mirror of
https://github.com/opencv/opencv.git
synced 2024-12-05 01:39:13 +08:00
578 lines
21 KiB
C++
578 lines
21 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other GpuMaterials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or bpied warranties, including, but not limited to, the bpied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
|
|
using namespace cv;
|
|
using namespace cv::gpu;
|
|
using namespace std;
|
|
|
|
#if !defined (HAVE_CUDA) || defined (CUDA_DISABLER)
|
|
|
|
void cv::gpu::gemm(const GpuMat&, const GpuMat&, double, const GpuMat&, double, GpuMat&, int, Stream&) { throw_nogpu(); }
|
|
void cv::gpu::transpose(const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
|
|
void cv::gpu::flip(const GpuMat&, GpuMat&, int, Stream&) { throw_nogpu(); }
|
|
void cv::gpu::LUT(const GpuMat&, const Mat&, GpuMat&, Stream&) { throw_nogpu(); }
|
|
void cv::gpu::magnitude(const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
|
|
void cv::gpu::magnitudeSqr(const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
|
|
void cv::gpu::magnitude(const GpuMat&, const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
|
|
void cv::gpu::magnitudeSqr(const GpuMat&, const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
|
|
void cv::gpu::phase(const GpuMat&, const GpuMat&, GpuMat&, bool, Stream&) { throw_nogpu(); }
|
|
void cv::gpu::cartToPolar(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, bool, Stream&) { throw_nogpu(); }
|
|
void cv::gpu::polarToCart(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, bool, Stream&) { throw_nogpu(); }
|
|
void cv::gpu::normalize(const GpuMat&, GpuMat&, double, double, int, int, const GpuMat&) { throw_nogpu(); }
|
|
void cv::gpu::normalize(const GpuMat&, GpuMat&, double, double, int, int, const GpuMat&, GpuMat&, GpuMat&) { throw_nogpu(); }
|
|
|
|
#else /* !defined (HAVE_CUDA) */
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
// gemm
|
|
|
|
void cv::gpu::gemm(const GpuMat& src1, const GpuMat& src2, double alpha, const GpuMat& src3, double beta, GpuMat& dst, int flags, Stream& stream)
|
|
{
|
|
#ifndef HAVE_CUBLAS
|
|
(void)src1;
|
|
(void)src2;
|
|
(void)alpha;
|
|
(void)src3;
|
|
(void)beta;
|
|
(void)dst;
|
|
(void)flags;
|
|
(void)stream;
|
|
CV_Error(CV_StsNotImplemented, "The library was build without CUBLAS");
|
|
#else
|
|
// CUBLAS works with column-major matrices
|
|
|
|
CV_Assert(src1.type() == CV_32FC1 || src1.type() == CV_32FC2 || src1.type() == CV_64FC1 || src1.type() == CV_64FC2);
|
|
CV_Assert(src2.type() == src1.type() && (src3.empty() || src3.type() == src1.type()));
|
|
|
|
if (src1.depth() == CV_64F)
|
|
{
|
|
if (!deviceSupports(NATIVE_DOUBLE))
|
|
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
|
|
}
|
|
|
|
bool tr1 = (flags & GEMM_1_T) != 0;
|
|
bool tr2 = (flags & GEMM_2_T) != 0;
|
|
bool tr3 = (flags & GEMM_3_T) != 0;
|
|
|
|
if (src1.type() == CV_64FC2)
|
|
{
|
|
if (tr1 || tr2 || tr3)
|
|
CV_Error(CV_StsNotImplemented, "transpose operation doesn't implemented for CV_64FC2 type");
|
|
}
|
|
|
|
Size src1Size = tr1 ? Size(src1.rows, src1.cols) : src1.size();
|
|
Size src2Size = tr2 ? Size(src2.rows, src2.cols) : src2.size();
|
|
Size src3Size = tr3 ? Size(src3.rows, src3.cols) : src3.size();
|
|
Size dstSize(src2Size.width, src1Size.height);
|
|
|
|
CV_Assert(src1Size.width == src2Size.height);
|
|
CV_Assert(src3.empty() || src3Size == dstSize);
|
|
|
|
dst.create(dstSize, src1.type());
|
|
|
|
if (beta != 0)
|
|
{
|
|
if (src3.empty())
|
|
{
|
|
if (stream)
|
|
stream.enqueueMemSet(dst, Scalar::all(0));
|
|
else
|
|
dst.setTo(Scalar::all(0));
|
|
}
|
|
else
|
|
{
|
|
if (tr3)
|
|
{
|
|
transpose(src3, dst, stream);
|
|
}
|
|
else
|
|
{
|
|
if (stream)
|
|
stream.enqueueCopy(src3, dst);
|
|
else
|
|
src3.copyTo(dst);
|
|
}
|
|
}
|
|
}
|
|
|
|
cublasHandle_t handle;
|
|
cublasSafeCall( cublasCreate_v2(&handle) );
|
|
|
|
cublasSafeCall( cublasSetStream_v2(handle, StreamAccessor::getStream(stream)) );
|
|
|
|
cublasSafeCall( cublasSetPointerMode_v2(handle, CUBLAS_POINTER_MODE_HOST) );
|
|
|
|
const float alphaf = static_cast<float>(alpha);
|
|
const float betaf = static_cast<float>(beta);
|
|
|
|
const cuComplex alphacf = make_cuComplex(alphaf, 0);
|
|
const cuComplex betacf = make_cuComplex(betaf, 0);
|
|
|
|
const cuDoubleComplex alphac = make_cuDoubleComplex(alpha, 0);
|
|
const cuDoubleComplex betac = make_cuDoubleComplex(beta, 0);
|
|
|
|
cublasOperation_t transa = tr2 ? CUBLAS_OP_T : CUBLAS_OP_N;
|
|
cublasOperation_t transb = tr1 ? CUBLAS_OP_T : CUBLAS_OP_N;
|
|
|
|
switch (src1.type())
|
|
{
|
|
case CV_32FC1:
|
|
cublasSafeCall( cublasSgemm_v2(handle, transa, transb, tr2 ? src2.rows : src2.cols, tr1 ? src1.cols : src1.rows, tr2 ? src2.cols : src2.rows,
|
|
&alphaf,
|
|
src2.ptr<float>(), static_cast<int>(src2.step / sizeof(float)),
|
|
src1.ptr<float>(), static_cast<int>(src1.step / sizeof(float)),
|
|
&betaf,
|
|
dst.ptr<float>(), static_cast<int>(dst.step / sizeof(float))) );
|
|
break;
|
|
|
|
case CV_64FC1:
|
|
cublasSafeCall( cublasDgemm_v2(handle, transa, transb, tr2 ? src2.rows : src2.cols, tr1 ? src1.cols : src1.rows, tr2 ? src2.cols : src2.rows,
|
|
&alpha,
|
|
src2.ptr<double>(), static_cast<int>(src2.step / sizeof(double)),
|
|
src1.ptr<double>(), static_cast<int>(src1.step / sizeof(double)),
|
|
&beta,
|
|
dst.ptr<double>(), static_cast<int>(dst.step / sizeof(double))) );
|
|
break;
|
|
|
|
case CV_32FC2:
|
|
cublasSafeCall( cublasCgemm_v2(handle, transa, transb, tr2 ? src2.rows : src2.cols, tr1 ? src1.cols : src1.rows, tr2 ? src2.cols : src2.rows,
|
|
&alphacf,
|
|
src2.ptr<cuComplex>(), static_cast<int>(src2.step / sizeof(cuComplex)),
|
|
src1.ptr<cuComplex>(), static_cast<int>(src1.step / sizeof(cuComplex)),
|
|
&betacf,
|
|
dst.ptr<cuComplex>(), static_cast<int>(dst.step / sizeof(cuComplex))) );
|
|
break;
|
|
|
|
case CV_64FC2:
|
|
cublasSafeCall( cublasZgemm_v2(handle, transa, transb, tr2 ? src2.rows : src2.cols, tr1 ? src1.cols : src1.rows, tr2 ? src2.cols : src2.rows,
|
|
&alphac,
|
|
src2.ptr<cuDoubleComplex>(), static_cast<int>(src2.step / sizeof(cuDoubleComplex)),
|
|
src1.ptr<cuDoubleComplex>(), static_cast<int>(src1.step / sizeof(cuDoubleComplex)),
|
|
&betac,
|
|
dst.ptr<cuDoubleComplex>(), static_cast<int>(dst.step / sizeof(cuDoubleComplex))) );
|
|
break;
|
|
}
|
|
|
|
cublasSafeCall( cublasDestroy_v2(handle) );
|
|
#endif
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
// transpose
|
|
|
|
void cv::gpu::transpose(const GpuMat& src, GpuMat& dst, Stream& s)
|
|
{
|
|
CV_Assert(src.elemSize() == 1 || src.elemSize() == 4 || src.elemSize() == 8);
|
|
|
|
dst.create( src.cols, src.rows, src.type() );
|
|
|
|
cudaStream_t stream = StreamAccessor::getStream(s);
|
|
|
|
if (src.elemSize() == 1)
|
|
{
|
|
NppStreamHandler h(stream);
|
|
|
|
NppiSize sz;
|
|
sz.width = src.cols;
|
|
sz.height = src.rows;
|
|
|
|
nppSafeCall( nppiTranspose_8u_C1R(src.ptr<Npp8u>(), static_cast<int>(src.step),
|
|
dst.ptr<Npp8u>(), static_cast<int>(dst.step), sz) );
|
|
}
|
|
else if (src.elemSize() == 4)
|
|
{
|
|
NppStStreamHandler h(stream);
|
|
|
|
NcvSize32u sz;
|
|
sz.width = src.cols;
|
|
sz.height = src.rows;
|
|
|
|
ncvSafeCall( nppiStTranspose_32u_C1R(const_cast<Ncv32u*>(src.ptr<Ncv32u>()), static_cast<int>(src.step),
|
|
dst.ptr<Ncv32u>(), static_cast<int>(dst.step), sz) );
|
|
}
|
|
else // if (src.elemSize() == 8)
|
|
{
|
|
if (!deviceSupports(NATIVE_DOUBLE))
|
|
CV_Error(CV_StsUnsupportedFormat, "The device doesn't support double");
|
|
|
|
NppStStreamHandler h(stream);
|
|
|
|
NcvSize32u sz;
|
|
sz.width = src.cols;
|
|
sz.height = src.rows;
|
|
|
|
ncvSafeCall( nppiStTranspose_64u_C1R(const_cast<Ncv64u*>(src.ptr<Ncv64u>()), static_cast<int>(src.step),
|
|
dst.ptr<Ncv64u>(), static_cast<int>(dst.step), sz) );
|
|
}
|
|
|
|
if (stream == 0)
|
|
cudaSafeCall( cudaDeviceSynchronize() );
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
// flip
|
|
|
|
namespace
|
|
{
|
|
template<int DEPTH> struct NppTypeTraits;
|
|
template<> struct NppTypeTraits<CV_8U> { typedef Npp8u npp_t; };
|
|
template<> struct NppTypeTraits<CV_8S> { typedef Npp8s npp_t; };
|
|
template<> struct NppTypeTraits<CV_16U> { typedef Npp16u npp_t; };
|
|
template<> struct NppTypeTraits<CV_16S> { typedef Npp16s npp_t; };
|
|
template<> struct NppTypeTraits<CV_32S> { typedef Npp32s npp_t; };
|
|
template<> struct NppTypeTraits<CV_32F> { typedef Npp32f npp_t; };
|
|
template<> struct NppTypeTraits<CV_64F> { typedef Npp64f npp_t; };
|
|
|
|
template <int DEPTH> struct NppMirrorFunc
|
|
{
|
|
typedef typename NppTypeTraits<DEPTH>::npp_t npp_t;
|
|
|
|
typedef NppStatus (*func_t)(const npp_t* pSrc, int nSrcStep, npp_t* pDst, int nDstStep, NppiSize oROI, NppiAxis flip);
|
|
};
|
|
|
|
template <int DEPTH, typename NppMirrorFunc<DEPTH>::func_t func> struct NppMirror
|
|
{
|
|
typedef typename NppMirrorFunc<DEPTH>::npp_t npp_t;
|
|
|
|
static void call(const GpuMat& src, GpuMat& dst, int flipCode, cudaStream_t stream)
|
|
{
|
|
NppStreamHandler h(stream);
|
|
|
|
NppiSize sz;
|
|
sz.width = src.cols;
|
|
sz.height = src.rows;
|
|
|
|
nppSafeCall( func(src.ptr<npp_t>(), static_cast<int>(src.step),
|
|
dst.ptr<npp_t>(), static_cast<int>(dst.step), sz,
|
|
(flipCode == 0 ? NPP_HORIZONTAL_AXIS : (flipCode > 0 ? NPP_VERTICAL_AXIS : NPP_BOTH_AXIS))) );
|
|
|
|
if (stream == 0)
|
|
cudaSafeCall( cudaDeviceSynchronize() );
|
|
}
|
|
};
|
|
}
|
|
|
|
void cv::gpu::flip(const GpuMat& src, GpuMat& dst, int flipCode, Stream& stream)
|
|
{
|
|
typedef void (*func_t)(const GpuMat& src, GpuMat& dst, int flipCode, cudaStream_t stream);
|
|
static const func_t funcs[6][4] =
|
|
{
|
|
{NppMirror<CV_8U, nppiMirror_8u_C1R>::call, 0, NppMirror<CV_8U, nppiMirror_8u_C3R>::call, NppMirror<CV_8U, nppiMirror_8u_C4R>::call},
|
|
{0,0,0,0},
|
|
{NppMirror<CV_16U, nppiMirror_16u_C1R>::call, 0, NppMirror<CV_16U, nppiMirror_16u_C3R>::call, NppMirror<CV_16U, nppiMirror_16u_C4R>::call},
|
|
{0,0,0,0},
|
|
{NppMirror<CV_32S, nppiMirror_32s_C1R>::call, 0, NppMirror<CV_32S, nppiMirror_32s_C3R>::call, NppMirror<CV_32S, nppiMirror_32s_C4R>::call},
|
|
{NppMirror<CV_32F, nppiMirror_32f_C1R>::call, 0, NppMirror<CV_32F, nppiMirror_32f_C3R>::call, NppMirror<CV_32F, nppiMirror_32f_C4R>::call}
|
|
};
|
|
|
|
CV_Assert(src.depth() == CV_8U || src.depth() == CV_16U || src.depth() == CV_32S || src.depth() == CV_32F);
|
|
CV_Assert(src.channels() == 1 || src.channels() == 3 || src.channels() == 4);
|
|
|
|
dst.create(src.size(), src.type());
|
|
|
|
funcs[src.depth()][src.channels() - 1](src, dst, flipCode, StreamAccessor::getStream(stream));
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
// LUT
|
|
|
|
void cv::gpu::LUT(const GpuMat& src, const Mat& lut, GpuMat& dst, Stream& s)
|
|
{
|
|
class LevelsInit
|
|
{
|
|
public:
|
|
Npp32s pLevels[256];
|
|
const Npp32s* pLevels3[3];
|
|
int nValues3[3];
|
|
|
|
#if (CUDA_VERSION > 4020)
|
|
GpuMat d_pLevels;
|
|
#endif
|
|
|
|
LevelsInit()
|
|
{
|
|
nValues3[0] = nValues3[1] = nValues3[2] = 256;
|
|
for (int i = 0; i < 256; ++i)
|
|
pLevels[i] = i;
|
|
|
|
|
|
#if (CUDA_VERSION <= 4020)
|
|
pLevels3[0] = pLevels3[1] = pLevels3[2] = pLevels;
|
|
#else
|
|
d_pLevels.upload(Mat(1, 256, CV_32S, pLevels));
|
|
pLevels3[0] = pLevels3[1] = pLevels3[2] = d_pLevels.ptr<Npp32s>();
|
|
#endif
|
|
}
|
|
};
|
|
static LevelsInit lvls;
|
|
|
|
int cn = src.channels();
|
|
|
|
CV_Assert(src.type() == CV_8UC1 || src.type() == CV_8UC3);
|
|
CV_Assert(lut.depth() == CV_8U && (lut.channels() == 1 || lut.channels() == cn) && lut.rows * lut.cols == 256 && lut.isContinuous());
|
|
|
|
dst.create(src.size(), CV_MAKETYPE(lut.depth(), cn));
|
|
|
|
NppiSize sz;
|
|
sz.height = src.rows;
|
|
sz.width = src.cols;
|
|
|
|
Mat nppLut;
|
|
lut.convertTo(nppLut, CV_32S);
|
|
|
|
cudaStream_t stream = StreamAccessor::getStream(s);
|
|
|
|
NppStreamHandler h(stream);
|
|
|
|
if (src.type() == CV_8UC1)
|
|
{
|
|
#if (CUDA_VERSION <= 4020)
|
|
nppSafeCall( nppiLUT_Linear_8u_C1R(src.ptr<Npp8u>(), static_cast<int>(src.step),
|
|
dst.ptr<Npp8u>(), static_cast<int>(dst.step), sz, nppLut.ptr<Npp32s>(), lvls.pLevels, 256) );
|
|
#else
|
|
GpuMat d_nppLut(Mat(1, 256, CV_32S, nppLut.data));
|
|
nppSafeCall( nppiLUT_Linear_8u_C1R(src.ptr<Npp8u>(), static_cast<int>(src.step),
|
|
dst.ptr<Npp8u>(), static_cast<int>(dst.step), sz, d_nppLut.ptr<Npp32s>(), lvls.d_pLevels.ptr<Npp32s>(), 256) );
|
|
#endif
|
|
}
|
|
else
|
|
{
|
|
const Npp32s* pValues3[3];
|
|
|
|
Mat nppLut3[3];
|
|
if (nppLut.channels() == 1)
|
|
{
|
|
#if (CUDA_VERSION <= 4020)
|
|
pValues3[0] = pValues3[1] = pValues3[2] = nppLut.ptr<Npp32s>();
|
|
#else
|
|
GpuMat d_nppLut(Mat(1, 256, CV_32S, nppLut.data));
|
|
pValues3[0] = pValues3[1] = pValues3[2] = d_nppLut.ptr<Npp32s>();
|
|
#endif
|
|
}
|
|
else
|
|
{
|
|
cv::split(nppLut, nppLut3);
|
|
|
|
#if (CUDA_VERSION <= 4020)
|
|
pValues3[0] = nppLut3[0].ptr<Npp32s>();
|
|
pValues3[1] = nppLut3[1].ptr<Npp32s>();
|
|
pValues3[2] = nppLut3[2].ptr<Npp32s>();
|
|
#else
|
|
GpuMat d_nppLut0(Mat(1, 256, CV_32S, nppLut3[0].data));
|
|
GpuMat d_nppLut1(Mat(1, 256, CV_32S, nppLut3[1].data));
|
|
GpuMat d_nppLut2(Mat(1, 256, CV_32S, nppLut3[2].data));
|
|
|
|
pValues3[0] = d_nppLut0.ptr<Npp32s>();
|
|
pValues3[1] = d_nppLut1.ptr<Npp32s>();
|
|
pValues3[2] = d_nppLut2.ptr<Npp32s>();
|
|
#endif
|
|
}
|
|
|
|
nppSafeCall( nppiLUT_Linear_8u_C3R(src.ptr<Npp8u>(), static_cast<int>(src.step),
|
|
dst.ptr<Npp8u>(), static_cast<int>(dst.step), sz, pValues3, lvls.pLevels3, lvls.nValues3) );
|
|
}
|
|
|
|
if (stream == 0)
|
|
cudaSafeCall( cudaDeviceSynchronize() );
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
// NPP magnitide
|
|
|
|
namespace
|
|
{
|
|
typedef NppStatus (*nppMagnitude_t)(const Npp32fc* pSrc, int nSrcStep, Npp32f* pDst, int nDstStep, NppiSize oSizeROI);
|
|
|
|
inline void npp_magnitude(const GpuMat& src, GpuMat& dst, nppMagnitude_t func, cudaStream_t stream)
|
|
{
|
|
CV_Assert(src.type() == CV_32FC2);
|
|
|
|
dst.create(src.size(), CV_32FC1);
|
|
|
|
NppiSize sz;
|
|
sz.width = src.cols;
|
|
sz.height = src.rows;
|
|
|
|
NppStreamHandler h(stream);
|
|
|
|
nppSafeCall( func(src.ptr<Npp32fc>(), static_cast<int>(src.step), dst.ptr<Npp32f>(), static_cast<int>(dst.step), sz) );
|
|
|
|
if (stream == 0)
|
|
cudaSafeCall( cudaDeviceSynchronize() );
|
|
}
|
|
}
|
|
|
|
void cv::gpu::magnitude(const GpuMat& src, GpuMat& dst, Stream& stream)
|
|
{
|
|
npp_magnitude(src, dst, nppiMagnitude_32fc32f_C1R, StreamAccessor::getStream(stream));
|
|
}
|
|
|
|
void cv::gpu::magnitudeSqr(const GpuMat& src, GpuMat& dst, Stream& stream)
|
|
{
|
|
npp_magnitude(src, dst, nppiMagnitudeSqr_32fc32f_C1R, StreamAccessor::getStream(stream));
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
// Polar <-> Cart
|
|
|
|
namespace cv { namespace gpu { namespace device
|
|
{
|
|
namespace mathfunc
|
|
{
|
|
void cartToPolar_gpu(PtrStepSzf x, PtrStepSzf y, PtrStepSzf mag, bool magSqr, PtrStepSzf angle, bool angleInDegrees, cudaStream_t stream);
|
|
void polarToCart_gpu(PtrStepSzf mag, PtrStepSzf angle, PtrStepSzf x, PtrStepSzf y, bool angleInDegrees, cudaStream_t stream);
|
|
}
|
|
}}}
|
|
|
|
namespace
|
|
{
|
|
inline void cartToPolar_caller(const GpuMat& x, const GpuMat& y, GpuMat* mag, bool magSqr, GpuMat* angle, bool angleInDegrees, cudaStream_t stream)
|
|
{
|
|
using namespace ::cv::gpu::device::mathfunc;
|
|
|
|
CV_Assert(x.size() == y.size() && x.type() == y.type());
|
|
CV_Assert(x.depth() == CV_32F);
|
|
|
|
if (mag)
|
|
mag->create(x.size(), x.type());
|
|
if (angle)
|
|
angle->create(x.size(), x.type());
|
|
|
|
GpuMat x1cn = x.reshape(1);
|
|
GpuMat y1cn = y.reshape(1);
|
|
GpuMat mag1cn = mag ? mag->reshape(1) : GpuMat();
|
|
GpuMat angle1cn = angle ? angle->reshape(1) : GpuMat();
|
|
|
|
cartToPolar_gpu(x1cn, y1cn, mag1cn, magSqr, angle1cn, angleInDegrees, stream);
|
|
}
|
|
|
|
inline void polarToCart_caller(const GpuMat& mag, const GpuMat& angle, GpuMat& x, GpuMat& y, bool angleInDegrees, cudaStream_t stream)
|
|
{
|
|
using namespace ::cv::gpu::device::mathfunc;
|
|
|
|
CV_Assert((mag.empty() || mag.size() == angle.size()) && mag.type() == angle.type());
|
|
CV_Assert(mag.depth() == CV_32F);
|
|
|
|
x.create(mag.size(), mag.type());
|
|
y.create(mag.size(), mag.type());
|
|
|
|
GpuMat mag1cn = mag.reshape(1);
|
|
GpuMat angle1cn = angle.reshape(1);
|
|
GpuMat x1cn = x.reshape(1);
|
|
GpuMat y1cn = y.reshape(1);
|
|
|
|
polarToCart_gpu(mag1cn, angle1cn, x1cn, y1cn, angleInDegrees, stream);
|
|
}
|
|
}
|
|
|
|
void cv::gpu::magnitude(const GpuMat& x, const GpuMat& y, GpuMat& dst, Stream& stream)
|
|
{
|
|
cartToPolar_caller(x, y, &dst, false, 0, false, StreamAccessor::getStream(stream));
|
|
}
|
|
|
|
void cv::gpu::magnitudeSqr(const GpuMat& x, const GpuMat& y, GpuMat& dst, Stream& stream)
|
|
{
|
|
cartToPolar_caller(x, y, &dst, true, 0, false, StreamAccessor::getStream(stream));
|
|
}
|
|
|
|
void cv::gpu::phase(const GpuMat& x, const GpuMat& y, GpuMat& angle, bool angleInDegrees, Stream& stream)
|
|
{
|
|
cartToPolar_caller(x, y, 0, false, &angle, angleInDegrees, StreamAccessor::getStream(stream));
|
|
}
|
|
|
|
void cv::gpu::cartToPolar(const GpuMat& x, const GpuMat& y, GpuMat& mag, GpuMat& angle, bool angleInDegrees, Stream& stream)
|
|
{
|
|
cartToPolar_caller(x, y, &mag, false, &angle, angleInDegrees, StreamAccessor::getStream(stream));
|
|
}
|
|
|
|
void cv::gpu::polarToCart(const GpuMat& magnitude, const GpuMat& angle, GpuMat& x, GpuMat& y, bool angleInDegrees, Stream& stream)
|
|
{
|
|
polarToCart_caller(magnitude, angle, x, y, angleInDegrees, StreamAccessor::getStream(stream));
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////
|
|
// normalize
|
|
|
|
void cv::gpu::normalize(const GpuMat& src, GpuMat& dst, double a, double b, int norm_type, int dtype, const GpuMat& mask)
|
|
{
|
|
GpuMat norm_buf;
|
|
GpuMat cvt_buf;
|
|
normalize(src, dst, a, b, norm_type, dtype, mask, norm_buf, cvt_buf);
|
|
}
|
|
|
|
void cv::gpu::normalize(const GpuMat& src, GpuMat& dst, double a, double b, int norm_type, int dtype, const GpuMat& mask, GpuMat& norm_buf, GpuMat& cvt_buf)
|
|
{
|
|
double scale = 1, shift = 0;
|
|
if (norm_type == NORM_MINMAX)
|
|
{
|
|
double smin = 0, smax = 0;
|
|
double dmin = std::min(a, b), dmax = std::max(a, b);
|
|
minMax(src, &smin, &smax, mask, norm_buf);
|
|
scale = (dmax - dmin) * (smax - smin > numeric_limits<double>::epsilon() ? 1.0 / (smax - smin) : 0.0);
|
|
shift = dmin - smin * scale;
|
|
}
|
|
else if (norm_type == NORM_L2 || norm_type == NORM_L1 || norm_type == NORM_INF)
|
|
{
|
|
scale = norm(src, norm_type, mask, norm_buf);
|
|
scale = scale > numeric_limits<double>::epsilon() ? a / scale : 0.0;
|
|
shift = 0;
|
|
}
|
|
else
|
|
{
|
|
CV_Error(CV_StsBadArg, "Unknown/unsupported norm type");
|
|
}
|
|
|
|
if (mask.empty())
|
|
{
|
|
src.convertTo(dst, dtype, scale, shift);
|
|
}
|
|
else
|
|
{
|
|
src.convertTo(cvt_buf, dtype, scale, shift);
|
|
cvt_buf.copyTo(dst, mask);
|
|
}
|
|
}
|
|
|
|
#endif /* !defined (HAVE_CUDA) */
|