opencv/samples/dnn/classification.py
alexlyulkov b71be65f57
Merge pull request #24294 from alexlyulkov:al/remove-torch7-from-dnn
Remove torch (old torch7) from dnn in 5.x #24294

Merge with https://github.com/opencv/opencv_extra/pull/1097

Completely removed torch (old torch7) from dnn:
- removed modules/dnn/src/torch directory that contained torch7 model parser
- removed readNetFromTorch() and readTorchBlob() public functions
- removed torch7 references from comments and help texts
- replaced links to t7 models by links to similar onnx models in js_style_transfer turtorial (similar to https://github.com/opencv/opencv/pull/24245/files)
2023-10-26 11:27:56 +03:00

117 lines
5.3 KiB
Python

import argparse
import cv2 as cv
import numpy as np
from common import *
def get_args_parser(func_args):
backends = (cv.dnn.DNN_BACKEND_DEFAULT, cv.dnn.DNN_BACKEND_INFERENCE_ENGINE,
cv.dnn.DNN_BACKEND_OPENCV, cv.dnn.DNN_BACKEND_VKCOM, cv.dnn.DNN_BACKEND_CUDA)
targets = (cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_OPENCL, cv.dnn.DNN_TARGET_OPENCL_FP16, cv.dnn.DNN_TARGET_MYRIAD,
cv.dnn.DNN_TARGET_HDDL, cv.dnn.DNN_TARGET_VULKAN, cv.dnn.DNN_TARGET_CUDA, cv.dnn.DNN_TARGET_CUDA_FP16)
parser = argparse.ArgumentParser(add_help=False)
parser.add_argument('--zoo', default=os.path.join(os.path.dirname(os.path.abspath(__file__)), 'models.yml'),
help='An optional path to file with preprocessing parameters.')
parser.add_argument('--input',
help='Path to input image or video file. Skip this argument to capture frames from a camera.')
parser.add_argument('--framework', choices=['caffe', 'tensorflow', 'darknet'],
help='Optional name of an origin framework of the model. '
'Detect it automatically if it does not set.')
parser.add_argument('--std', nargs='*', type=float,
help='Preprocess input image by dividing on a standard deviation.')
parser.add_argument('--crop', type=bool, default=False,
help='Preprocess input image by dividing on a standard deviation.')
parser.add_argument('--initial_width', type=int,
help='Preprocess input image by initial resizing to a specific width.')
parser.add_argument('--initial_height', type=int,
help='Preprocess input image by initial resizing to a specific height.')
parser.add_argument('--backend', choices=backends, default=cv.dnn.DNN_BACKEND_DEFAULT, type=int,
help="Choose one of computation backends: "
"%d: automatically (by default), "
"%d: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
"%d: OpenCV implementation, "
"%d: VKCOM, "
"%d: CUDA" % backends)
parser.add_argument('--target', choices=targets, default=cv.dnn.DNN_TARGET_CPU, type=int,
help='Choose one of target computation devices: '
'%d: CPU target (by default), '
'%d: OpenCL, '
'%d: OpenCL fp16 (half-float precision), '
'%d: NCS2 VPU, '
'%d: HDDL VPU, '
'%d: Vulkan, '
'%d: CUDA, '
'%d: CUDA fp16 (half-float preprocess)'% targets)
args, _ = parser.parse_known_args()
add_preproc_args(args.zoo, parser, 'classification')
parser = argparse.ArgumentParser(parents=[parser],
description='Use this script to run classification deep learning networks using OpenCV.',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
return parser.parse_args(func_args)
def main(func_args=None):
args = get_args_parser(func_args)
args.model = findFile(args.model)
args.config = findFile(args.config)
args.classes = findFile(args.classes)
# Load names of classes
classes = None
if args.classes:
with open(args.classes, 'rt') as f:
classes = f.read().rstrip('\n').split('\n')
# Load a network
net = cv.dnn.readNet(args.model, args.config, args.framework)
net.setPreferableBackend(args.backend)
net.setPreferableTarget(args.target)
winName = 'Deep learning image classification in OpenCV'
cv.namedWindow(winName, cv.WINDOW_NORMAL)
cap = cv.VideoCapture(args.input if args.input else 0)
while cv.waitKey(1) < 0:
hasFrame, frame = cap.read()
if not hasFrame:
cv.waitKey()
break
# Create a 4D blob from a frame.
inpWidth = args.width if args.width else frame.shape[1]
inpHeight = args.height if args.height else frame.shape[0]
if args.initial_width and args.initial_height:
frame = cv.resize(frame, (args.initial_width, args.initial_height))
blob = cv.dnn.blobFromImage(frame, args.scale, (inpWidth, inpHeight), args.mean, args.rgb, crop=args.crop)
if args.std:
blob[0] /= np.asarray(args.std, dtype=np.float32).reshape(3, 1, 1)
# Run a model
net.setInput(blob)
out = net.forward()
# Get a class with a highest score.
out = out.flatten()
classId = np.argmax(out)
confidence = out[classId]
# Put efficiency information.
t, _ = net.getPerfProfile()
label = 'Inference time: %.2f ms' % (t * 1000.0 / cv.getTickFrequency())
cv.putText(frame, label, (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0))
# Print predicted class.
label = '%s: %.4f' % (classes[classId] if classes else 'Class #%d' % classId, confidence)
cv.putText(frame, label, (0, 40), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0))
cv.imshow(winName, frame)
if __name__ == "__main__":
main()