mirror of
https://github.com/opencv/opencv.git
synced 2024-12-14 17:29:17 +08:00
f87e1efd2a
libjpeg upgrade to version 9f #25092 Upgrade libjpeg dependency from version 9d to 9f. - [X] I agree to contribute to the project under Apache 2 License. - [X] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [X] The PR is proposed to the proper branch - [ ] There is a reference to the original bug report and related work - [ ] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [ ] The feature is well documented and sample code can be built with the project CMake
175 lines
5.9 KiB
C++
175 lines
5.9 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
//#define DEBUG_TEST
|
|
#ifdef DEBUG_TEST
|
|
#include <opencv2/highgui.hpp>
|
|
#endif
|
|
|
|
namespace opencv_test { namespace {
|
|
//using namespace cv::tracking;
|
|
|
|
#define TESTSET_NAMES testing::Values("david", "dudek", "faceocc2")
|
|
|
|
const string TRACKING_DIR = "tracking";
|
|
const string FOLDER_IMG = "data";
|
|
const string FOLDER_OMIT_INIT = "initOmit";
|
|
|
|
#include "test_trackers.impl.hpp"
|
|
|
|
//[TESTDATA]
|
|
PARAM_TEST_CASE(DistanceAndOverlap, string)
|
|
{
|
|
string dataset;
|
|
virtual void SetUp()
|
|
{
|
|
dataset = GET_PARAM(0);
|
|
}
|
|
};
|
|
|
|
TEST_P(DistanceAndOverlap, MIL)
|
|
{
|
|
TrackerTest<Tracker, Rect> test(TrackerMIL::create(), dataset, 30, .65f, NoTransform);
|
|
test.run();
|
|
}
|
|
|
|
TEST_P(DistanceAndOverlap, Shifted_Data_MIL)
|
|
{
|
|
TrackerTest<Tracker, Rect> test(TrackerMIL::create(), dataset, 30, .6f, CenterShiftLeft);
|
|
test.run();
|
|
}
|
|
|
|
/***************************************************************************************/
|
|
//Tests with scaled initial window
|
|
|
|
TEST_P(DistanceAndOverlap, Scaled_Data_MIL)
|
|
{
|
|
TrackerTest<Tracker, Rect> test(TrackerMIL::create(), dataset, 30, .7f, Scale_1_1);
|
|
test.run();
|
|
}
|
|
|
|
TEST_P(DistanceAndOverlap, GOTURN)
|
|
{
|
|
std::string model = cvtest::findDataFile("dnn/gsoc2016-goturn/goturn.prototxt");
|
|
std::string weights = cvtest::findDataFile("dnn/gsoc2016-goturn/goturn.caffemodel", false);
|
|
cv::TrackerGOTURN::Params params;
|
|
params.modelTxt = model;
|
|
params.modelBin = weights;
|
|
TrackerTest<Tracker, Rect> test(TrackerGOTURN::create(params), dataset, 35, .35f, NoTransform);
|
|
test.run();
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(Tracking, DistanceAndOverlap, TESTSET_NAMES);
|
|
|
|
static bool checkIOU(const Rect& r0, const Rect& r1, double threshold)
|
|
{
|
|
int interArea = (r0 & r1).area();
|
|
double iouVal = (interArea * 1.0 )/ (r0.area() + r1.area() - interArea);;
|
|
|
|
if (iouVal > threshold)
|
|
return true;
|
|
else
|
|
{
|
|
std::cout <<"Unmatched IOU: expect IOU val ("<<iouVal <<") > the IOU threadhold ("<<threshold<<")! Box 0 is "
|
|
<< r0 <<", and Box 1 is "<<r1<< std::endl;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
static void checkTrackingAccuracy(cv::Ptr<Tracker>& tracker, double iouThreshold = 0.7)
|
|
{
|
|
// Template image
|
|
Mat img0 = imread(findDataFile("tracking/bag/00000001.jpg"), 1);
|
|
|
|
// Tracking image sequence.
|
|
std::vector<Mat> imgs;
|
|
imgs.push_back(imread(findDataFile("tracking/bag/00000002.jpg"), 1));
|
|
imgs.push_back(imread(findDataFile("tracking/bag/00000003.jpg"), 1));
|
|
imgs.push_back(imread(findDataFile("tracking/bag/00000004.jpg"), 1));
|
|
imgs.push_back(imread(findDataFile("tracking/bag/00000005.jpg"), 1));
|
|
imgs.push_back(imread(findDataFile("tracking/bag/00000006.jpg"), 1));
|
|
|
|
cv::Rect roi(325, 164, 100, 100);
|
|
std::vector<Rect> targetRois;
|
|
targetRois.push_back(cv::Rect(278, 133, 99, 104));
|
|
targetRois.push_back(cv::Rect(293, 88, 93, 110));
|
|
targetRois.push_back(cv::Rect(287, 76, 89, 116));
|
|
targetRois.push_back(cv::Rect(297, 74, 82, 122));
|
|
targetRois.push_back(cv::Rect(311, 83, 78, 125));
|
|
|
|
tracker->init(img0, roi);
|
|
CV_Assert(targetRois.size() == imgs.size());
|
|
|
|
for (int i = 0; i < (int)imgs.size(); i++)
|
|
{
|
|
bool res = tracker->update(imgs[i], roi);
|
|
ASSERT_TRUE(res);
|
|
ASSERT_TRUE(checkIOU(roi, targetRois[i], iouThreshold)) << cv::format("Fail at img %d.",i);
|
|
}
|
|
}
|
|
|
|
TEST(GOTURN, accuracy)
|
|
{
|
|
std::string model = cvtest::findDataFile("dnn/gsoc2016-goturn/goturn.prototxt");
|
|
std::string weights = cvtest::findDataFile("dnn/gsoc2016-goturn/goturn.caffemodel", false);
|
|
cv::TrackerGOTURN::Params params;
|
|
params.modelTxt = model;
|
|
params.modelBin = weights;
|
|
cv::Ptr<Tracker> tracker = TrackerGOTURN::create(params);
|
|
// TODO! GOTURN have low accuracy. Try to remove this api at 5.x.
|
|
checkTrackingAccuracy(tracker, 0.08);
|
|
}
|
|
|
|
TEST(DaSiamRPN, accuracy)
|
|
{
|
|
std::string model = cvtest::findDataFile("dnn/onnx/models/dasiamrpn_model.onnx", false);
|
|
std::string kernel_r1 = cvtest::findDataFile("dnn/onnx/models/dasiamrpn_kernel_r1.onnx", false);
|
|
std::string kernel_cls1 = cvtest::findDataFile("dnn/onnx/models/dasiamrpn_kernel_cls1.onnx", false);
|
|
cv::TrackerDaSiamRPN::Params params;
|
|
params.model = model;
|
|
params.kernel_r1 = kernel_r1;
|
|
params.kernel_cls1 = kernel_cls1;
|
|
cv::Ptr<Tracker> tracker = TrackerDaSiamRPN::create(params);
|
|
checkTrackingAccuracy(tracker, 0.7);
|
|
}
|
|
|
|
TEST(NanoTrack, accuracy_NanoTrack_V1)
|
|
{
|
|
std::string backbonePath = cvtest::findDataFile("dnn/onnx/models/nanotrack_backbone_sim.onnx", false);
|
|
std::string neckheadPath = cvtest::findDataFile("dnn/onnx/models/nanotrack_head_sim.onnx", false);
|
|
|
|
cv::TrackerNano::Params params;
|
|
params.backbone = backbonePath;
|
|
params.neckhead = neckheadPath;
|
|
cv::Ptr<Tracker> tracker = TrackerNano::create(params);
|
|
checkTrackingAccuracy(tracker);
|
|
}
|
|
|
|
TEST(NanoTrack, accuracy_NanoTrack_V2)
|
|
{
|
|
std::string backbonePath = cvtest::findDataFile("dnn/onnx/models/nanotrack_backbone_sim_v2.onnx", false);
|
|
std::string neckheadPath = cvtest::findDataFile("dnn/onnx/models/nanotrack_head_sim_v2.onnx", false);
|
|
|
|
cv::TrackerNano::Params params;
|
|
params.backbone = backbonePath;
|
|
params.neckhead = neckheadPath;
|
|
cv::Ptr<Tracker> tracker = TrackerNano::create(params);
|
|
checkTrackingAccuracy(tracker, 0.69);
|
|
}
|
|
|
|
TEST(vittrack, accuracy_vittrack)
|
|
{
|
|
std::string model = cvtest::findDataFile("dnn/onnx/models/vitTracker.onnx");
|
|
cv::TrackerVit::Params params;
|
|
params.net = model;
|
|
cv::Ptr<Tracker> tracker = TrackerVit::create(params);
|
|
// NOTE: Test threshold was reduced from 0.67 (libjpeg-turbo) to 0.66 (libjpeg 9f),
|
|
// becase libjpeg and libjpeg-turbo produce slightly different images
|
|
checkTrackingAccuracy(tracker, 0.66);
|
|
}
|
|
|
|
}} // namespace opencv_test::
|