mirror of
https://github.com/opencv/opencv.git
synced 2024-12-16 10:29:11 +08:00
61359a5bd0
add cuda and vulkan backends to dnn samples
241 lines
9.5 KiB
Python
241 lines
9.5 KiB
Python
#!/usr/bin/env python
|
|
'''
|
|
You can download a baseline ReID model and sample input from:
|
|
https://github.com/ReID-Team/ReID_extra_testdata
|
|
|
|
Authors of samples and Youtu ReID baseline:
|
|
Xing Sun <winfredsun@tencent.com>
|
|
Feng Zheng <zhengf@sustech.edu.cn>
|
|
Xinyang Jiang <sevjiang@tencent.com>
|
|
Fufu Yu <fufuyu@tencent.com>
|
|
Enwei Zhang <miyozhang@tencent.com>
|
|
|
|
Copyright (C) 2020-2021, Tencent.
|
|
Copyright (C) 2020-2021, SUSTech.
|
|
'''
|
|
import argparse
|
|
import os.path
|
|
import numpy as np
|
|
import cv2 as cv
|
|
|
|
backends = (cv.dnn.DNN_BACKEND_DEFAULT,
|
|
cv.dnn.DNN_BACKEND_INFERENCE_ENGINE,
|
|
cv.dnn.DNN_BACKEND_OPENCV,
|
|
cv.dnn.DNN_BACKEND_VKCOM,
|
|
cv.dnn.DNN_BACKEND_CUDA)
|
|
|
|
targets = (cv.dnn.DNN_TARGET_CPU,
|
|
cv.dnn.DNN_TARGET_OPENCL,
|
|
cv.dnn.DNN_TARGET_OPENCL_FP16,
|
|
cv.dnn.DNN_TARGET_MYRIAD,
|
|
cv.dnn.DNN_TARGET_HDDL,
|
|
cv.dnn.DNN_TARGET_VULKAN,
|
|
cv.dnn.DNN_TARGET_CUDA,
|
|
cv.dnn.DNN_TARGET_CUDA_FP16)
|
|
|
|
MEAN = (0.485, 0.456, 0.406)
|
|
STD = (0.229, 0.224, 0.225)
|
|
|
|
def preprocess(images, height, width):
|
|
"""
|
|
Create 4-dimensional blob from image
|
|
:param image: input image
|
|
:param height: the height of the resized input image
|
|
:param width: the width of the resized input image
|
|
"""
|
|
img_list = []
|
|
for image in images:
|
|
image = cv.resize(image, (width, height))
|
|
img_list.append(image[:, :, ::-1])
|
|
|
|
images = np.array(img_list)
|
|
images = (images / 255.0 - MEAN) / STD
|
|
|
|
input = cv.dnn.blobFromImages(images.astype(np.float32), ddepth = cv.CV_32F)
|
|
return input
|
|
|
|
def extract_feature(img_dir, model_path, batch_size = 32, resize_h = 384, resize_w = 128, backend=cv.dnn.DNN_BACKEND_OPENCV, target=cv.dnn.DNN_TARGET_CPU):
|
|
"""
|
|
Extract features from images in a target directory
|
|
:param img_dir: the input image directory
|
|
:param model_path: path to ReID model
|
|
:param batch_size: the batch size for each network inference iteration
|
|
:param resize_h: the height of the input image
|
|
:param resize_w: the width of the input image
|
|
:param backend: name of computation backend
|
|
:param target: name of computation target
|
|
"""
|
|
feat_list = []
|
|
path_list = os.listdir(img_dir)
|
|
path_list = [os.path.join(img_dir, img_name) for img_name in path_list]
|
|
count = 0
|
|
|
|
for i in range(0, len(path_list), batch_size):
|
|
print('Feature Extraction for images in', img_dir, 'Batch:', count, '/', len(path_list))
|
|
batch = path_list[i : min(i + batch_size, len(path_list))]
|
|
imgs = read_data(batch)
|
|
inputs = preprocess(imgs, resize_h, resize_w)
|
|
|
|
feat = run_net(inputs, model_path, backend, target)
|
|
|
|
feat_list.append(feat)
|
|
count += batch_size
|
|
|
|
feats = np.concatenate(feat_list, axis = 0)
|
|
return feats, path_list
|
|
|
|
def run_net(inputs, model_path, backend=cv.dnn.DNN_BACKEND_OPENCV, target=cv.dnn.DNN_TARGET_CPU):
|
|
"""
|
|
Forword propagation for a batch of images.
|
|
:param inputs: input batch of images
|
|
:param model_path: path to ReID model
|
|
:param backend: name of computation backend
|
|
:param target: name of computation target
|
|
"""
|
|
net = cv.dnn.readNet(model_path)
|
|
net.setPreferableBackend(backend)
|
|
net.setPreferableTarget(target)
|
|
net.setInput(inputs)
|
|
out = net.forward()
|
|
out = np.reshape(out, (out.shape[0], out.shape[1]))
|
|
return out
|
|
|
|
def read_data(path_list):
|
|
"""
|
|
Read all images from a directory into a list
|
|
:param path_list: the list of image path
|
|
"""
|
|
img_list = []
|
|
for img_path in path_list:
|
|
img = cv.imread(img_path)
|
|
if img is None:
|
|
continue
|
|
img_list.append(img)
|
|
return img_list
|
|
|
|
def normalize(nparray, order=2, axis=0):
|
|
"""
|
|
Normalize a N-D numpy array along the specified axis.
|
|
:param nparry: the array of vectors to be normalized
|
|
:param order: order of the norm
|
|
:param axis: the axis of x along which to compute the vector norms
|
|
"""
|
|
norm = np.linalg.norm(nparray, ord=order, axis=axis, keepdims=True)
|
|
return nparray / (norm + np.finfo(np.float32).eps)
|
|
|
|
def similarity(array1, array2):
|
|
"""
|
|
Compute the euclidean or cosine distance of all pairs.
|
|
:param array1: numpy array with shape [m1, n]
|
|
:param array2: numpy array with shape [m2, n]
|
|
Returns:
|
|
numpy array with shape [m1, m2]
|
|
"""
|
|
array1 = normalize(array1, axis=1)
|
|
array2 = normalize(array2, axis=1)
|
|
dist = np.matmul(array1, array2.T)
|
|
return dist
|
|
|
|
def topk(query_feat, gallery_feat, topk = 5):
|
|
"""
|
|
Return the index of top K gallery images most similar to the query images
|
|
:param query_feat: array of feature vectors of query images
|
|
:param gallery_feat: array of feature vectors of gallery images
|
|
:param topk: number of gallery images to return
|
|
"""
|
|
sim = similarity(query_feat, gallery_feat)
|
|
index = np.argsort(-sim, axis = 1)
|
|
return [i[0:int(topk)] for i in index]
|
|
|
|
def drawRankList(query_name, gallery_list, output_size = (128, 384)):
|
|
"""
|
|
Draw the rank list
|
|
:param query_name: path of the query image
|
|
:param gallery_name: path of the gallery image
|
|
"param output_size: the output size of each image in the rank list
|
|
"""
|
|
def addBorder(im, color):
|
|
bordersize = 5
|
|
border = cv.copyMakeBorder(
|
|
im,
|
|
top = bordersize,
|
|
bottom = bordersize,
|
|
left = bordersize,
|
|
right = bordersize,
|
|
borderType = cv.BORDER_CONSTANT,
|
|
value = color
|
|
)
|
|
return border
|
|
query_img = cv.imread(query_name)
|
|
query_img = cv.resize(query_img, output_size)
|
|
query_img = addBorder(query_img, [0, 0, 0])
|
|
cv.putText(query_img, 'Query', (10, 30), cv.FONT_HERSHEY_COMPLEX, 1., (0,255,0), 2)
|
|
|
|
gallery_img_list = []
|
|
for i, gallery_name in enumerate(gallery_list):
|
|
gallery_img = cv.imread(gallery_name)
|
|
gallery_img = cv.resize(gallery_img, output_size)
|
|
gallery_img = addBorder(gallery_img, [255, 255, 255])
|
|
cv.putText(gallery_img, 'G%02d'%i, (10, 30), cv.FONT_HERSHEY_COMPLEX, 1., (0,255,0), 2)
|
|
gallery_img_list.append(gallery_img)
|
|
ret = np.concatenate([query_img] + gallery_img_list, axis = 1)
|
|
return ret
|
|
|
|
|
|
def visualization(topk_idx, query_names, gallery_names, output_dir = 'vis'):
|
|
"""
|
|
Visualize the retrieval results with the person ReID model
|
|
:param topk_idx: the index of ranked gallery images for each query image
|
|
:param query_names: the list of paths of query images
|
|
:param gallery_names: the list of paths of gallery images
|
|
:param output_dir: the path to save the visualize results
|
|
"""
|
|
if not os.path.exists(output_dir):
|
|
os.mkdir(output_dir)
|
|
for i, idx in enumerate(topk_idx):
|
|
query_name = query_names[i]
|
|
topk_names = [gallery_names[j] for j in idx]
|
|
vis_img = drawRankList(query_name, topk_names)
|
|
output_path = os.path.join(output_dir, '%03d_%s'%(i, os.path.basename(query_name)))
|
|
cv.imwrite(output_path, vis_img)
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser(description='Use this script to run human parsing using JPPNet',
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
|
parser.add_argument('--query_dir', '-q', required=True, help='Path to query image.')
|
|
parser.add_argument('--gallery_dir', '-g', required=True, help='Path to gallery directory.')
|
|
parser.add_argument('--resize_h', default = 256, help='The height of the input for model inference.')
|
|
parser.add_argument('--resize_w', default = 128, help='The width of the input for model inference')
|
|
parser.add_argument('--model', '-m', default='reid.onnx', help='Path to pb model.')
|
|
parser.add_argument('--visualization_dir', default='vis', help='Path for the visualization results')
|
|
parser.add_argument('--topk', default=10, help='Number of images visualized in the rank list')
|
|
parser.add_argument('--batchsize', default=32, help='The batch size of each inference')
|
|
parser.add_argument('--backend', choices=backends, default=cv.dnn.DNN_BACKEND_DEFAULT, type=int,
|
|
help="Choose one of computation backends: "
|
|
"%d: automatically (by default), "
|
|
"%d: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
|
|
"%d: OpenCV implementation, "
|
|
"%d: VKCOM, "
|
|
"%d: CUDA backend"% backends)
|
|
parser.add_argument('--target', choices=targets, default=cv.dnn.DNN_TARGET_CPU, type=int,
|
|
help='Choose one of target computation devices: '
|
|
'%d: CPU target (by default), '
|
|
'%d: OpenCL, '
|
|
'%d: OpenCL fp16 (half-float precision), '
|
|
'%d: NCS2 VPU, '
|
|
'%d: HDDL VPU, '
|
|
'%d: Vulkan, '
|
|
'%d: CUDA, '
|
|
'%d: CUDA FP16'
|
|
% targets)
|
|
args, _ = parser.parse_known_args()
|
|
|
|
if not os.path.isfile(args.model):
|
|
raise OSError("Model not exist")
|
|
|
|
query_feat, query_names = extract_feature(args.query_dir, args.model, args.batchsize, args.resize_h, args.resize_w, args.backend, args.target)
|
|
gallery_feat, gallery_names = extract_feature(args.gallery_dir, args.model, args.batchsize, args.resize_h, args.resize_w, args.backend, args.target)
|
|
|
|
topk_idx = topk(query_feat, gallery_feat, args.topk)
|
|
visualization(topk_idx, query_names, gallery_names, output_dir = args.visualization_dir)
|