (shift);
|
|
for(; x <= size.width - 8; x += 8 )
|
|
{
|
|
__m128i r0 = _mm_loadl_epi64((const __m128i*)(src + x));
|
|
__m128i r1 = _mm_loadl_epi64((const __m128i*)(src + x + 4));
|
|
__m128 rf0 =_mm_cvtepi32_ps(_mm_srai_epi32(_mm_unpacklo_epi16(r0, r0), 16));
|
|
__m128 rf1 =_mm_cvtepi32_ps(_mm_srai_epi32(_mm_unpacklo_epi16(r1, r1), 16));
|
|
rf0 = _mm_add_ps(_mm_mul_ps(rf0, scale128), shift128);
|
|
rf1 = _mm_add_ps(_mm_mul_ps(rf1, scale128), shift128);
|
|
r0 = _mm_cvtps_epi32(rf0);
|
|
r1 = _mm_cvtps_epi32(rf1);
|
|
r0 = _mm_packs_epi32(r0, r1);
|
|
_mm_storeu_si128((__m128i*)(dst + x), r0);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
for(; x < size.width; x++ )
|
|
dst[x] = saturate_cast<short>(src[x]*scale + shift);
|
|
}
|
|
}
|
|
|
|
template<> void
|
|
cvtScale_<short, int, float>( const short* src, size_t sstep,
|
|
int* dst, size_t dstep, Size size,
|
|
float scale, float shift )
|
|
{
|
|
sstep /= sizeof(src[0]);
|
|
dstep /= sizeof(dst[0]);
|
|
|
|
for( ; size.height--; src += sstep, dst += dstep )
|
|
{
|
|
int x = 0;
|
|
|
|
#if CV_SSE2
|
|
if(USE_SSE2)//~5X
|
|
{
|
|
__m128 scale128 = _mm_set1_ps (scale);
|
|
__m128 shift128 = _mm_set1_ps (shift);
|
|
for(; x <= size.width - 8; x += 8 )
|
|
{
|
|
__m128i r0 = _mm_loadl_epi64((const __m128i*)(src + x));
|
|
__m128i r1 = _mm_loadl_epi64((const __m128i*)(src + x + 4));
|
|
__m128 rf0 =_mm_cvtepi32_ps(_mm_srai_epi32(_mm_unpacklo_epi16(r0, r0), 16));
|
|
__m128 rf1 =_mm_cvtepi32_ps(_mm_srai_epi32(_mm_unpacklo_epi16(r1, r1), 16));
|
|
rf0 = _mm_add_ps(_mm_mul_ps(rf0, scale128), shift128);
|
|
rf1 = _mm_add_ps(_mm_mul_ps(rf1, scale128), shift128);
|
|
r0 = _mm_cvtps_epi32(rf0);
|
|
r1 = _mm_cvtps_epi32(rf1);
|
|
|
|
_mm_storeu_si128((__m128i*)(dst + x), r0);
|
|
_mm_storeu_si128((__m128i*)(dst + x + 4), r1);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
//We will wait Haswell
|
|
/*
|
|
#if CV_AVX
|
|
if(USE_AVX)//2X - bad variant
|
|
{
|
|
////TODO:AVX implementation (optimization?) required
|
|
__m256 scale256 = _mm256_set1_ps (scale);
|
|
__m256 shift256 = _mm256_set1_ps (shift);
|
|
for(; x <= size.width - 8; x += 8 )
|
|
{
|
|
__m256i buf = _mm256_set_epi32((int)(*(src+x+7)),(int)(*(src+x+6)),(int)(*(src+x+5)),(int)(*(src+x+4)),(int)(*(src+x+3)),(int)(*(src+x+2)),(int)(*(src+x+1)),(int)(*(src+x)));
|
|
__m256 r0 = _mm256_add_ps( _mm256_mul_ps(_mm256_cvtepi32_ps (buf), scale256), shift256);
|
|
__m256i res = _mm256_cvtps_epi32(r0);
|
|
_mm256_storeu_si256 ((__m256i*)(dst+x), res);
|
|
}
|
|
}
|
|
#endif*/
|
|
|
|
for(; x < size.width; x++ )
|
|
dst[x] = saturate_cast<int>(src[x]*scale + shift);
|
|
}
|
|
}
|
|
|
|
template<typename T, typename DT> static void
|
|
cvt_( const T* src, size_t sstep,
|
|
DT* dst, size_t dstep, Size size )
|
|
{
|
|
sstep /= sizeof(src[0]);
|
|
dstep /= sizeof(dst[0]);
|
|
|
|
for( ; size.height--; src += sstep, dst += dstep )
|
|
{
|
|
int x = 0;
|
|
#if CV_ENABLE_UNROLLED
|
|
for( ; x <= size.width - 4; x += 4 )
|
|
{
|
|
DT t0, t1;
|
|
t0 = saturate_cast<DT>(src[x]);
|
|
t1 = saturate_cast<DT>(src[x+1]);
|
|
dst[x] = t0; dst[x+1] = t1;
|
|
t0 = saturate_cast<DT>(src[x+2]);
|
|
t1 = saturate_cast<DT>(src[x+3]);
|
|
dst[x+2] = t0; dst[x+3] = t1;
|
|
}
|
|
#endif
|
|
for( ; x < size.width; x++ )
|
|
dst[x] = saturate_cast<DT>(src[x]);
|
|
}
|
|
}
|
|
|
|
//vz optimized template specialization, test Core_ConvertScale/ElemWiseTest
|
|
template<> void
|
|
cvt_<float, short>( const float* src, size_t sstep,
|
|
short* dst, size_t dstep, Size size )
|
|
{
|
|
sstep /= sizeof(src[0]);
|
|
dstep /= sizeof(dst[0]);
|
|
|
|
for( ; size.height--; src += sstep, dst += dstep )
|
|
{
|
|
int x = 0;
|
|
#if CV_SSE2
|
|
if(USE_SSE2){
|
|
for( ; x <= size.width - 8; x += 8 )
|
|
{
|
|
__m128 src128 = _mm_loadu_ps (src + x);
|
|
__m128i src_int128 = _mm_cvtps_epi32 (src128);
|
|
|
|
src128 = _mm_loadu_ps (src + x + 4);
|
|
__m128i src1_int128 = _mm_cvtps_epi32 (src128);
|
|
|
|
src1_int128 = _mm_packs_epi32(src_int128, src1_int128);
|
|
_mm_storeu_si128((__m128i*)(dst + x),src1_int128);
|
|
}
|
|
}
|
|
#endif
|
|
for( ; x < size.width; x++ )
|
|
dst[x] = saturate_cast<short>(src[x]);
|
|
}
|
|
|
|
}
|
|
|
|
|
|
template<typename T> static void
|
|
cpy_( const T* src, size_t sstep, T* dst, size_t dstep, Size size )
|
|
{
|
|
sstep /= sizeof(src[0]);
|
|
dstep /= sizeof(dst[0]);
|
|
|
|
for( ; size.height--; src += sstep, dst += dstep )
|
|
memcpy(dst, src, size.width*sizeof(src[0]));
|
|
}
|
|
|
|
#define DEF_CVT_SCALE_ABS_FUNC(suffix, tfunc, stype, dtype, wtype) \
|
|
static void cvtScaleAbs##suffix( const stype* src, size_t sstep, const uchar*, size_t, \
|
|
dtype* dst, size_t dstep, Size size, double* scale) \
|
|
{ \
|
|
tfunc(src, sstep, dst, dstep, size, (wtype)scale[0], (wtype)scale[1]); \
|
|
}
|
|
|
|
#define DEF_CVT_SCALE_FUNC(suffix, stype, dtype, wtype) \
|
|
static void cvtScale##suffix( const stype* src, size_t sstep, const uchar*, size_t, \
|
|
dtype* dst, size_t dstep, Size size, double* scale) \
|
|
{ \
|
|
cvtScale_(src, sstep, dst, dstep, size, (wtype)scale[0], (wtype)scale[1]); \
|
|
}
|
|
|
|
|
|
#define DEF_CVT_FUNC(suffix, stype, dtype) \
|
|
static void cvt##suffix( const stype* src, size_t sstep, const uchar*, size_t, \
|
|
dtype* dst, size_t dstep, Size size, double*) \
|
|
{ \
|
|
cvt_(src, sstep, dst, dstep, size); \
|
|
}
|
|
|
|
#define DEF_CPY_FUNC(suffix, stype) \
|
|
static void cvt##suffix( const stype* src, size_t sstep, const uchar*, size_t, \
|
|
stype* dst, size_t dstep, Size size, double*) \
|
|
{ \
|
|
cpy_(src, sstep, dst, dstep, size); \
|
|
}
|
|
|
|
|
|
DEF_CVT_SCALE_ABS_FUNC(8u, cvtScaleAbs_, uchar, uchar, float);
|
|
DEF_CVT_SCALE_ABS_FUNC(8s8u, cvtScaleAbs_, schar, uchar, float);
|
|
DEF_CVT_SCALE_ABS_FUNC(16u8u, cvtScaleAbs_, ushort, uchar, float);
|
|
DEF_CVT_SCALE_ABS_FUNC(16s8u, cvtScaleAbs_, short, uchar, float);
|
|
DEF_CVT_SCALE_ABS_FUNC(32s8u, cvtScaleAbs_, int, uchar, float);
|
|
DEF_CVT_SCALE_ABS_FUNC(32f8u, cvtScaleAbs_, float, uchar, float);
|
|
DEF_CVT_SCALE_ABS_FUNC(64f8u, cvtScaleAbs_, double, uchar, float);
|
|
|
|
DEF_CVT_SCALE_FUNC(8u, uchar, uchar, float);
|
|
DEF_CVT_SCALE_FUNC(8s8u, schar, uchar, float);
|
|
DEF_CVT_SCALE_FUNC(16u8u, ushort, uchar, float);
|
|
DEF_CVT_SCALE_FUNC(16s8u, short, uchar, float);
|
|
DEF_CVT_SCALE_FUNC(32s8u, int, uchar, float);
|
|
DEF_CVT_SCALE_FUNC(32f8u, float, uchar, float);
|
|
DEF_CVT_SCALE_FUNC(64f8u, double, uchar, float);
|
|
|
|
DEF_CVT_SCALE_FUNC(8u8s, uchar, schar, float);
|
|
DEF_CVT_SCALE_FUNC(8s, schar, schar, float);
|
|
DEF_CVT_SCALE_FUNC(16u8s, ushort, schar, float);
|
|
DEF_CVT_SCALE_FUNC(16s8s, short, schar, float);
|
|
DEF_CVT_SCALE_FUNC(32s8s, int, schar, float);
|
|
DEF_CVT_SCALE_FUNC(32f8s, float, schar, float);
|
|
DEF_CVT_SCALE_FUNC(64f8s, double, schar, float);
|
|
|
|
DEF_CVT_SCALE_FUNC(8u16u, uchar, ushort, float);
|
|
DEF_CVT_SCALE_FUNC(8s16u, schar, ushort, float);
|
|
DEF_CVT_SCALE_FUNC(16u, ushort, ushort, float);
|
|
DEF_CVT_SCALE_FUNC(16s16u, short, ushort, float);
|
|
DEF_CVT_SCALE_FUNC(32s16u, int, ushort, float);
|
|
DEF_CVT_SCALE_FUNC(32f16u, float, ushort, float);
|
|
DEF_CVT_SCALE_FUNC(64f16u, double, ushort, float);
|
|
|
|
DEF_CVT_SCALE_FUNC(8u16s, uchar, short, float);
|
|
DEF_CVT_SCALE_FUNC(8s16s, schar, short, float);
|
|
DEF_CVT_SCALE_FUNC(16u16s, ushort, short, float);
|
|
DEF_CVT_SCALE_FUNC(16s, short, short, float);
|
|
DEF_CVT_SCALE_FUNC(32s16s, int, short, float);
|
|
DEF_CVT_SCALE_FUNC(32f16s, float, short, float);
|
|
DEF_CVT_SCALE_FUNC(64f16s, double, short, float);
|
|
|
|
DEF_CVT_SCALE_FUNC(8u32s, uchar, int, float);
|
|
DEF_CVT_SCALE_FUNC(8s32s, schar, int, float);
|
|
DEF_CVT_SCALE_FUNC(16u32s, ushort, int, float);
|
|
DEF_CVT_SCALE_FUNC(16s32s, short, int, float);
|
|
DEF_CVT_SCALE_FUNC(32s, int, int, double);
|
|
DEF_CVT_SCALE_FUNC(32f32s, float, int, float);
|
|
DEF_CVT_SCALE_FUNC(64f32s, double, int, double);
|
|
|
|
DEF_CVT_SCALE_FUNC(8u32f, uchar, float, float);
|
|
DEF_CVT_SCALE_FUNC(8s32f, schar, float, float);
|
|
DEF_CVT_SCALE_FUNC(16u32f, ushort, float, float);
|
|
DEF_CVT_SCALE_FUNC(16s32f, short, float, float);
|
|
DEF_CVT_SCALE_FUNC(32s32f, int, float, double);
|
|
DEF_CVT_SCALE_FUNC(32f, float, float, float);
|
|
DEF_CVT_SCALE_FUNC(64f32f, double, float, double);
|
|
|
|
DEF_CVT_SCALE_FUNC(8u64f, uchar, double, double);
|
|
DEF_CVT_SCALE_FUNC(8s64f, schar, double, double);
|
|
DEF_CVT_SCALE_FUNC(16u64f, ushort, double, double);
|
|
DEF_CVT_SCALE_FUNC(16s64f, short, double, double);
|
|
DEF_CVT_SCALE_FUNC(32s64f, int, double, double);
|
|
DEF_CVT_SCALE_FUNC(32f64f, float, double, double);
|
|
DEF_CVT_SCALE_FUNC(64f, double, double, double);
|
|
|
|
DEF_CPY_FUNC(8u, uchar);
|
|
DEF_CVT_FUNC(8s8u, schar, uchar);
|
|
DEF_CVT_FUNC(16u8u, ushort, uchar);
|
|
DEF_CVT_FUNC(16s8u, short, uchar);
|
|
DEF_CVT_FUNC(32s8u, int, uchar);
|
|
DEF_CVT_FUNC(32f8u, float, uchar);
|
|
DEF_CVT_FUNC(64f8u, double, uchar);
|
|
|
|
DEF_CVT_FUNC(8u8s, uchar, schar);
|
|
DEF_CVT_FUNC(16u8s, ushort, schar);
|
|
DEF_CVT_FUNC(16s8s, short, schar);
|
|
DEF_CVT_FUNC(32s8s, int, schar);
|
|
DEF_CVT_FUNC(32f8s, float, schar);
|
|
DEF_CVT_FUNC(64f8s, double, schar);
|
|
|
|
DEF_CVT_FUNC(8u16u, uchar, ushort);
|
|
DEF_CVT_FUNC(8s16u, schar, ushort);
|
|
DEF_CPY_FUNC(16u, ushort);
|
|
DEF_CVT_FUNC(16s16u, short, ushort);
|
|
DEF_CVT_FUNC(32s16u, int, ushort);
|
|
DEF_CVT_FUNC(32f16u, float, ushort);
|
|
DEF_CVT_FUNC(64f16u, double, ushort);
|
|
|
|
DEF_CVT_FUNC(8u16s, uchar, short);
|
|
DEF_CVT_FUNC(8s16s, schar, short);
|
|
DEF_CVT_FUNC(16u16s, ushort, short);
|
|
DEF_CVT_FUNC(32s16s, int, short);
|
|
DEF_CVT_FUNC(32f16s, float, short);
|
|
DEF_CVT_FUNC(64f16s, double, short);
|
|
|
|
DEF_CVT_FUNC(8u32s, uchar, int);
|
|
DEF_CVT_FUNC(8s32s, schar, int);
|
|
DEF_CVT_FUNC(16u32s, ushort, int);
|
|
DEF_CVT_FUNC(16s32s, short, int);
|
|
DEF_CPY_FUNC(32s, int);
|
|
DEF_CVT_FUNC(32f32s, float, int);
|
|
DEF_CVT_FUNC(64f32s, double, int);
|
|
|
|
DEF_CVT_FUNC(8u32f, uchar, float);
|
|
DEF_CVT_FUNC(8s32f, schar, float);
|
|
DEF_CVT_FUNC(16u32f, ushort, float);
|
|
DEF_CVT_FUNC(16s32f, short, float);
|
|
DEF_CVT_FUNC(32s32f, int, float);
|
|
DEF_CVT_FUNC(64f32f, double, float);
|
|
|
|
DEF_CVT_FUNC(8u64f, uchar, double);
|
|
DEF_CVT_FUNC(8s64f, schar, double);
|
|
DEF_CVT_FUNC(16u64f, ushort, double);
|
|
DEF_CVT_FUNC(16s64f, short, double);
|
|
DEF_CVT_FUNC(32s64f, int, double);
|
|
DEF_CVT_FUNC(32f64f, float, double);
|
|
DEF_CPY_FUNC(64s, int64);
|
|
|
|
static BinaryFunc getCvtScaleAbsFunc(int depth)
|
|
{
|
|
static BinaryFunc cvtScaleAbsTab[] =
|
|
{
|
|
(BinaryFunc)cvtScaleAbs8u, (BinaryFunc)cvtScaleAbs8s8u, (BinaryFunc)cvtScaleAbs16u8u,
|
|
(BinaryFunc)cvtScaleAbs16s8u, (BinaryFunc)cvtScaleAbs32s8u, (BinaryFunc)cvtScaleAbs32f8u,
|
|
(BinaryFunc)cvtScaleAbs64f8u, 0
|
|
};
|
|
|
|
return cvtScaleAbsTab[depth];
|
|
}
|
|
|
|
BinaryFunc getConvertFunc(int sdepth, int ddepth)
|
|
{
|
|
static BinaryFunc cvtTab[][8] =
|
|
{
|
|
{
|
|
(BinaryFunc)(cvt8u), (BinaryFunc)GET_OPTIMIZED(cvt8s8u), (BinaryFunc)GET_OPTIMIZED(cvt16u8u),
|
|
(BinaryFunc)GET_OPTIMIZED(cvt16s8u), (BinaryFunc)GET_OPTIMIZED(cvt32s8u), (BinaryFunc)GET_OPTIMIZED(cvt32f8u),
|
|
(BinaryFunc)GET_OPTIMIZED(cvt64f8u), 0
|
|
},
|
|
{
|
|
(BinaryFunc)GET_OPTIMIZED(cvt8u8s), (BinaryFunc)cvt8u, (BinaryFunc)GET_OPTIMIZED(cvt16u8s),
|
|
(BinaryFunc)GET_OPTIMIZED(cvt16s8s), (BinaryFunc)GET_OPTIMIZED(cvt32s8s), (BinaryFunc)GET_OPTIMIZED(cvt32f8s),
|
|
(BinaryFunc)GET_OPTIMIZED(cvt64f8s), 0
|
|
},
|
|
{
|
|
(BinaryFunc)GET_OPTIMIZED(cvt8u16u), (BinaryFunc)GET_OPTIMIZED(cvt8s16u), (BinaryFunc)cvt16u,
|
|
(BinaryFunc)GET_OPTIMIZED(cvt16s16u), (BinaryFunc)GET_OPTIMIZED(cvt32s16u), (BinaryFunc)GET_OPTIMIZED(cvt32f16u),
|
|
(BinaryFunc)GET_OPTIMIZED(cvt64f16u), 0
|
|
},
|
|
{
|
|
(BinaryFunc)GET_OPTIMIZED(cvt8u16s), (BinaryFunc)GET_OPTIMIZED(cvt8s16s), (BinaryFunc)GET_OPTIMIZED(cvt16u16s),
|
|
(BinaryFunc)cvt16u, (BinaryFunc)GET_OPTIMIZED(cvt32s16s), (BinaryFunc)GET_OPTIMIZED(cvt32f16s),
|
|
(BinaryFunc)GET_OPTIMIZED(cvt64f16s), 0
|
|
},
|
|
{
|
|
(BinaryFunc)GET_OPTIMIZED(cvt8u32s), (BinaryFunc)GET_OPTIMIZED(cvt8s32s), (BinaryFunc)GET_OPTIMIZED(cvt16u32s),
|
|
(BinaryFunc)GET_OPTIMIZED(cvt16s32s), (BinaryFunc)cvt32s, (BinaryFunc)GET_OPTIMIZED(cvt32f32s),
|
|
(BinaryFunc)GET_OPTIMIZED(cvt64f32s), 0
|
|
},
|
|
{
|
|
(BinaryFunc)GET_OPTIMIZED(cvt8u32f), (BinaryFunc)GET_OPTIMIZED(cvt8s32f), (BinaryFunc)GET_OPTIMIZED(cvt16u32f),
|
|
(BinaryFunc)GET_OPTIMIZED(cvt16s32f), (BinaryFunc)GET_OPTIMIZED(cvt32s32f), (BinaryFunc)cvt32s,
|
|
(BinaryFunc)GET_OPTIMIZED(cvt64f32f), 0
|
|
},
|
|
{
|
|
(BinaryFunc)GET_OPTIMIZED(cvt8u64f), (BinaryFunc)GET_OPTIMIZED(cvt8s64f), (BinaryFunc)GET_OPTIMIZED(cvt16u64f),
|
|
(BinaryFunc)GET_OPTIMIZED(cvt16s64f), (BinaryFunc)GET_OPTIMIZED(cvt32s64f), (BinaryFunc)GET_OPTIMIZED(cvt32f64f),
|
|
(BinaryFunc)(cvt64s), 0
|
|
},
|
|
{
|
|
0, 0, 0, 0, 0, 0, 0, 0
|
|
}
|
|
};
|
|
|
|
return cvtTab[CV_MAT_DEPTH(ddepth)][CV_MAT_DEPTH(sdepth)];
|
|
}
|
|
|
|
static BinaryFunc getConvertScaleFunc(int sdepth, int ddepth)
|
|
{
|
|
static BinaryFunc cvtScaleTab[][8] =
|
|
{
|
|
{
|
|
(BinaryFunc)GET_OPTIMIZED(cvtScale8u), (BinaryFunc)GET_OPTIMIZED(cvtScale8s8u), (BinaryFunc)GET_OPTIMIZED(cvtScale16u8u),
|
|
(BinaryFunc)GET_OPTIMIZED(cvtScale16s8u), (BinaryFunc)GET_OPTIMIZED(cvtScale32s8u), (BinaryFunc)GET_OPTIMIZED(cvtScale32f8u),
|
|
(BinaryFunc)cvtScale64f8u, 0
|
|
},
|
|
{
|
|
(BinaryFunc)GET_OPTIMIZED(cvtScale8u8s), (BinaryFunc)GET_OPTIMIZED(cvtScale8s), (BinaryFunc)GET_OPTIMIZED(cvtScale16u8s),
|
|
(BinaryFunc)GET_OPTIMIZED(cvtScale16s8s), (BinaryFunc)GET_OPTIMIZED(cvtScale32s8s), (BinaryFunc)GET_OPTIMIZED(cvtScale32f8s),
|
|
(BinaryFunc)cvtScale64f8s, 0
|
|
},
|
|
{
|
|
(BinaryFunc)GET_OPTIMIZED(cvtScale8u16u), (BinaryFunc)GET_OPTIMIZED(cvtScale8s16u), (BinaryFunc)GET_OPTIMIZED(cvtScale16u),
|
|
(BinaryFunc)GET_OPTIMIZED(cvtScale16s16u), (BinaryFunc)GET_OPTIMIZED(cvtScale32s16u), (BinaryFunc)GET_OPTIMIZED(cvtScale32f16u),
|
|
(BinaryFunc)cvtScale64f16u, 0
|
|
},
|
|
{
|
|
(BinaryFunc)GET_OPTIMIZED(cvtScale8u16s), (BinaryFunc)GET_OPTIMIZED(cvtScale8s16s), (BinaryFunc)GET_OPTIMIZED(cvtScale16u16s),
|
|
(BinaryFunc)GET_OPTIMIZED(cvtScale16s), (BinaryFunc)GET_OPTIMIZED(cvtScale32s16s), (BinaryFunc)GET_OPTIMIZED(cvtScale32f16s),
|
|
(BinaryFunc)cvtScale64f16s, 0
|
|
},
|
|
{
|
|
(BinaryFunc)GET_OPTIMIZED(cvtScale8u32s), (BinaryFunc)GET_OPTIMIZED(cvtScale8s32s), (BinaryFunc)GET_OPTIMIZED(cvtScale16u32s),
|
|
(BinaryFunc)GET_OPTIMIZED(cvtScale16s32s), (BinaryFunc)GET_OPTIMIZED(cvtScale32s), (BinaryFunc)GET_OPTIMIZED(cvtScale32f32s),
|
|
(BinaryFunc)cvtScale64f32s, 0
|
|
},
|
|
{
|
|
(BinaryFunc)GET_OPTIMIZED(cvtScale8u32f), (BinaryFunc)GET_OPTIMIZED(cvtScale8s32f), (BinaryFunc)GET_OPTIMIZED(cvtScale16u32f),
|
|
(BinaryFunc)GET_OPTIMIZED(cvtScale16s32f), (BinaryFunc)GET_OPTIMIZED(cvtScale32s32f), (BinaryFunc)GET_OPTIMIZED(cvtScale32f),
|
|
(BinaryFunc)cvtScale64f32f, 0
|
|
},
|
|
{
|
|
(BinaryFunc)cvtScale8u64f, (BinaryFunc)cvtScale8s64f, (BinaryFunc)cvtScale16u64f,
|
|
(BinaryFunc)cvtScale16s64f, (BinaryFunc)cvtScale32s64f, (BinaryFunc)cvtScale32f64f,
|
|
(BinaryFunc)cvtScale64f, 0
|
|
},
|
|
{
|
|
0, 0, 0, 0, 0, 0, 0, 0
|
|
}
|
|
};
|
|
|
|
return cvtScaleTab[CV_MAT_DEPTH(ddepth)][CV_MAT_DEPTH(sdepth)];
|
|
}
|
|
|
|
}
|
|
|
|
void cv::convertScaleAbs( InputArray _src, OutputArray _dst, double alpha, double beta )
|
|
{
|
|
Mat src = _src.getMat();
|
|
int cn = src.channels();
|
|
double scale[] = {alpha, beta};
|
|
_dst.create( src.dims, src.size, CV_8UC(cn) );
|
|
Mat dst = _dst.getMat();
|
|
BinaryFunc func = getCvtScaleAbsFunc(src.depth());
|
|
CV_Assert( func != 0 );
|
|
|
|
if( src.dims <= 2 )
|
|
{
|
|
Size sz = getContinuousSize(src, dst, cn);
|
|
func( src.data, src.step, 0, 0, dst.data, dst.step, sz, scale );
|
|
}
|
|
else
|
|
{
|
|
const Mat* arrays[] = {&src, &dst, 0};
|
|
uchar* ptrs[2];
|
|
NAryMatIterator it(arrays, ptrs);
|
|
Size sz((int)it.size*cn, 1);
|
|
|
|
for( size_t i = 0; i < it.nplanes; i++, ++it )
|
|
func( ptrs[0], 0, 0, 0, ptrs[1], 0, sz, scale );
|
|
}
|
|
}
|
|
|
|
void cv::Mat::convertTo(OutputArray _dst, int _type, double alpha, double beta) const
|
|
{
|
|
bool noScale = fabs(alpha-1) < DBL_EPSILON && fabs(beta) < DBL_EPSILON;
|
|
|
|
if( _type < 0 )
|
|
_type = _dst.fixedType() ? _dst.type() : type();
|
|
else
|
|
_type = CV_MAKETYPE(CV_MAT_DEPTH(_type), channels());
|
|
|
|
int sdepth = depth(), ddepth = CV_MAT_DEPTH(_type);
|
|
if( sdepth == ddepth && noScale )
|
|
{
|
|
copyTo(_dst);
|
|
return;
|
|
}
|
|
|
|
Mat src = *this;
|
|
|
|
BinaryFunc func = noScale ? getConvertFunc(sdepth, ddepth) : getConvertScaleFunc(sdepth, ddepth);
|
|
double scale[] = {alpha, beta};
|
|
int cn = channels();
|
|
CV_Assert( func != 0 );
|
|
|
|
if( dims <= 2 )
|
|
{
|
|
_dst.create( size(), _type );
|
|
Mat dst = _dst.getMat();
|
|
Size sz = getContinuousSize(src, dst, cn);
|
|
func( src.data, src.step, 0, 0, dst.data, dst.step, sz, scale );
|
|
}
|
|
else
|
|
{
|
|
_dst.create( dims, size, _type );
|
|
Mat dst = _dst.getMat();
|
|
const Mat* arrays[] = {&src, &dst, 0};
|
|
uchar* ptrs[2];
|
|
NAryMatIterator it(arrays, ptrs);
|
|
Size sz((int)(it.size*cn), 1);
|
|
|
|
for( size_t i = 0; i < it.nplanes; i++, ++it )
|
|
func(ptrs[0], 0, 0, 0, ptrs[1], 0, sz, scale);
|
|
}
|
|
}
|
|
|
|
/****************************************************************************************\
|
|
* LUT Transform *
|
|
\****************************************************************************************/
|
|
|
|
namespace cv
|
|
{
|
|
|
|
template<typename T> static void
|
|
LUT8u_( const uchar* src, const T* lut, T* dst, int len, int cn, int lutcn )
|
|
{
|
|
if( lutcn == 1 )
|
|
{
|
|
for( int i = 0; i < len*cn; i++ )
|
|
dst[i] = lut[src[i]];
|
|
}
|
|
else
|
|
{
|
|
for( int i = 0; i < len*cn; i += cn )
|
|
for( int k = 0; k < cn; k++ )
|
|
dst[i+k] = lut[src[i+k]*cn+k];
|
|
}
|
|
}
|
|
|
|
static void LUT8u_8u( const uchar* src, const uchar* lut, uchar* dst, int len, int cn, int lutcn )
|
|
{
|
|
LUT8u_( src, lut, dst, len, cn, lutcn );
|
|
}
|
|
|
|
static void LUT8u_8s( const uchar* src, const schar* lut, schar* dst, int len, int cn, int lutcn )
|
|
{
|
|
LUT8u_( src, lut, dst, len, cn, lutcn );
|
|
}
|
|
|
|
static void LUT8u_16u( const uchar* src, const ushort* lut, ushort* dst, int len, int cn, int lutcn )
|
|
{
|
|
LUT8u_( src, lut, dst, len, cn, lutcn );
|
|
}
|
|
|
|
static void LUT8u_16s( const uchar* src, const short* lut, short* dst, int len, int cn, int lutcn )
|
|
{
|
|
LUT8u_( src, lut, dst, len, cn, lutcn );
|
|
}
|
|
|
|
static void LUT8u_32s( const uchar* src, const int* lut, int* dst, int len, int cn, int lutcn )
|
|
{
|
|
LUT8u_( src, lut, dst, len, cn, lutcn );
|
|
}
|
|
|
|
static void LUT8u_32f( const uchar* src, const float* lut, float* dst, int len, int cn, int lutcn )
|
|
{
|
|
LUT8u_( src, lut, dst, len, cn, lutcn );
|
|
}
|
|
|
|
static void LUT8u_64f( const uchar* src, const double* lut, double* dst, int len, int cn, int lutcn )
|
|
{
|
|
LUT8u_( src, lut, dst, len, cn, lutcn );
|
|
}
|
|
|
|
typedef void (*LUTFunc)( const uchar* src, const uchar* lut, uchar* dst, int len, int cn, int lutcn );
|
|
|
|
static LUTFunc lutTab[] =
|
|
{
|
|
(LUTFunc)LUT8u_8u, (LUTFunc)LUT8u_8s, (LUTFunc)LUT8u_16u, (LUTFunc)LUT8u_16s,
|
|
(LUTFunc)LUT8u_32s, (LUTFunc)LUT8u_32f, (LUTFunc)LUT8u_64f, 0
|
|
};
|
|
|
|
}
|
|
|
|
void cv::LUT( InputArray _src, InputArray _lut, OutputArray _dst )
|
|
{
|
|
Mat src = _src.getMat(), lut = _lut.getMat();
|
|
int cn = src.channels();
|
|
int lutcn = lut.channels();
|
|
|
|
CV_Assert( (lutcn == cn || lutcn == 1) &&
|
|
lut.total() == 256 && lut.isContinuous() &&
|
|
(src.depth() == CV_8U || src.depth() == CV_8S) );
|
|
_dst.create( src.dims, src.size, CV_MAKETYPE(lut.depth(), cn));
|
|
Mat dst = _dst.getMat();
|
|
|
|
LUTFunc func = lutTab[lut.depth()];
|
|
CV_Assert( func != 0 );
|
|
|
|
const Mat* arrays[] = {&src, &dst, 0};
|
|
uchar* ptrs[2];
|
|
NAryMatIterator it(arrays, ptrs);
|
|
int len = (int)it.size;
|
|
|
|
for( size_t i = 0; i < it.nplanes; i++, ++it )
|
|
func(ptrs[0], lut.data, ptrs[1], len, cn, lutcn);
|
|
}
|
|
|
|
|
|
void cv::normalize( InputArray _src, OutputArray _dst, double a, double b,
|
|
int norm_type, int rtype, InputArray _mask )
|
|
{
|
|
Mat src = _src.getMat(), mask = _mask.getMat();
|
|
|
|
double scale = 1, shift = 0;
|
|
if( norm_type == CV_MINMAX )
|
|
{
|
|
double smin = 0, smax = 0;
|
|
double dmin = MIN( a, b ), dmax = MAX( a, b );
|
|
minMaxLoc( _src, &smin, &smax, 0, 0, mask );
|
|
scale = (dmax - dmin)*(smax - smin > DBL_EPSILON ? 1./(smax - smin) : 0);
|
|
shift = dmin - smin*scale;
|
|
}
|
|
else if( norm_type == CV_L2 || norm_type == CV_L1 || norm_type == CV_C )
|
|
{
|
|
scale = norm( src, norm_type, mask );
|
|
scale = scale > DBL_EPSILON ? a/scale : 0.;
|
|
shift = 0;
|
|
}
|
|
else
|
|
CV_Error( CV_StsBadArg, "Unknown/unsupported norm type" );
|
|
|
|
if( rtype < 0 )
|
|
rtype = _dst.fixedType() ? _dst.depth() : src.depth();
|
|
|
|
_dst.create(src.dims, src.size, CV_MAKETYPE(rtype, src.channels()));
|
|
Mat dst = _dst.getMat();
|
|
|
|
if( !mask.data )
|
|
src.convertTo( dst, rtype, scale, shift );
|
|
else
|
|
{
|
|
Mat temp;
|
|
src.convertTo( temp, rtype, scale, shift );
|
|
temp.copyTo( dst, mask );
|
|
}
|
|
}
|
|
|
|
CV_IMPL void
|
|
cvSplit( const void* srcarr, void* dstarr0, void* dstarr1, void* dstarr2, void* dstarr3 )
|
|
{
|
|
void* dptrs[] = { dstarr0, dstarr1, dstarr2, dstarr3 };
|
|
cv::Mat src = cv::cvarrToMat(srcarr);
|
|
int i, j, nz = 0;
|
|
for( i = 0; i < 4; i++ )
|
|
nz += dptrs[i] != 0;
|
|
CV_Assert( nz > 0 );
|
|
std::vector<cv::Mat> dvec(nz);
|
|
std::vector<int> pairs(nz*2);
|
|
|
|
for( i = j = 0; i < 4; i++ )
|
|
{
|
|
if( dptrs[i] != 0 )
|
|
{
|
|
dvec[j] = cv::cvarrToMat(dptrs[i]);
|
|
CV_Assert( dvec[j].size() == src.size() );
|
|
CV_Assert( dvec[j].depth() == src.depth() );
|
|
CV_Assert( dvec[j].channels() == 1 );
|
|
CV_Assert( i < src.channels() );
|
|
pairs[j*2] = i;
|
|
pairs[j*2+1] = j;
|
|
j++;
|
|
}
|
|
}
|
|
if( nz == src.channels() )
|
|
cv::split( src, dvec );
|
|
else
|
|
{
|
|
cv::mixChannels( &src, 1, &dvec[0], nz, &pairs[0], nz );
|
|
}
|
|
}
|
|
|
|
|
|
CV_IMPL void
|
|
cvMerge( const void* srcarr0, const void* srcarr1, const void* srcarr2,
|
|
const void* srcarr3, void* dstarr )
|
|
{
|
|
const void* sptrs[] = { srcarr0, srcarr1, srcarr2, srcarr3 };
|
|
cv::Mat dst = cv::cvarrToMat(dstarr);
|
|
int i, j, nz = 0;
|
|
for( i = 0; i < 4; i++ )
|
|
nz += sptrs[i] != 0;
|
|
CV_Assert( nz > 0 );
|
|
std::vector<cv::Mat> svec(nz);
|
|
std::vector<int> pairs(nz*2);
|
|
|
|
for( i = j = 0; i < 4; i++ )
|
|
{
|
|
if( sptrs[i] != 0 )
|
|
{
|
|
svec[j] = cv::cvarrToMat(sptrs[i]);
|
|
CV_Assert( svec[j].size == dst.size &&
|
|
svec[j].depth() == dst.depth() &&
|
|
svec[j].channels() == 1 && i < dst.channels() );
|
|
pairs[j*2] = j;
|
|
pairs[j*2+1] = i;
|
|
j++;
|
|
}
|
|
}
|
|
|
|
if( nz == dst.channels() )
|
|
cv::merge( svec, dst );
|
|
else
|
|
{
|
|
cv::mixChannels( &svec[0], nz, &dst, 1, &pairs[0], nz );
|
|
}
|
|
}
|
|
|
|
|
|
CV_IMPL void
|
|
cvMixChannels( const CvArr** src, int src_count,
|
|
CvArr** dst, int dst_count,
|
|
const int* from_to, int pair_count )
|
|
{
|
|
cv::AutoBuffer<cv::Mat> buf(src_count + dst_count);
|
|
|
|
int i;
|
|
for( i = 0; i < src_count; i++ )
|
|
buf[i] = cv::cvarrToMat(src[i]);
|
|
for( i = 0; i < dst_count; i++ )
|
|
buf[i+src_count] = cv::cvarrToMat(dst[i]);
|
|
cv::mixChannels(&buf[0], src_count, &buf[src_count], dst_count, from_to, pair_count);
|
|
}
|
|
|
|
CV_IMPL void
|
|
cvConvertScaleAbs( const void* srcarr, void* dstarr,
|
|
double scale, double shift )
|
|
{
|
|
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr);
|
|
CV_Assert( src.size == dst.size && dst.type() == CV_8UC(src.channels()));
|
|
cv::convertScaleAbs( src, dst, scale, shift );
|
|
}
|
|
|
|
CV_IMPL void
|
|
cvConvertScale( const void* srcarr, void* dstarr,
|
|
double scale, double shift )
|
|
{
|
|
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr);
|
|
|
|
CV_Assert( src.size == dst.size && src.channels() == dst.channels() );
|
|
src.convertTo(dst, dst.type(), scale, shift);
|
|
}
|
|
|
|
CV_IMPL void cvLUT( const void* srcarr, void* dstarr, const void* lutarr )
|
|
{
|
|
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr), lut = cv::cvarrToMat(lutarr);
|
|
|
|
CV_Assert( dst.size() == src.size() && dst.type() == CV_MAKETYPE(lut.depth(), src.channels()) );
|
|
cv::LUT( src, lut, dst );
|
|
}
|
|
|
|
CV_IMPL void cvNormalize( const CvArr* srcarr, CvArr* dstarr,
|
|
double a, double b, int norm_type, const CvArr* maskarr )
|
|
{
|
|
cv::Mat src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr), mask;
|
|
if( maskarr )
|
|
mask = cv::cvarrToMat(maskarr);
|
|
CV_Assert( dst.size() == src.size() && src.channels() == dst.channels() );
|
|
cv::normalize( src, dst, a, b, norm_type, dst.type(), mask );
|
|
}
|
|
|
|
/* End of file. */ |