opencv/modules/features2d/src/calonder.cpp

1007 lines
34 KiB
C++

//*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include <opencv2/core/wimage.hpp>
#include <vector>
#include <iostream>
#include <cmath>
#include <cassert>
#include <fstream>
#include <cstring>
using namespace cv;
#if defined _MSC_VER && _MSC_VER >= 1400
#pragma warning(disable: 4244 4267)
#endif
/****************************************************************************************\
The code below is implementation of Calonder Descriptor and RTree Classifier
originally introduced by Michael Calonder.
The code was integrated into OpenCV by Alexey Latyshev
\****************************************************************************************/
namespace cv {
//----------------------------
//randomized_tree.cpp
inline uchar* getData(IplImage* image)
{
return reinterpret_cast<uchar*>(image->imageData);
}
inline float* RandomizedTree::getPosteriorByIndex(int index)
{
return const_cast<float*>(const_cast<const RandomizedTree*>(this)->getPosteriorByIndex(index));
}
inline const float* RandomizedTree::getPosteriorByIndex(int index) const
{
return posteriors_[index].p();
}
inline uchar* RandomizedTree::getPosteriorByIndex2(int index)
{
return posteriors2_[index].p();
}
template < typename PointT >
cv::WImageView1_b extractPatch(cv::WImageView1_b const& image, PointT pt, int patch_sz = PATCH_SIZE)
{
const int offset = patch_sz / 2;
// TODO: WImage{C}.View really should have const version
cv::WImageView1_b &img_ref = const_cast< cv::WImageView1_b& >(image);
return img_ref.View(pt.x - offset, pt.y - offset, patch_sz, patch_sz);
}
template < typename PointT >
cv::WImageView3_b extractPatch3(cv::WImageView3_b const& image, PointT pt)
{
static const int offset = PATCH_SIZE / 2;
// TODO: WImage{C}.View really should have const version
cv::WImageView3_b &img_ref = const_cast< cv::WImageView3_b& >(image);
return img_ref.View(pt.x - offset, pt.y - offset,
PATCH_SIZE, PATCH_SIZE);
}
float *CSMatrixGenerator::cs_phi_ = NULL;
int CSMatrixGenerator::cs_phi_m_ = 0;
int CSMatrixGenerator::cs_phi_n_ = 0;
RandomizedTree::RandomizedTree()
: posteriors_(NULL), posteriors2_(NULL)
{
}
RandomizedTree::~RandomizedTree()
{
freePosteriors(3);
}
void RandomizedTree::createNodes(int num_nodes, cv::RNG &rng)
{
nodes_.reserve(num_nodes);
for (int i = 0; i < num_nodes; ++i) {
nodes_.push_back( RTreeNode(rng(PATCH_SIZE),
rng(PATCH_SIZE),
rng(PATCH_SIZE),
rng(PATCH_SIZE)) );
}
}
int RandomizedTree::getIndex(uchar* patch_data) const
{
int index = 0;
for (int d = 0; d < depth_; ++d) {
int child_offset = nodes_[index](patch_data);
index = 2*index + 1 + child_offset;
}
return index - nodes_.size();
}
void RandomizedTree::train(std::vector<BaseKeypoint> const& base_set,
cv::RNG &rng, int depth, int views, size_t reduced_num_dim,
int num_quant_bits)
{
//CalonderPatchGenerator make_patch(NULL, rng);
PatchGenerator make_patch = PatchGenerator();
train(base_set, rng, make_patch, depth, views, reduced_num_dim, num_quant_bits);
}
void RandomizedTree::train(std::vector<BaseKeypoint> const& base_set,
cv::RNG &rng, PatchGenerator &make_patch,
int depth, int views, size_t reduced_num_dim,
int num_quant_bits)
{
init(base_set.size(), depth, rng);
Mat patch;
// Estimate posterior probabilities using random affine views
std::vector<BaseKeypoint>::const_iterator keypt_it;
int class_id = 0;
for (keypt_it = base_set.begin(); keypt_it != base_set.end(); ++keypt_it, ++class_id) {
for (int i = 0; i < views; ++i) {
make_patch(keypt_it->image, Point2f(keypt_it->x,keypt_it->y) ,patch, Size(PATCH_SIZE,PATCH_SIZE),rng);
IplImage _patch = patch;
addExample(class_id, getData(&_patch));
}
}
finalize(reduced_num_dim, num_quant_bits);
}
void RandomizedTree::allocPosteriorsAligned(int num_leaves, int num_classes)
{
printf("alloc posteriors aligned\n");
freePosteriors(3);
posteriors_ = new FloatSignature[num_leaves];
for (int i=0; i<num_leaves; ++i)
posteriors_[i].alloc(num_classes, 16);
//(float**) malloc(num_leaves*sizeof(float*));
//for (int i=0; i<num_leaves; ++i) {
// //added
// /* err_cnt += posix_memalign((void**)&posteriors_[i], 16, num_classes*sizeof(float));*/
// posteriors_[i] = (float*)malloc(num_classes*sizeof(float));
// memset(posteriors_[i], 0, num_classes*sizeof(float));
//}
posteriors2_ = new Signature[num_leaves];
for (int i=0; i<num_leaves; ++i)
posteriors2_[i].alloc(num_classes, 16);
//for (int i=0; i<num_leaves; ++i) {
// //added
// /* err_cnt += posix_memalign((void**)&posteriors2_[i], 16, num_classes*sizeof(uchar)); */
// posteriors2_[i] = (uchar*)malloc(num_classes*sizeof(uchar));
// memset(posteriors2_[i], 0, num_classes*sizeof(uchar));
//}
//if (err_cnt) {
// printf("Something went wrong in posix_memalign()! err_cnt=%i\n", err_cnt);
// exit(0);
//}
classes_ = num_classes;
}
void RandomizedTree::freePosteriors(int which)
{
if (posteriors_ && (which&1)) {
//for (int i=0; i<num_leaves_; ++i) {
// if (posteriors_[i]) {
// free(posteriors_[i]); //delete [] posteriors_[i];
// posteriors_[i] = NULL;
// }
//}
delete [] posteriors_;
posteriors_ = NULL;
}
if (posteriors2_ && (which&2)) {
//for (int i=0; i<num_leaves_; ++i)
// free(posteriors2_[i]);
delete [] posteriors2_;
posteriors2_ = NULL;
}
classes_ = -1;
}
void RandomizedTree::init(int num_classes, int depth, cv::RNG &rng)
{
depth_ = depth;
num_leaves_ = 1 << depth; // 2**d
int num_nodes = num_leaves_ - 1; // 2**d - 1
// Initialize probabilities and counts to 0
allocPosteriorsAligned(num_leaves_, num_classes); // will set classes_ correctly
for (int i = 0; i < num_leaves_; ++i)
memset((void*)posteriors_[i].p(), 0, num_classes*sizeof(float));
leaf_counts_.resize(num_leaves_);
for (int i = 0; i < num_leaves_; ++i)
memset((void*)posteriors2_[i].p(), 0, num_classes*sizeof(uchar));
createNodes(num_nodes, rng);
}
void RandomizedTree::addExample(int class_id, uchar* patch_data)
{
int index = getIndex(patch_data);
float* posterior = getPosteriorByIndex(index);
++leaf_counts_[index];
++posterior[class_id];
}
void RandomizedTree::finalize(size_t reduced_num_dim, int num_quant_bits)
{
// Normalize by number of patches to reach each leaf
for (int index = 0; index < num_leaves_; ++index) {
float* posterior = posteriors_[index].p();
assert(posterior != NULL);
int count = leaf_counts_[index];
if (count != 0) {
float normalizer = 1.0f / count;
for (int c = 0; c < classes_; ++c) {
*posterior *= normalizer;
++posterior;
}
}
}
leaf_counts_.clear();
// apply compressive sensing
if ((int)reduced_num_dim != classes_)
compressLeaves(reduced_num_dim);
else {
static bool notified = false;
//if (!notified)
// printf("\n[OK] NO compression to leaves applied, dim=%i\n", reduced_num_dim);
notified = true;
}
// convert float-posteriors to char-posteriors (quantization step)
makePosteriors2(num_quant_bits);
}
void RandomizedTree::compressLeaves(size_t reduced_num_dim)
{
static bool warned = false;
if (!warned) {
printf("\n[OK] compressing leaves with phi %i x %i\n", (int)reduced_num_dim, classes_);
warned = true;
}
static bool warned2 = false;
if ((int)reduced_num_dim == classes_) {
if (!warned2)
printf("[WARNING] RandomizedTree::compressLeaves: not compressing because reduced_dim == classes()\n");
warned2 = true;
return;
}
// DO NOT FREE RETURNED POINTER
float *cs_phi = CSMatrixGenerator::getCSMatrix(reduced_num_dim, classes_, CSMatrixGenerator::PDT_BERNOULLI);
float *cs_posteriors = new float[num_leaves_ * reduced_num_dim]; // temp, num_leaves_ x reduced_num_dim
for (int i=0; i<num_leaves_; ++i)
{
//added (inside cycle)
//float *post = getPosteriorByIndex(i);
// float *prod = &cs_posteriors[i*reduced_num_dim];
// cblas_sgemv(CblasRowMajor, CblasNoTrans, reduced_num_dim, classes_, 1.f, cs_phi,
// classes_, post, 1, 0.f, prod, 1);
float *post = getPosteriorByIndex(i);
//Matrix multiplication
for (int idx = 0; idx < (int)reduced_num_dim; idx++)
{
cs_posteriors[i*reduced_num_dim+idx] = 0.0f;
for (int col = 0; col < classes_; col++)
{
cs_posteriors[i*reduced_num_dim+idx] += cs_phi[idx*reduced_num_dim + col] * post[col];
}
}
}
// copy new posteriors
freePosteriors(3);
allocPosteriorsAligned(num_leaves_, reduced_num_dim);
for (int i=0; i<num_leaves_; ++i)
memcpy(posteriors_[i].p(), &cs_posteriors[i*reduced_num_dim], reduced_num_dim*sizeof(float));
classes_ = reduced_num_dim;
delete [] cs_posteriors;
}
void RandomizedTree::makePosteriors2(int num_quant_bits)
{
int N = (1<<num_quant_bits) - 1;
float perc[2];
estimateQuantPercForPosteriors(perc);
assert(posteriors_ != NULL);
for (int i=0; i<num_leaves_; ++i)
quantizeVector(posteriors_[i].p(), classes_, N, perc, posteriors2_[i].p());
// printf("makePosteriors2 quantization bounds: %.3e, %.3e (num_leaves=%i, N=%i)\n",
// perc[0], perc[1], num_leaves_, N);
}
float* RandomizedTree::getPosterior(uchar* patch_data)
{
return const_cast<float*>(const_cast<const RandomizedTree*>(this)->getPosterior(patch_data));
}
const float* RandomizedTree::getPosterior(uchar* patch_data) const
{
return getPosteriorByIndex( getIndex(patch_data) );
}
uchar* RandomizedTree::getPosterior2(uchar* patch_data)
{
return getPosteriorByIndex2( getIndex(patch_data) );
}
void RandomizedTree::quantizeVector(float *vec, int dim, int N, float bnds[2], int clamp_mode)
{
float map_bnd[2] = {0.f,(float)N}; // bounds of quantized target interval we're mapping to
for (int k=0; k<dim; ++k, ++vec) {
*vec = float(int((*vec - bnds[0])/(bnds[1] - bnds[0])*(map_bnd[1] - map_bnd[0]) + map_bnd[0]));
// 0: clamp both, lower and upper values
if (clamp_mode == 0) *vec = (*vec<map_bnd[0]) ? map_bnd[0] : ((*vec>map_bnd[1]) ? map_bnd[1] : *vec);
// 1: clamp lower values only
else if (clamp_mode == 1) *vec = (*vec<map_bnd[0]) ? map_bnd[0] : *vec;
// 2: clamp upper values only
else if (clamp_mode == 2) *vec = (*vec>map_bnd[1]) ? map_bnd[1] : *vec;
// 4: no clamping
else if (clamp_mode == 4) ; // yep, nothing
else {
printf("clamp_mode == %i is not valid (%s:%i).\n", clamp_mode, __FILE__, __LINE__);
exit(1);
}
}
}
void RandomizedTree::quantizeVector(float *vec, int dim, int N, float bnds[2], uchar *dst)
{
int map_bnd[2] = {0, N}; // bounds of quantized target interval we're mapping to
int tmp;
for (int k=0; k<dim; ++k) {
tmp = int((*vec - bnds[0])/(bnds[1] - bnds[0])*(map_bnd[1] - map_bnd[0]) + map_bnd[0]);
*dst = (uchar)((tmp<0) ? 0 : ((tmp>N) ? N : tmp));
++vec;
++dst;
}
}
void RandomizedTree::read(const char* file_name, int num_quant_bits)
{
std::ifstream file(file_name, std::ifstream::binary);
read(file, num_quant_bits);
file.close();
}
void RandomizedTree::read(std::istream &is, int num_quant_bits)
{
is.read((char*)(&classes_), sizeof(classes_));
is.read((char*)(&depth_), sizeof(depth_));
num_leaves_ = 1 << depth_;
int num_nodes = num_leaves_ - 1;
nodes_.resize(num_nodes);
is.read((char*)(&nodes_[0]), num_nodes * sizeof(nodes_[0]));
//posteriors_.resize(classes_ * num_leaves_);
//freePosteriors(3);
//printf("[DEBUG] reading: %i leaves, %i classes\n", num_leaves_, classes_);
allocPosteriorsAligned(num_leaves_, classes_);
for (int i=0; i<num_leaves_; i++)
is.read((char*)posteriors_[i].p(), classes_ * sizeof(*posteriors_[0].p()));
// make char-posteriors from float-posteriors
makePosteriors2(num_quant_bits);
}
void RandomizedTree::write(const char* file_name) const
{
std::ofstream file(file_name, std::ofstream::binary);
write(file);
file.close();
}
void RandomizedTree::write(std::ostream &os) const
{
if (!posteriors_) {
printf("WARNING: Cannot write float posteriors cause posteriors_ == NULL\n");
return;
}
os.write((char*)(&classes_), sizeof(classes_));
os.write((char*)(&depth_), sizeof(depth_));
os.write((char*)(&nodes_[0]), nodes_.size() * sizeof(nodes_[0]));
for (int i=0; i<num_leaves_; i++) {
os.write((char*)posteriors_[i].p(), classes_ * sizeof(*posteriors_[0].p()));
}
}
void RandomizedTree::savePosteriors(std::string url, bool append)
{
std::ofstream file(url.c_str(), (append?std::ios::app:std::ios::out));
for (int i=0; i<num_leaves_; i++) {
float *post = posteriors_[i].p();
char buf[20];
for (int i=0; i<classes_; i++) {
sprintf(buf, "%.10e", *post++);
file << buf << ((i<classes_-1) ? " " : "");
}
file << std::endl;
}
file.close();
}
void RandomizedTree::savePosteriors2(std::string url, bool append)
{
std::ofstream file(url.c_str(), (append?std::ios::app:std::ios::out));
for (int i=0; i<num_leaves_; i++) {
uchar *post = posteriors2_[i].p();
for (int i=0; i<classes_; i++)
file << int(*post++) << (i<classes_-1?" ":"");
file << std::endl;
}
file.close();
}
// returns the p% percentile of data (length n vector)
static float percentile(float *data, int n, float p)
{
assert(n>0);
assert(p>=0 && p<=1);
std::vector<float> vec(data, data+n);
sort(vec.begin(), vec.end());
int ix = (int)(p*(n-1));
return vec[ix];
}
void RandomizedTree::estimateQuantPercForPosteriors(float perc[2])
{
// _estimate_ percentiles for this tree
// TODO: do this more accurately
assert(posteriors_ != NULL);
perc[0] = perc[1] = .0f;
for (int i=0; i<num_leaves_; i++) {
perc[0] += percentile(posteriors_[i].p(), classes_, LOWER_QUANT_PERC);
perc[1] += percentile(posteriors_[i].p(), classes_, UPPER_QUANT_PERC);
}
perc[0] /= num_leaves_;
perc[1] /= num_leaves_;
}
float* CSMatrixGenerator::getCSMatrix(int m, int n, PHI_DISTR_TYPE dt)
{
assert(m <= n);
if (cs_phi_m_!=m || cs_phi_n_!=n || cs_phi_==NULL) {
if (cs_phi_) delete [] cs_phi_;
cs_phi_ = new float[m*n];
}
#if 0 // debug - load the random matrix from a file (for reproducability of results)
//assert(m == 176);
//assert(n == 500);
//const char *phi = "/u/calonder/temp/dim_red/kpca_phi.txt";
const char *phi = "/u/calonder/temp/dim_red/debug_phi.txt";
std::ifstream ifs(phi);
for (size_t i=0; i<m*n; ++i) {
if (!ifs.good()) {
printf("[ERROR] RandomizedTree::makeRandomMeasMatrix: problem reading '%s'\n", phi);
exit(0);
}
ifs >> cs_phi[i];
}
ifs.close();
static bool warned=false;
if (!warned) {
printf("[NOTE] RT: reading %ix%i PHI matrix from '%s'...\n", m, n, phi);
warned=true;
}
return;
#endif
float *cs_phi = cs_phi_;
if (m == n) {
// special case - set to 0 for safety
memset(cs_phi, 0, m*n*sizeof(float));
printf("[WARNING] %s:%i: square CS matrix (-> no reduction)\n", __FILE__, __LINE__);
}
else {
cv::RNG rng(23);
// par is distr param, cf 'Favorable JL Distributions' (Baraniuk et al, 2006)
if (dt == PDT_GAUSS) {
float par = (float)(1./m);
//modified
cv::RNG _rng;
for (int i=0; i<m*n; ++i)
{
*cs_phi++ = (float)_rng.gaussian((double)par);//sample_normal<float>(0., par);
}
}
else if (dt == PDT_BERNOULLI) {
float par = (float)(1./sqrt((float)m));
for (int i=0; i<m*n; ++i)
*cs_phi++ = (rng(2)==0 ? par : -par);
}
else if (dt == PDT_DBFRIENDLY) {
float par = (float)sqrt(3./m);
for (int i=0; i<m*n; ++i) {
//added
int _i = rng(6);
*cs_phi++ = (_i==0 ? par : (_i==1 ? -par : 0.f));
}
}
else
throw("PHI_DISTR_TYPE not implemented.");
}
return cs_phi_;
}
CSMatrixGenerator::~CSMatrixGenerator()
{
if (cs_phi_) delete [] cs_phi_;
cs_phi_ = NULL;
}
//} // namespace features
//----------------------------
//rtree_classifier.cpp
//namespace features {
// Returns 16-byte aligned signatures that can be passed to getSignature().
// Release by calling free() - NOT delete!
//
// note: 1) for num_sig>1 all signatures will still be 16-byte aligned, as
// long as sig_len%16 == 0 holds.
// 2) casting necessary, otherwise it breaks gcc's strict aliasing rules
inline void RTreeClassifier::safeSignatureAlloc(uchar **sig, int num_sig, int sig_len)
{
assert(sig_len == 176);
void *p_sig;
//added
// posix_memalign(&p_sig, 16, num_sig*sig_len*sizeof(uchar));
p_sig = malloc(num_sig*sig_len*sizeof(uchar));
*sig = reinterpret_cast<uchar*>(p_sig);
}
inline uchar* RTreeClassifier::safeSignatureAlloc(int num_sig, int sig_len)
{
uchar *sig;
safeSignatureAlloc(&sig, num_sig, sig_len);
return sig;
}
inline void add(int size, const float* src1, const float* src2, float* dst)
{
while(--size >= 0) {
*dst = *src1 + *src2;
++dst; ++src1; ++src2;
}
}
inline void add(int size, const ushort* src1, const uchar* src2, ushort* dst)
{
while(--size >= 0) {
*dst = *src1 + *src2;
++dst; ++src1; ++src2;
}
}
RTreeClassifier::RTreeClassifier()
: classes_(0)
{
posteriors_ = NULL;
}
void RTreeClassifier::train(std::vector<BaseKeypoint> const& base_set,
cv::RNG &rng, int num_trees, int depth,
int views, size_t reduced_num_dim,
int num_quant_bits, bool print_status)
{
PatchGenerator make_patch = PatchGenerator();
train(base_set, rng, make_patch, num_trees, depth, views, reduced_num_dim, num_quant_bits, print_status);
}
// Single-threaded version of train(), with progress output
void RTreeClassifier::train(std::vector<BaseKeypoint> const& base_set,
cv::RNG &rng, PatchGenerator &make_patch, int num_trees,
int depth, int views, size_t reduced_num_dim,
int num_quant_bits, bool print_status)
{
if (reduced_num_dim > base_set.size()) {
if (print_status)
{
printf("INVALID PARAMS in RTreeClassifier::train: reduced_num_dim{%i} > base_set.size(){%i}\n",
(int)reduced_num_dim, (int)base_set.size());
}
return;
}
num_quant_bits_ = num_quant_bits;
classes_ = reduced_num_dim; // base_set.size();
original_num_classes_ = base_set.size();
trees_.resize(num_trees);
if (print_status)
{
printf("[OK] Training trees: base size=%i, reduced size=%i\n", (int)base_set.size(), (int)reduced_num_dim);
}
int count = 1;
if (print_status)
{
printf("[OK] Trained 0 / %i trees", num_trees); fflush(stdout);
}
//added
//BOOST_FOREACH( RandomizedTree &tree, trees_ ) {
//tree.train(base_set, rng, make_patch, depth, views, reduced_num_dim, num_quant_bits_);
//printf("\r[OK] Trained %i / %i trees", count++, num_trees);
//fflush(stdout);
for (int i=0; i<(int)trees_.size(); i++)
{
trees_[i].train(base_set, rng, make_patch, depth, views, reduced_num_dim, num_quant_bits_);
if (print_status)
{
printf("\r[OK] Trained %i / %i trees", count++, num_trees);
fflush(stdout);
}
}
if (print_status)
{
printf("\n");
countZeroElements();
printf("\n\n");
}
}
void RTreeClassifier::getSignature(IplImage* patch, float *sig)
{
// Need pointer to 32x32 patch data
uchar buffer[PATCH_SIZE * PATCH_SIZE];
uchar* patch_data;
if (patch->widthStep != PATCH_SIZE) {
//printf("[INFO] patch is padded, data will be copied (%i/%i).\n",
// patch->widthStep, PATCH_SIZE);
uchar* data = getData(patch);
patch_data = buffer;
for (int i = 0; i < PATCH_SIZE; ++i) {
memcpy((void*)patch_data, (void*)data, PATCH_SIZE);
data += patch->widthStep;
patch_data += PATCH_SIZE;
}
patch_data = buffer;
}
else {
patch_data = getData(patch);
}
memset((void*)sig, 0, classes_ * sizeof(float));
std::vector<RandomizedTree>::iterator tree_it;
// get posteriors
float **posteriors = new float*[trees_.size()]; // TODO: move alloc outside this func
float **pp = posteriors;
for (tree_it = trees_.begin(); tree_it != trees_.end(); ++tree_it, pp++) {
*pp = tree_it->getPosterior(patch_data);
assert(*pp != NULL);
}
// sum them up
pp = posteriors;
for (tree_it = trees_.begin(); tree_it != trees_.end(); ++tree_it, pp++)
add(classes_, sig, *pp, sig);
delete [] posteriors;
posteriors = NULL;
// full quantization (experimental)
#if 0
int n_max = 1<<8 - 1;
int sum_max = (1<<4 - 1)*trees_.size();
int shift = 0;
while ((sum_max>>shift) > n_max) shift++;
for (int i = 0; i < classes_; ++i) {
sig[i] = int(sig[i] + .5) >> shift;
if (sig[i]>n_max) sig[i] = n_max;
}
static bool warned = false;
if (!warned) {
printf("[WARNING] Using full quantization (RTreeClassifier::getSignature)! shift=%i\n", shift);
warned = true;
}
#else
// TODO: get rid of this multiply (-> number of trees is known at train
// time, exploit it in RandomizedTree::finalize())
float normalizer = 1.0f / trees_.size();
for (int i = 0; i < classes_; ++i)
sig[i] *= normalizer;
#endif
}
// sum up 50 byte vectors of length 176
// assume 5 bits max for input vector values
// final shift is 3 bits right
//void sum_50c_176c(uchar **pp, uchar *sig)
//{
//}
void RTreeClassifier::getSignature(IplImage* patch, uchar *sig)
{
// Need pointer to 32x32 patch data
uchar buffer[PATCH_SIZE * PATCH_SIZE];
uchar* patch_data;
if (patch->widthStep != PATCH_SIZE) {
//printf("[INFO] patch is padded, data will be copied (%i/%i).\n",
// patch->widthStep, PATCH_SIZE);
uchar* data = getData(patch);
patch_data = buffer;
for (int i = 0; i < PATCH_SIZE; ++i) {
memcpy((void*)patch_data, (void*)data, PATCH_SIZE);
data += patch->widthStep;
patch_data += PATCH_SIZE;
}
patch_data = buffer;
} else {
patch_data = getData(patch);
}
std::vector<RandomizedTree>::iterator tree_it;
// get posteriors
if (posteriors_ == NULL)
{
posteriors_ = new uchar*[trees_.size()];
//aadded
// posix_memalign((void **)&ptemp_, 16, classes_*sizeof(ushort));
ptemp_ = (ushort*)malloc(classes_*sizeof(ushort));
}
uchar **pp = posteriors_;
for (tree_it = trees_.begin(); tree_it != trees_.end(); ++tree_it, pp++)
*pp = tree_it->getPosterior2(patch_data);
pp = posteriors_;
#if 0 // SSE2 optimized code
sum_50t_176c(pp, sig, ptemp_); // sum them up
#else
static bool warned = false;
memset((void*)sig, 0, classes_ * sizeof(sig[0]));
ushort *sig16 = new ushort[classes_]; // TODO: make member, no alloc here
memset((void*)sig16, 0, classes_ * sizeof(sig16[0]));
for (tree_it = trees_.begin(); tree_it != trees_.end(); ++tree_it, pp++)
add(classes_, sig16, *pp, sig16);
// squeeze signatures into an uchar
const bool full_shifting = true;
int shift;
if (full_shifting) {
float num_add_bits_f = log((float)trees_.size())/log(2.f); // # additional bits required due to summation
int num_add_bits = int(num_add_bits_f);
if (num_add_bits_f != float(num_add_bits)) ++num_add_bits;
shift = num_quant_bits_ + num_add_bits - 8*sizeof(uchar);
//shift = num_quant_bits_ + num_add_bits - 2;
//shift = 6;
if (shift>0)
for (int i = 0; i < classes_; ++i)
sig[i] = (sig16[i] >> shift); // &3 cut off all but lowest 2 bits, 3(dec) = 11(bin)
if (!warned)
printf("[OK] RTC: quantizing by FULL RIGHT SHIFT, shift = %i\n", shift);
}
else {
printf("[ERROR] RTC: not implemented!\n");
exit(0);
}
if (!warned)
printf("[WARNING] RTC: unoptimized signature computation\n");
warned = true;
#endif
}
void RTreeClassifier::getSparseSignature(IplImage *patch, float *sig, float thresh)
{
getFloatSignature(patch, sig);
for (int i=0; i<classes_; ++i, sig++)
if (*sig < thresh) *sig = 0.f;
}
int RTreeClassifier::countNonZeroElements(float *vec, int n, double tol)
{
int res = 0;
while (n-- > 0)
res += (fabs(*vec++) > tol);
return res;
}
void RTreeClassifier::read(const char* file_name)
{
std::ifstream file(file_name, std::ifstream::binary);
read(file);
file.close();
}
void RTreeClassifier::read(std::istream &is)
{
int num_trees = 0;
is.read((char*)(&num_trees), sizeof(num_trees));
is.read((char*)(&classes_), sizeof(classes_));
is.read((char*)(&original_num_classes_), sizeof(original_num_classes_));
is.read((char*)(&num_quant_bits_), sizeof(num_quant_bits_));
if (num_quant_bits_<1 || num_quant_bits_>8) {
printf("[WARNING] RTC: suspicious value num_quant_bits_=%i found; setting to %i.\n",
num_quant_bits_, (int)DEFAULT_NUM_QUANT_BITS);
num_quant_bits_ = DEFAULT_NUM_QUANT_BITS;
}
trees_.resize(num_trees);
std::vector<RandomizedTree>::iterator tree_it;
for (tree_it = trees_.begin(); tree_it != trees_.end(); ++tree_it) {
tree_it->read(is, num_quant_bits_);
}
printf("[OK] Loaded RTC, quantization=%i bits\n", num_quant_bits_);
countZeroElements();
}
void RTreeClassifier::write(const char* file_name) const
{
std::ofstream file(file_name, std::ofstream::binary);
write(file);
file.close();
}
void RTreeClassifier::write(std::ostream &os) const
{
int num_trees = trees_.size();
os.write((char*)(&num_trees), sizeof(num_trees));
os.write((char*)(&classes_), sizeof(classes_));
os.write((char*)(&original_num_classes_), sizeof(original_num_classes_));
os.write((char*)(&num_quant_bits_), sizeof(num_quant_bits_));
printf("RTreeClassifier::write: num_quant_bits_=%i\n", num_quant_bits_);
std::vector<RandomizedTree>::const_iterator tree_it;
for (tree_it = trees_.begin(); tree_it != trees_.end(); ++tree_it)
tree_it->write(os);
}
void RTreeClassifier::saveAllFloatPosteriors(std::string url)
{
printf("[DEBUG] writing all float posteriors to %s...\n", url.c_str());
for (int i=0; i<(int)trees_.size(); ++i)
trees_[i].savePosteriors(url, (i==0 ? false : true));
printf("[DEBUG] done\n");
}
void RTreeClassifier::saveAllBytePosteriors(std::string url)
{
printf("[DEBUG] writing all byte posteriors to %s...\n", url.c_str());
for (int i=0; i<(int)trees_.size(); ++i)
trees_[i].savePosteriors2(url, (i==0 ? false : true));
printf("[DEBUG] done\n");
}
void RTreeClassifier::setFloatPosteriorsFromTextfile_176(std::string url)
{
std::ifstream ifs(url.c_str());
for (int i=0; i<(int)trees_.size(); ++i) {
int num_classes = trees_[i].classes_;
assert(num_classes == 176); // TODO: remove this limitation (arose due to SSE2 optimizations)
for (int k=0; k<trees_[i].num_leaves_; ++k) {
float *post = trees_[i].getPosteriorByIndex(k);
for (int j=0; j<num_classes; ++j, ++post)
ifs >> *post;
assert(ifs.good());
}
}
classes_ = 176;
//setQuantization(num_quant_bits_);
ifs.close();
printf("[EXPERIMENTAL] read entire tree from '%s'\n", url.c_str());
}
float RTreeClassifier::countZeroElements()
{
int flt_zeros = 0;
int ui8_zeros = 0;
int num_elem = trees_[0].classes();
for (int i=0; i<(int)trees_.size(); ++i)
for (int k=0; k<(int)trees_[i].num_leaves_; ++k) {
float *p = trees_[i].getPosteriorByIndex(k);
uchar *p2 = trees_[i].getPosteriorByIndex2(k);
assert(p); assert(p2);
for (int j=0; j<num_elem; ++j, ++p, ++p2) {
if (*p == 0.f) flt_zeros++;
if (*p2 == 0) ui8_zeros++;
}
}
num_elem = trees_.size()*trees_[0].num_leaves_*num_elem;
float flt_perc = 100.*flt_zeros/num_elem;
float ui8_perc = 100.*ui8_zeros/num_elem;
printf("[OK] RTC: overall %i/%i (%.3f%%) zeros in float leaves\n", flt_zeros, num_elem, flt_perc);
printf(" overall %i/%i (%.3f%%) zeros in uint8 leaves\n", ui8_zeros, num_elem, ui8_perc);
return flt_perc;
}
void RTreeClassifier::setQuantization(int num_quant_bits)
{
for (int i=0; i<(int)trees_.size(); ++i)
trees_[i].applyQuantization(num_quant_bits);
printf("[OK] signature quantization is now %i bits (before: %i)\n", num_quant_bits, num_quant_bits_);
num_quant_bits_ = num_quant_bits;
}
//} // namespace features
}