mirror of
https://github.com/opencv/opencv.git
synced 2024-11-26 04:00:30 +08:00
157 lines
3.8 KiB
C++
157 lines
3.8 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
// Copyright (C) 2016, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
/*
|
|
Test for Tensorflow models loading
|
|
*/
|
|
|
|
#include "test_precomp.hpp"
|
|
#include "npy_blob.hpp"
|
|
|
|
namespace cvtest
|
|
{
|
|
|
|
using namespace cv;
|
|
using namespace cv::dnn;
|
|
|
|
template<typename TString>
|
|
static std::string _tf(TString filename)
|
|
{
|
|
return (getOpenCVExtraDir() + "/dnn/") + filename;
|
|
}
|
|
|
|
TEST(Test_TensorFlow, read_inception)
|
|
{
|
|
Net net;
|
|
{
|
|
const string model = findDataFile("dnn/tensorflow_inception_graph.pb", false);
|
|
net = readNetFromTensorflow(model);
|
|
ASSERT_FALSE(net.empty());
|
|
}
|
|
|
|
Mat sample = imread(_tf("grace_hopper_227.png"));
|
|
ASSERT_TRUE(!sample.empty());
|
|
Mat input;
|
|
resize(sample, input, Size(224, 224));
|
|
input -= 128; // mean sub
|
|
|
|
Mat inputBlob = blobFromImage(input);
|
|
|
|
net.setInput(inputBlob, "input");
|
|
Mat out = net.forward("softmax2");
|
|
|
|
std::cout << out.dims << std::endl;
|
|
}
|
|
|
|
TEST(Test_TensorFlow, inception_accuracy)
|
|
{
|
|
Net net;
|
|
{
|
|
const string model = findDataFile("dnn/tensorflow_inception_graph.pb", false);
|
|
net = readNetFromTensorflow(model);
|
|
ASSERT_FALSE(net.empty());
|
|
}
|
|
|
|
Mat sample = imread(_tf("grace_hopper_227.png"));
|
|
ASSERT_TRUE(!sample.empty());
|
|
resize(sample, sample, Size(224, 224));
|
|
Mat inputBlob = blobFromImage(sample);
|
|
|
|
net.setInput(inputBlob, "input");
|
|
Mat out = net.forward("softmax2");
|
|
|
|
Mat ref = blobFromNPY(_tf("tf_inception_prob.npy"));
|
|
|
|
normAssert(ref, out);
|
|
}
|
|
|
|
static std::string path(const std::string& file)
|
|
{
|
|
return findDataFile("dnn/tensorflow/" + file, false);
|
|
}
|
|
|
|
static void runTensorFlowNet(const std::string& prefix,
|
|
double l1 = 1e-5, double lInf = 1e-4)
|
|
{
|
|
std::string netPath = path(prefix + "_net.pb");
|
|
std::string inpPath = path(prefix + "_in.npy");
|
|
std::string outPath = path(prefix + "_out.npy");
|
|
|
|
Net net = readNetFromTensorflow(netPath);
|
|
|
|
cv::Mat input = blobFromNPY(inpPath);
|
|
cv::Mat target = blobFromNPY(outPath);
|
|
|
|
net.setInput(input);
|
|
cv::Mat output = net.forward();
|
|
normAssert(target, output, "", l1, lInf);
|
|
}
|
|
|
|
TEST(Test_TensorFlow, conv)
|
|
{
|
|
runTensorFlowNet("single_conv");
|
|
runTensorFlowNet("atrous_conv2d_valid");
|
|
runTensorFlowNet("atrous_conv2d_same");
|
|
runTensorFlowNet("depthwise_conv2d");
|
|
}
|
|
|
|
TEST(Test_TensorFlow, padding)
|
|
{
|
|
runTensorFlowNet("padding_same");
|
|
runTensorFlowNet("padding_valid");
|
|
}
|
|
|
|
TEST(Test_TensorFlow, eltwise_add_mul)
|
|
{
|
|
runTensorFlowNet("eltwise_add_mul");
|
|
}
|
|
|
|
TEST(Test_TensorFlow, pad_and_concat)
|
|
{
|
|
runTensorFlowNet("pad_and_concat");
|
|
}
|
|
|
|
TEST(Test_TensorFlow, batch_norm)
|
|
{
|
|
runTensorFlowNet("batch_norm");
|
|
runTensorFlowNet("fused_batch_norm");
|
|
}
|
|
|
|
TEST(Test_TensorFlow, pooling)
|
|
{
|
|
runTensorFlowNet("max_pool_even");
|
|
runTensorFlowNet("max_pool_odd_valid");
|
|
runTensorFlowNet("max_pool_odd_same");
|
|
}
|
|
|
|
TEST(Test_TensorFlow, deconvolution)
|
|
{
|
|
runTensorFlowNet("deconvolution");
|
|
}
|
|
|
|
TEST(Test_TensorFlow, matmul)
|
|
{
|
|
runTensorFlowNet("matmul");
|
|
}
|
|
|
|
TEST(Test_TensorFlow, fp16)
|
|
{
|
|
const float l1 = 1e-3;
|
|
const float lInf = 1e-2;
|
|
runTensorFlowNet("fp16_single_conv", l1, lInf);
|
|
runTensorFlowNet("fp16_deconvolution", l1, lInf);
|
|
runTensorFlowNet("fp16_max_pool_odd_same", l1, lInf);
|
|
runTensorFlowNet("fp16_padding_valid", l1, lInf);
|
|
runTensorFlowNet("fp16_eltwise_add_mul", l1, lInf);
|
|
runTensorFlowNet("fp16_max_pool_odd_valid", l1, lInf);
|
|
runTensorFlowNet("fp16_pad_and_concat", l1, lInf);
|
|
runTensorFlowNet("fp16_max_pool_even", l1, lInf);
|
|
runTensorFlowNet("fp16_padding_same", l1, lInf);
|
|
}
|
|
|
|
}
|