mirror of
https://github.com/opencv/opencv.git
synced 2025-01-04 00:17:59 +08:00
536 lines
21 KiB
Common Lisp
536 lines
21 KiB
Common Lisp
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
|
|
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// @Authors
|
|
// Niko Li, newlife20080214@gmail.com
|
|
// Wang Weiyan, wangweiyanster@gmail.com
|
|
// Jia Haipeng, jiahaipeng95@gmail.com
|
|
// Nathan, liujun@multicorewareinc.com
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other oclMaterials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors as is and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//
|
|
|
|
#pragma OPENCL EXTENSION cl_amd_printf : enable
|
|
#define CV_HAAR_FEATURE_MAX 3
|
|
|
|
#define calc_sum(rect,offset) (sum[(rect).p0+offset] - sum[(rect).p1+offset] - sum[(rect).p2+offset] + sum[(rect).p3+offset])
|
|
#define calc_sum1(rect,offset,i) (sum[(rect).p0[i]+offset] - sum[(rect).p1[i]+offset] - sum[(rect).p2[i]+offset] + sum[(rect).p3[i]+offset])
|
|
|
|
typedef int sumtype;
|
|
typedef float sqsumtype;
|
|
|
|
typedef struct __attribute__((aligned (128))) GpuHidHaarFeature
|
|
{
|
|
struct __attribute__((aligned (32)))
|
|
{
|
|
int p0 __attribute__((aligned (4)));
|
|
int p1 __attribute__((aligned (4)));
|
|
int p2 __attribute__((aligned (4)));
|
|
int p3 __attribute__((aligned (4)));
|
|
float weight __attribute__((aligned (4)));
|
|
}
|
|
rect[CV_HAAR_FEATURE_MAX] __attribute__((aligned (32)));
|
|
}
|
|
GpuHidHaarFeature;
|
|
|
|
|
|
typedef struct __attribute__((aligned (128) )) GpuHidHaarTreeNode
|
|
{
|
|
int p[CV_HAAR_FEATURE_MAX][4] __attribute__((aligned (64)));
|
|
float weight[CV_HAAR_FEATURE_MAX] /*__attribute__((aligned (16)))*/;
|
|
float threshold /*__attribute__((aligned (4)))*/;
|
|
float alpha[2] __attribute__((aligned (8)));
|
|
int left __attribute__((aligned (4)));
|
|
int right __attribute__((aligned (4)));
|
|
}
|
|
GpuHidHaarTreeNode;
|
|
|
|
|
|
typedef struct __attribute__((aligned (32))) GpuHidHaarClassifier
|
|
{
|
|
int count __attribute__((aligned (4)));
|
|
GpuHidHaarTreeNode* node __attribute__((aligned (8)));
|
|
float* alpha __attribute__((aligned (8)));
|
|
}
|
|
GpuHidHaarClassifier;
|
|
|
|
|
|
typedef struct __attribute__((aligned (64))) GpuHidHaarStageClassifier
|
|
{
|
|
int count __attribute__((aligned (4)));
|
|
float threshold __attribute__((aligned (4)));
|
|
int two_rects __attribute__((aligned (4)));
|
|
int reserved0 __attribute__((aligned (8)));
|
|
int reserved1 __attribute__((aligned (8)));
|
|
int reserved2 __attribute__((aligned (8)));
|
|
int reserved3 __attribute__((aligned (8)));
|
|
}
|
|
GpuHidHaarStageClassifier;
|
|
|
|
|
|
typedef struct __attribute__((aligned (64))) GpuHidHaarClassifierCascade
|
|
{
|
|
int count __attribute__((aligned (4)));
|
|
int is_stump_based __attribute__((aligned (4)));
|
|
int has_tilted_features __attribute__((aligned (4)));
|
|
int is_tree __attribute__((aligned (4)));
|
|
int pq0 __attribute__((aligned (4)));
|
|
int pq1 __attribute__((aligned (4)));
|
|
int pq2 __attribute__((aligned (4)));
|
|
int pq3 __attribute__((aligned (4)));
|
|
int p0 __attribute__((aligned (4)));
|
|
int p1 __attribute__((aligned (4)));
|
|
int p2 __attribute__((aligned (4)));
|
|
int p3 __attribute__((aligned (4)));
|
|
float inv_window_area __attribute__((aligned (4)));
|
|
} GpuHidHaarClassifierCascade;
|
|
|
|
|
|
__kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCascade(
|
|
global GpuHidHaarStageClassifier * stagecascadeptr,
|
|
global int4 * info,
|
|
global GpuHidHaarTreeNode * nodeptr,
|
|
global const int * restrict sum1,
|
|
global const float * restrict sqsum1,
|
|
global int4 * candidate,
|
|
const int pixelstep,
|
|
const int loopcount,
|
|
const int start_stage,
|
|
const int split_stage,
|
|
const int end_stage,
|
|
const int startnode,
|
|
const int splitnode,
|
|
const int4 p,
|
|
const int4 pq,
|
|
const float correction)
|
|
{
|
|
int grpszx = get_local_size(0);
|
|
int grpszy = get_local_size(1);
|
|
int grpnumx = get_num_groups(0);
|
|
int grpidx = get_group_id(0);
|
|
int lclidx = get_local_id(0);
|
|
int lclidy = get_local_id(1);
|
|
|
|
int lcl_sz = mul24(grpszx,grpszy);
|
|
int lcl_id = mad24(lclidy,grpszx,lclidx);
|
|
|
|
__local int lclshare[1024];
|
|
__local int* lcldata = lclshare;//for save win data
|
|
__local int* glboutindex = lcldata + 28*28;//for save global out index
|
|
__local int* lclcount = glboutindex + 1;//for save the numuber of temp pass pixel
|
|
__local int* lcloutindex = lclcount + 1;//for save info of temp pass pixel
|
|
__local float* partialsum = (__local float*)(lcloutindex + (lcl_sz<<1));
|
|
glboutindex[0]=0;
|
|
int outputoff = mul24(grpidx,256);
|
|
|
|
//assume window size is 20X20
|
|
#define WINDOWSIZE 20+1
|
|
//make sure readwidth is the multiple of 4
|
|
//ystep =1, from host code
|
|
int readwidth = ((grpszx-1 + WINDOWSIZE+3)>>2)<<2;
|
|
int readheight = grpszy-1+WINDOWSIZE;
|
|
int read_horiz_cnt = readwidth >> 2;//each read int4
|
|
int total_read = mul24(read_horiz_cnt,readheight);
|
|
int read_loop = (total_read + lcl_sz - 1) >> 6;
|
|
candidate[outputoff+(lcl_id<<2)] = (int4)0;
|
|
candidate[outputoff+(lcl_id<<2)+1] = (int4)0;
|
|
candidate[outputoff+(lcl_id<<2)+2] = (int4)0;
|
|
candidate[outputoff+(lcl_id<<2)+3] = (int4)0;
|
|
for(int scalei = 0; scalei <loopcount; scalei++)
|
|
{
|
|
int4 scaleinfo1= info[scalei];
|
|
int width = (scaleinfo1.x & 0xffff0000) >> 16;
|
|
int height = scaleinfo1.x & 0xffff;
|
|
int grpnumperline =(scaleinfo1.y & 0xffff0000) >> 16;
|
|
int totalgrp = scaleinfo1.y & 0xffff;
|
|
int imgoff = scaleinfo1.z;
|
|
float factor = as_float(scaleinfo1.w);
|
|
|
|
__global const int * sum = sum1 + imgoff;
|
|
__global const float * sqsum = sqsum1 + imgoff;
|
|
for(int grploop=grpidx; grploop<totalgrp; grploop+=grpnumx)
|
|
{
|
|
int grpidy = grploop / grpnumperline;
|
|
int grpidx = grploop - mul24(grpidy, grpnumperline);
|
|
int x = mad24(grpidx,grpszx,lclidx);
|
|
int y = mad24(grpidy,grpszy,lclidy);
|
|
int grpoffx = x-lclidx;
|
|
int grpoffy = y-lclidy;
|
|
|
|
for(int i=0; i<read_loop; i++)
|
|
{
|
|
int pos_id = mad24(i,lcl_sz,lcl_id);
|
|
pos_id = pos_id < total_read ? pos_id : 0;
|
|
|
|
int lcl_y = pos_id / read_horiz_cnt;
|
|
int lcl_x = pos_id - mul24(lcl_y, read_horiz_cnt);
|
|
|
|
int glb_x = grpoffx + (lcl_x<<2);
|
|
int glb_y = grpoffy + lcl_y;
|
|
|
|
int glb_off = mad24(min(glb_y, height - 1),pixelstep,glb_x);
|
|
int4 data = *(__global int4*)&sum[glb_off];
|
|
int lcl_off = mad24(lcl_y, readwidth, lcl_x<<2);
|
|
|
|
vstore4(data, 0, &lcldata[lcl_off]);
|
|
}
|
|
|
|
lcloutindex[lcl_id] = 0;
|
|
lclcount[0] = 0;
|
|
int result = 1;
|
|
int nodecounter= startnode;
|
|
float mean, variance_norm_factor;
|
|
barrier(CLK_LOCAL_MEM_FENCE);
|
|
|
|
int lcl_off = mad24(lclidy,readwidth,lclidx);
|
|
int4 cascadeinfo1, cascadeinfo2;
|
|
cascadeinfo1 = p;
|
|
cascadeinfo2 = pq;
|
|
|
|
cascadeinfo1.x +=lcl_off;
|
|
cascadeinfo1.z +=lcl_off;
|
|
mean = (lcldata[mad24(cascadeinfo1.y,readwidth,cascadeinfo1.x)] - lcldata[mad24(cascadeinfo1.y,readwidth,cascadeinfo1.z)] -
|
|
lcldata[mad24(cascadeinfo1.w,readwidth,cascadeinfo1.x)] + lcldata[mad24(cascadeinfo1.w,readwidth,cascadeinfo1.z)])
|
|
*correction;
|
|
|
|
int p_offset = mad24(y, pixelstep, x);
|
|
|
|
cascadeinfo2.x +=p_offset;
|
|
cascadeinfo2.z +=p_offset;
|
|
variance_norm_factor =sqsum[mad24(cascadeinfo2.y, pixelstep, cascadeinfo2.x)] - sqsum[mad24(cascadeinfo2.y, pixelstep, cascadeinfo2.z)] -
|
|
sqsum[mad24(cascadeinfo2.w, pixelstep, cascadeinfo2.x)] + sqsum[mad24(cascadeinfo2.w, pixelstep, cascadeinfo2.z)];
|
|
|
|
variance_norm_factor = variance_norm_factor * correction - mean * mean;
|
|
variance_norm_factor = variance_norm_factor >=0.f ? sqrt(variance_norm_factor) : 1.f;
|
|
|
|
for(int stageloop = start_stage; (stageloop < split_stage) && result; stageloop++ )
|
|
{
|
|
float stage_sum = 0.f;
|
|
int2 stageinfo = *(global int2*)(stagecascadeptr+stageloop);
|
|
float stagethreshold = as_float(stageinfo.y);
|
|
for(int nodeloop = 0; nodeloop < stageinfo.x; nodeloop++ )
|
|
{
|
|
__global GpuHidHaarTreeNode* currentnodeptr = (nodeptr + nodecounter);
|
|
|
|
int4 info1 = *(__global int4*)(&(currentnodeptr->p[0][0]));
|
|
int4 info2 = *(__global int4*)(&(currentnodeptr->p[1][0]));
|
|
int4 info3 = *(__global int4*)(&(currentnodeptr->p[2][0]));
|
|
float4 w = *(__global float4*)(&(currentnodeptr->weight[0]));
|
|
float2 alpha2 = *(__global float2*)(&(currentnodeptr->alpha[0]));
|
|
float nodethreshold = w.w * variance_norm_factor;
|
|
|
|
info1.x +=lcl_off;
|
|
info1.z +=lcl_off;
|
|
info2.x +=lcl_off;
|
|
info2.z +=lcl_off;
|
|
|
|
float classsum = (lcldata[mad24(info1.y,readwidth,info1.x)] - lcldata[mad24(info1.y,readwidth,info1.z)] -
|
|
lcldata[mad24(info1.w,readwidth,info1.x)] + lcldata[mad24(info1.w,readwidth,info1.z)]) * w.x;
|
|
|
|
classsum += (lcldata[mad24(info2.y,readwidth,info2.x)] - lcldata[mad24(info2.y,readwidth,info2.z)] -
|
|
lcldata[mad24(info2.w,readwidth,info2.x)] + lcldata[mad24(info2.w,readwidth,info2.z)]) * w.y;
|
|
|
|
info3.x +=lcl_off;
|
|
info3.z +=lcl_off;
|
|
classsum += (lcldata[mad24(info3.y,readwidth,info3.x)] - lcldata[mad24(info3.y,readwidth,info3.z)] -
|
|
lcldata[mad24(info3.w,readwidth,info3.x)] + lcldata[mad24(info3.w,readwidth,info3.z)]) * w.z;
|
|
|
|
stage_sum += classsum >= nodethreshold ? alpha2.y : alpha2.x;
|
|
nodecounter++;
|
|
}
|
|
|
|
result = (stage_sum >= stagethreshold);
|
|
}
|
|
|
|
if(result && (x < width) && (y < height))
|
|
{
|
|
int queueindex = atomic_inc(lclcount);
|
|
lcloutindex[queueindex<<1] = (lclidy << 16) | lclidx;
|
|
lcloutindex[(queueindex<<1)+1] = as_int(variance_norm_factor);
|
|
}
|
|
barrier(CLK_LOCAL_MEM_FENCE);
|
|
int queuecount = lclcount[0];
|
|
barrier(CLK_LOCAL_MEM_FENCE);
|
|
nodecounter = splitnode;
|
|
for(int stageloop = split_stage; stageloop< end_stage && queuecount>0; stageloop++)
|
|
{
|
|
lclcount[0]=0;
|
|
barrier(CLK_LOCAL_MEM_FENCE);
|
|
|
|
int2 stageinfo = *(global int2*)(stagecascadeptr+stageloop);
|
|
float stagethreshold = as_float(stageinfo.y);
|
|
|
|
int perfscale = queuecount > 4 ? 3 : 2;
|
|
int queuecount_loop = (queuecount + (1<<perfscale)-1) >> perfscale;
|
|
int lcl_compute_win = lcl_sz >> perfscale;
|
|
int lcl_compute_win_id = (lcl_id >>(6-perfscale));
|
|
int lcl_loops = (stageinfo.x + lcl_compute_win -1) >> (6-perfscale);
|
|
int lcl_compute_id = lcl_id - (lcl_compute_win_id << (6-perfscale));
|
|
for(int queueloop=0; queueloop<queuecount_loop; queueloop++)
|
|
{
|
|
float stage_sum = 0.f;
|
|
int temp_coord = lcloutindex[lcl_compute_win_id<<1];
|
|
float variance_norm_factor = as_float(lcloutindex[(lcl_compute_win_id<<1)+1]);
|
|
int queue_pixel = mad24(((temp_coord & (int)0xffff0000)>>16),readwidth,temp_coord & 0xffff);
|
|
|
|
if(lcl_compute_win_id < queuecount)
|
|
{
|
|
|
|
int tempnodecounter = lcl_compute_id;
|
|
float part_sum = 0.f;
|
|
for(int lcl_loop=0; lcl_loop<lcl_loops && tempnodecounter<stageinfo.x; lcl_loop++)
|
|
{
|
|
__global GpuHidHaarTreeNode* currentnodeptr = (nodeptr + nodecounter + tempnodecounter);
|
|
|
|
int4 info1 = *(__global int4*)(&(currentnodeptr->p[0][0]));
|
|
int4 info2 = *(__global int4*)(&(currentnodeptr->p[1][0]));
|
|
int4 info3 = *(__global int4*)(&(currentnodeptr->p[2][0]));
|
|
float4 w = *(__global float4*)(&(currentnodeptr->weight[0]));
|
|
float2 alpha2 = *(__global float2*)(&(currentnodeptr->alpha[0]));
|
|
float nodethreshold = w.w * variance_norm_factor;
|
|
|
|
info1.x +=queue_pixel;
|
|
info1.z +=queue_pixel;
|
|
info2.x +=queue_pixel;
|
|
info2.z +=queue_pixel;
|
|
|
|
float classsum = (lcldata[mad24(info1.y,readwidth,info1.x)] - lcldata[mad24(info1.y,readwidth,info1.z)] -
|
|
lcldata[mad24(info1.w,readwidth,info1.x)] + lcldata[mad24(info1.w,readwidth,info1.z)]) * w.x;
|
|
|
|
|
|
classsum += (lcldata[mad24(info2.y,readwidth,info2.x)] - lcldata[mad24(info2.y,readwidth,info2.z)] -
|
|
lcldata[mad24(info2.w,readwidth,info2.x)] + lcldata[mad24(info2.w,readwidth,info2.z)]) * w.y;
|
|
|
|
info3.x +=queue_pixel;
|
|
info3.z +=queue_pixel;
|
|
classsum += (lcldata[mad24(info3.y,readwidth,info3.x)] - lcldata[mad24(info3.y,readwidth,info3.z)] -
|
|
lcldata[mad24(info3.w,readwidth,info3.x)] + lcldata[mad24(info3.w,readwidth,info3.z)]) * w.z;
|
|
|
|
part_sum += classsum >= nodethreshold ? alpha2.y : alpha2.x;
|
|
tempnodecounter +=lcl_compute_win;
|
|
}//end for(int lcl_loop=0;lcl_loop<lcl_loops;lcl_loop++)
|
|
partialsum[lcl_id]=part_sum;
|
|
}
|
|
barrier(CLK_LOCAL_MEM_FENCE);
|
|
if(lcl_compute_win_id < queuecount)
|
|
{
|
|
for(int i=0; i<lcl_compute_win && (lcl_compute_id==0); i++)
|
|
{
|
|
stage_sum += partialsum[lcl_id+i];
|
|
}
|
|
if(stage_sum >= stagethreshold && (lcl_compute_id==0))
|
|
{
|
|
int queueindex = atomic_inc(lclcount);
|
|
lcloutindex[queueindex<<1] = temp_coord;
|
|
lcloutindex[(queueindex<<1)+1] = as_int(variance_norm_factor);
|
|
}
|
|
lcl_compute_win_id +=(1<<perfscale);
|
|
}
|
|
barrier(CLK_LOCAL_MEM_FENCE);
|
|
}//end for(int queueloop=0;queueloop<queuecount_loop;queueloop++)
|
|
|
|
queuecount = lclcount[0];
|
|
barrier(CLK_LOCAL_MEM_FENCE);
|
|
nodecounter += stageinfo.x;
|
|
}//end for(int stageloop = splitstage; stageloop< endstage && queuecount>0;stageloop++)
|
|
|
|
if(lcl_id<queuecount)
|
|
{
|
|
int temp = lcloutindex[lcl_id<<1];
|
|
int x = mad24(grpidx,grpszx,temp & 0xffff);
|
|
int y = mad24(grpidy,grpszy,((temp & (int)0xffff0000) >> 16));
|
|
temp = glboutindex[0];
|
|
int4 candidate_result;
|
|
candidate_result.zw = (int2)convert_int_rtn(factor*20.f);
|
|
candidate_result.x = convert_int_rtn(x*factor);
|
|
candidate_result.y = convert_int_rtn(y*factor);
|
|
atomic_inc(glboutindex);
|
|
candidate[outputoff+temp+lcl_id] = candidate_result;
|
|
}
|
|
barrier(CLK_LOCAL_MEM_FENCE);
|
|
}//end for(int grploop=grpidx;grploop<totalgrp;grploop+=grpnumx)
|
|
}//end for(int scalei = 0; scalei <loopcount; scalei++)
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
if(stagecascade->two_rects)
|
|
{
|
|
#pragma unroll
|
|
for( n = 0; n < stagecascade->count; n++ )
|
|
{
|
|
t1 = *(node + counter);
|
|
t = t1.threshold * variance_norm_factor;
|
|
classsum = calc_sum1(t1,p_offset,0) * t1.weight[0];
|
|
|
|
classsum += calc_sum1(t1, p_offset,1) * t1.weight[1];
|
|
stage_sum += classsum >= t ? t1.alpha[1]:t1.alpha[0];
|
|
|
|
counter++;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
#pragma unroll
|
|
for( n = 0; n < stagecascade->count; n++ )
|
|
{
|
|
t = node[counter].threshold*variance_norm_factor;
|
|
classsum = calc_sum1(node[counter],p_offset,0) * node[counter].weight[0];
|
|
classsum += calc_sum1(node[counter],p_offset,1) * node[counter].weight[1];
|
|
|
|
if( node[counter].p0[2] )
|
|
classsum += calc_sum1(node[counter],p_offset,2) * node[counter].weight[2];
|
|
|
|
stage_sum += classsum >= t ? node[counter].alpha[1]:node[counter].alpha[0];// modify
|
|
|
|
counter++;
|
|
}
|
|
}
|
|
*/
|
|
/*
|
|
__kernel void gpuRunHaarClassifierCascade_ScaleWindow(
|
|
constant GpuHidHaarClassifierCascade * _cascade,
|
|
global GpuHidHaarStageClassifier * stagecascadeptr,
|
|
//global GpuHidHaarClassifier * classifierptr,
|
|
global GpuHidHaarTreeNode * nodeptr,
|
|
global int * sum,
|
|
global float * sqsum,
|
|
global int * _candidate,
|
|
int pixel_step,
|
|
int cols,
|
|
int rows,
|
|
int start_stage,
|
|
int end_stage,
|
|
//int counts,
|
|
int nodenum,
|
|
int ystep,
|
|
int detect_width,
|
|
//int detect_height,
|
|
int loopcount,
|
|
int outputstep)
|
|
//float scalefactor)
|
|
{
|
|
unsigned int x1 = get_global_id(0);
|
|
unsigned int y1 = get_global_id(1);
|
|
int p_offset;
|
|
int m, n;
|
|
int result;
|
|
int counter;
|
|
float mean, variance_norm_factor;
|
|
for(int i=0;i<loopcount;i++)
|
|
{
|
|
constant GpuHidHaarClassifierCascade * cascade = _cascade + i;
|
|
global int * candidate = _candidate + i*outputstep;
|
|
int window_width = cascade->p1 - cascade->p0;
|
|
int window_height = window_width;
|
|
result = 1;
|
|
counter = 0;
|
|
unsigned int x = mul24(x1,ystep);
|
|
unsigned int y = mul24(y1,ystep);
|
|
if((x < cols - window_width - 1) && (y < rows - window_height -1))
|
|
{
|
|
global GpuHidHaarStageClassifier *stagecascade = stagecascadeptr +cascade->count*i+ start_stage;
|
|
//global GpuHidHaarClassifier *classifier = classifierptr;
|
|
global GpuHidHaarTreeNode *node = nodeptr + nodenum*i;
|
|
|
|
p_offset = mad24(y, pixel_step, x);// modify
|
|
|
|
mean = (*(sum + p_offset + (int)cascade->p0) - *(sum + p_offset + (int)cascade->p1) -
|
|
*(sum + p_offset + (int)cascade->p2) + *(sum + p_offset + (int)cascade->p3))
|
|
*cascade->inv_window_area;
|
|
|
|
variance_norm_factor = *(sqsum + p_offset + cascade->p0) - *(sqsum + cascade->p1 + p_offset) -
|
|
*(sqsum + p_offset + cascade->p2) + *(sqsum + cascade->p3 + p_offset);
|
|
variance_norm_factor = variance_norm_factor * cascade->inv_window_area - mean * mean;
|
|
variance_norm_factor = variance_norm_factor >=0.f ? sqrt(variance_norm_factor) : 1;//modify
|
|
|
|
// if( cascade->is_stump_based )
|
|
//{
|
|
for( m = start_stage; m < end_stage; m++ )
|
|
{
|
|
float stage_sum = 0.f;
|
|
float t, classsum;
|
|
GpuHidHaarTreeNode t1;
|
|
|
|
//#pragma unroll
|
|
for( n = 0; n < stagecascade->count; n++ )
|
|
{
|
|
t1 = *(node + counter);
|
|
t = t1.threshold * variance_norm_factor;
|
|
classsum = calc_sum1(t1, p_offset ,0) * t1.weight[0] + calc_sum1(t1, p_offset ,1) * t1.weight[1];
|
|
|
|
if((t1.p0[2]) && (!stagecascade->two_rects))
|
|
classsum += calc_sum1(t1, p_offset, 2) * t1.weight[2];
|
|
|
|
stage_sum += classsum >= t ? t1.alpha[1] : t1.alpha[0];// modify
|
|
counter++;
|
|
}
|
|
|
|
if (stage_sum < stagecascade->threshold)
|
|
{
|
|
result = 0;
|
|
break;
|
|
}
|
|
|
|
stagecascade++;
|
|
|
|
}
|
|
if(result)
|
|
{
|
|
candidate[4 * (y1 * detect_width + x1)] = x;
|
|
candidate[4 * (y1 * detect_width + x1) + 1] = y;
|
|
candidate[4 * (y1 * detect_width + x1)+2] = window_width;
|
|
candidate[4 * (y1 * detect_width + x1) + 3] = window_height;
|
|
}
|
|
//}
|
|
}
|
|
}
|
|
}
|
|
*/
|
|
|
|
|
|
|
|
|