opencv/modules/gapi/src/executor/gexecutor.cpp

241 lines
8.2 KiB
C++

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018 Intel Corporation
#include "precomp.hpp"
#include <iostream>
#include <ade/util/zip_range.hpp>
#include "opencv2/gapi/opencv_includes.hpp"
#include "executor/gexecutor.hpp"
#include "compiler/passes/passes.hpp"
cv::gimpl::GExecutor::GExecutor(std::unique_ptr<ade::Graph> &&g_model)
: m_orig_graph(std::move(g_model))
, m_island_graph(GModel::Graph(*m_orig_graph).metadata()
.get<IslandModel>().model)
, m_gm(*m_orig_graph)
, m_gim(*m_island_graph)
{
// NB: Right now GIslandModel is acyclic, so for a naive execution,
// simple unrolling to a list of triggers is enough
// Naive execution model is similar to current CPU (OpenCV) plugin
// execution model:
// 1. Allocate all internal resources first (NB - CPU plugin doesn't do it)
// 2. Put input/output GComputation arguments to the storage
// 3. For every Island, prepare vectors of input/output parameter descs
// 4. Iterate over a list of operations (sorted in the topological order)
// 5. For every operation, form a list of input/output data objects
// 6. Run GIslandExecutable
// 7. writeBack
auto sorted = m_gim.metadata().get<ade::passes::TopologicalSortData>();
for (auto nh : sorted.nodes())
{
switch (m_gim.metadata(nh).get<NodeKind>().k)
{
case NodeKind::ISLAND:
{
std::vector<RcDesc> input_rcs;
std::vector<RcDesc> output_rcs;
input_rcs.reserve(nh->inNodes().size());
output_rcs.reserve(nh->outNodes().size());
auto xtract = [&](ade::NodeHandle slot_nh, std::vector<RcDesc> &vec) {
const auto orig_data_nh
= m_gim.metadata(slot_nh).get<DataSlot>().original_data_node;
const auto &orig_data_info
= m_gm.metadata(orig_data_nh).get<Data>();
vec.emplace_back(RcDesc{ orig_data_info.rc
, orig_data_info.shape
, orig_data_info.ctor});
};
// (3)
for (auto in_slot_nh : nh->inNodes()) xtract(in_slot_nh, input_rcs);
for (auto out_slot_nh : nh->outNodes()) xtract(out_slot_nh, output_rcs);
m_ops.emplace_back(OpDesc{ std::move(input_rcs)
, std::move(output_rcs)
, m_gim.metadata(nh).get<IslandExec>().object});
}
break;
case NodeKind::SLOT:
{
const auto orig_data_nh
= m_gim.metadata(nh).get<DataSlot>().original_data_node;
// (1)
initResource(orig_data_nh);
m_slots.emplace_back(DataDesc{nh, orig_data_nh});
}
break;
default:
GAPI_Assert(false);
break;
} // switch(kind)
} // for(gim nodes)
}
void cv::gimpl::GExecutor::initResource(const ade::NodeHandle &orig_nh)
{
const Data &d = m_gm.metadata(orig_nh).get<Data>();
if ( d.storage != Data::Storage::INTERNAL
&& d.storage != Data::Storage::CONST)
return;
// INTERNALS+CONST only! no need to allocate/reset output objects
// to as it is bound externally (e.g. already in the m_res)
switch (d.shape)
{
case GShape::GMAT:
{
const auto desc = util::get<cv::GMatDesc>(d.meta);
auto& mat = m_res.slot<cv::gapi::own::Mat>()[d.rc];
createMat(desc, mat);
}
break;
case GShape::GSCALAR:
if (d.storage == Data::Storage::CONST)
{
auto rc = RcDesc{d.rc, d.shape, d.ctor};
magazine::bindInArg(m_res, rc, m_gm.metadata(orig_nh).get<ConstValue>().arg);
}
break;
case GShape::GARRAY:
// Constructed on Reset, do nothing here
break;
default:
GAPI_Assert(false);
}
}
void cv::gimpl::GExecutor::run(cv::gimpl::GRuntimeArgs &&args)
{
// (2)
const auto proto = m_gm.metadata().get<Protocol>();
// Basic check if input/output arguments are correct
// FIXME: Move to GCompiled (do once for all GExecutors)
if (proto.inputs.size() != args.inObjs.size()) // TODO: Also check types
{
util::throw_error(std::logic_error
("Computation's input protocol doesn\'t "
"match actual arguments!"));
}
if (proto.outputs.size() != args.outObjs.size()) // TODO: Also check types
{
util::throw_error(std::logic_error
("Computation's output protocol doesn\'t "
"match actual arguments!"));
}
namespace util = ade::util;
//ensure that output Mat parameters are correctly allocated
for (auto index : util::iota(proto.out_nhs.size()) ) //FIXME: avoid copy of NodeHandle and GRunRsltComp ?
{
auto& nh = proto.out_nhs.at(index);
const Data &d = m_gm.metadata(nh).get<Data>();
if (d.shape == GShape::GMAT)
{
using cv::util::get;
const auto desc = get<cv::GMatDesc>(d.meta);
#if !defined(GAPI_STANDALONE)
// Building as part of OpenCV - follow OpenCV behavior
// if output buffer is not enough to hold the result, reallocate it
auto& out_mat = *get<cv::Mat*>(args.outObjs.at(index));
createMat(desc, out_mat);
#else
// Building standalone - output buffer should always exist,
// and _exact_ match our inferred metadata
auto& out_mat = *get<cv::gapi::own::Mat*>(args.outObjs.at(index));
GAPI_Assert(out_mat.data != nullptr &&
desc.canDescribe(out_mat))
#endif // !defined(GAPI_STANDALONE)
}
}
// Update storage with user-passed objects
for (auto it : ade::util::zip(ade::util::toRange(proto.inputs),
ade::util::toRange(args.inObjs)))
{
magazine::bindInArg(m_res, std::get<0>(it), std::get<1>(it));
}
for (auto it : ade::util::zip(ade::util::toRange(proto.outputs),
ade::util::toRange(args.outObjs)))
{
magazine::bindOutArg(m_res, std::get<0>(it), std::get<1>(it));
}
// Reset internal data
for (auto &sd : m_slots)
{
const auto& data = m_gm.metadata(sd.data_nh).get<Data>();
magazine::resetInternalData(m_res, data);
}
// Run the script
for (auto &op : m_ops)
{
// (5)
using InObj = GIslandExecutable::InObj;
using OutObj = GIslandExecutable::OutObj;
std::vector<InObj> in_objs;
std::vector<OutObj> out_objs;
in_objs.reserve (op.in_objects.size());
out_objs.reserve(op.out_objects.size());
for (const auto &rc : op.in_objects)
{
in_objs.emplace_back(InObj{rc, magazine::getArg(m_res, rc)});
}
for (const auto &rc : op.out_objects)
{
out_objs.emplace_back(OutObj{rc, magazine::getObjPtr(m_res, rc)});
}
// (6)
op.isl_exec->run(std::move(in_objs), std::move(out_objs));
}
// (7)
for (auto it : ade::util::zip(ade::util::toRange(proto.outputs),
ade::util::toRange(args.outObjs)))
{
magazine::writeBack(m_res, std::get<0>(it), std::get<1>(it));
}
}
const cv::gimpl::GModel::Graph& cv::gimpl::GExecutor::model() const
{
return m_gm;
}
bool cv::gimpl::GExecutor::canReshape() const
{
// FIXME: Introduce proper reshaping support on GExecutor level
// for all cases!
return (m_ops.size() == 1) && m_ops[0].isl_exec->canReshape();
}
void cv::gimpl::GExecutor::reshape(const GMetaArgs& inMetas, const GCompileArgs& args)
{
GAPI_Assert(canReshape());
auto& g = *m_orig_graph.get();
ade::passes::PassContext ctx{g};
passes::initMeta(ctx, inMetas);
passes::inferMeta(ctx, true);
m_ops[0].isl_exec->reshape(g, args);
}