opencv/modules/dnn/src/onnx/onnx_graph_simplifier.cpp
Dmitry Kurtaev fa56623458
Merge pull request #24463 from dkurt:dnn_shared_nodes_fusion
DNN graph fusion with shared nodes #24463

### Pull Request Readiness Checklist

For now, nodes from matched pattern are removed during the matching process so if nodes are used in similar subgraph, they cannot be found.

required for https://github.com/opencv/opencv/pull/24397

**Merge with extra**: https://github.com/opencv/opencv_extra/pull/1115

A part from [model_name ](https://github.com/onnx/models/blob/main/vision/object_detection_segmentation/fcn/model/fcn-resnet101-11.onnx) with two Resize subgraphs with shared nodes:
![image](https://github.com/opencv/opencv/assets/25801568/611d89d9-12fb-4add-9218-13b10d2c086a)

See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request

- [x] I agree to contribute to the project under Apache 2 License.
- [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV
- [x] The PR is proposed to the proper branch
- [x] There is a reference to the original bug report and related work
- [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable
      Patch to opencv_extra has the same branch name.
- [x] The feature is well documented and sample code can be built with the project CMake
2023-11-03 12:34:09 +03:00

1430 lines
51 KiB
C++

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// Copyright (C) 2020, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
#include "../precomp.hpp"
#ifdef HAVE_PROTOBUF
#include "../graph_simplifier.hpp"
#include "onnx_graph_simplifier.hpp"
#include <opencv2/core/utils/logger.hpp>
#include <queue>
namespace cv { namespace dnn {
CV__DNN_INLINE_NS_BEGIN
extern bool DNN_DIAGNOSTICS_RUN;
// This wrapper can behave differently for fake input nodes and real graph nodes.
class ONNXNodeWrapper : public ImportNodeWrapper
{
public:
ONNXNodeWrapper(opencv_onnx::NodeProto* _node = 0) : node(_node) {}
virtual int getNumInputs() const CV_OVERRIDE
{
return node ? node->input_size() : 0;
}
virtual std::string getInputName(int idx) const CV_OVERRIDE
{
CV_Assert_N(node, idx < node->input_size());
return node->input(idx);
}
virtual std::string getType() const CV_OVERRIDE
{
return node ? node->op_type() : "";
}
virtual void setType(const std::string& type) CV_OVERRIDE
{
CV_Assert(node);
node->set_op_type(type);
}
virtual void setInputNames(const std::vector<std::string>& inputs) CV_OVERRIDE
{
CV_Assert(node);
node->clear_input();
for (int i = 0; i < inputs.size(); ++i)
node->add_input(inputs[i]);
}
opencv_onnx::NodeProto* node;
};
// ONNX graph's inputs are separate from nodes so we index them before the rest of nodes.
class ONNXGraphWrapper : public ImportGraphWrapper
{
public:
ONNXGraphWrapper(opencv_onnx::GraphProto& _net) : net(_net)
{
numInputs = net.input_size();
numInitializers = net.initializer_size();
}
virtual Ptr<ImportNodeWrapper> getNode(int idx) const CV_OVERRIDE
{
opencv_onnx::NodeProto* node = 0;
if (idx >= numInputs + numInitializers)
node = net.mutable_node(idx - numInputs - numInitializers);
return makePtr<ONNXNodeWrapper>(node);
}
int getInputInitializerId(int node_id, int node_input_id)
{
auto node = getNode(node_id);
std::string node_input_name = node->getInputName(node_input_id);
for (int i = 0; i < numInitializers; ++i)
if (net.initializer(i).name() == node_input_name)
return i;
// CV_Error(Error::StsParseError, "Initializer with name " + node_input_name + " not found");
return -1;
}
Mat getMatFromInitializer(int idx)
{
const opencv_onnx::TensorProto& tensor_proto = net.initializer(idx);
return getMatFromTensor(tensor_proto);
}
std::string getNameOfInitializer(int idx) const
{
const opencv_onnx::TensorProto& tensor_proto = net.initializer(idx);
return tensor_proto.name();
}
virtual int getNumNodes() const CV_OVERRIDE
{
return numInputs + numInitializers + net.node_size();
}
virtual int getNumOutputs(int nodeId) const CV_OVERRIDE
{
if (nodeId < numInputs + numInitializers)
return 1;
else
return net.node(nodeId - numInputs - numInitializers).output_size();
}
virtual std::string getOutputName(int nodeId, int outId) const CV_OVERRIDE
{
CV_Assert(outId < getNumOutputs(nodeId));
if (nodeId < numInputs)
return net.input(nodeId).name();
else if (nodeId < numInputs + numInitializers)
return net.initializer(nodeId - numInputs).name();
else
return net.node(nodeId - numInputs - numInitializers).output(outId);
}
virtual void removeNode(int idx) CV_OVERRIDE
{
CV_Assert(idx >= numInputs + numInitializers);
net.mutable_node()->DeleteSubrange(idx - numInputs - numInitializers, 1);
}
private:
int numInputs, numInitializers;
opencv_onnx::GraphProto& net;
};
/* Fusion for Gelu.
Graph before fusion:
+---------------------------------------------+
| |
[Input] -> Div[B=sqrt(2)] -> Erf -> Add[B=1] -> Mul -> Mul[B=0.5] -> [Output]
Graph after fusion:
[Input] -> Gelu -> [Output]
*/
class GeluSubGraph : public Subgraph
{
public:
GeluSubGraph()
{
int input = addNodeToMatch("");
int div = addNodeToMatch("Div", input, addNodeToMatch("") /* B=sqrt(2) */ );
int erf = addNodeToMatch("Erf", div);
int add = addNodeToMatch("Add", erf, addNodeToMatch("") /* B=1 */ );
int mul = addNodeToMatch("Mul", input, add);
addNodeToMatch("Mul", mul, addNodeToMatch("") /* B=0.5 */) ;
setFusedNode("Gelu", input);
}
static float extractConstant(const Ptr<ImportGraphWrapper>& net, int node_id, int input_id)
{
auto onnx_net = net.dynamicCast<ONNXGraphWrapper>();
int initializer_id = onnx_net->getInputInitializerId(node_id, input_id);
if (initializer_id != -1)
{
Mat const_mat = onnx_net->getMatFromInitializer(initializer_id);
return *const_mat.ptr<float>();
}
else
{
const Ptr<ImportNodeWrapper> node = net->getNode(node_id);
int constant_id = getInputNodeId(net, node, input_id);
Ptr<ImportNodeWrapper> constant_ptr = net->getNode(constant_id);
opencv_onnx::NodeProto* constant_node = constant_ptr.dynamicCast<ONNXNodeWrapper>()->node;
opencv_onnx::TensorProto constant_proto = constant_node->attribute(0).t();
Mat constant_mat = getMatFromTensor(constant_proto);
return *constant_mat.ptr<float>();
}
}
virtual bool match(const Ptr<ImportGraphWrapper>& net, int nodeId,
std::vector<int>& matchedNodesIds,
std::vector<int>& targetNodesIds) CV_OVERRIDE
{
if (Subgraph::match(net, nodeId, matchedNodesIds, targetNodesIds))
{
// Check Div[B=sqrt(2)]
float divisor = extractConstant(net, matchedNodesIds[0], 1);
if (std::fabs(divisor - M_SQRT2) >= std::numeric_limits<float>::epsilon())
return false;
// Check Add[B=1]
float add_const = extractConstant(net, matchedNodesIds[2], 1);
if (std::fabs(add_const - 1.f) >= std::numeric_limits<float>::epsilon())
return false;
// Check Mul[B=0.5]
float mul_const = extractConstant(net, matchedNodesIds[4], 1);
if (std::fabs(mul_const - 0.5f) >= std::numeric_limits<float>::epsilon())
return false;
return true;
}
return false;
}
};
/* Fusion for GeluApproximation.
Graph before fusion:
+--------+------+----------------+------------------------------------+
| | | | |
[Input] -> Mul -> Mul -> Mul[ ] -> Add -> Mul[ ] -> Tanh -> Add[A=1] -> Mul -> Mul(A=0.5) -> [Output]
/ \
A=0.044714998453855515 A=sqrt(2/pie)
Graph after fusion:
[Input] -> GeluApproximation -> [Output]
*/
class GeluApproximationSubGraph : public Subgraph
{
public:
GeluApproximationSubGraph()
{
int input = addNodeToMatch("");
int mul0 = addNodeToMatch("Mul", input, input);
int mul1 = addNodeToMatch("Mul", input, mul0);
int mul2 = addNodeToMatch("Mul", addNodeToMatch("") /* A=0.044714998453855515 */, mul1);
int add0 = addNodeToMatch("Add", input, mul2);
int mul3 = addNodeToMatch("Mul", addNodeToMatch("") /* A=sqrt(2/pie) */, add0);
int tanh = addNodeToMatch("Tanh", mul3);
int add1 = addNodeToMatch("Add", addNodeToMatch("") /* A=1 */, tanh);
int mul4 = addNodeToMatch("Mul", input, add1);
addNodeToMatch("Mul", addNodeToMatch("") /* A=0.5 */, mul4);
setFusedNode("GeluApproximation", input);
}
static float extractConstant(const Ptr<ImportGraphWrapper>& net, int node_id, int input_id)
{
auto onnx_net = net.dynamicCast<ONNXGraphWrapper>();
int initializer_id = onnx_net->getInputInitializerId(node_id, input_id);
if (initializer_id != -1)
{
Mat const_mat = onnx_net->getMatFromInitializer(initializer_id);
return *const_mat.ptr<float>();
}
else
{
const Ptr<ImportNodeWrapper> node = net->getNode(node_id);
int constant_id = getInputNodeId(net, node, input_id);
Ptr<ImportNodeWrapper> constant_ptr = net->getNode(constant_id);
opencv_onnx::NodeProto* constant_node = constant_ptr.dynamicCast<ONNXNodeWrapper>()->node;
opencv_onnx::TensorProto constant_proto = constant_node->attribute(0).t();
Mat constant_mat = getMatFromTensor(constant_proto);
return *constant_mat.ptr<float>();
}
}
virtual bool match(const Ptr<ImportGraphWrapper>& net, int nodeId,
std::vector<int>& matchedNodesIds,
std::vector<int>& targetNodesIds) CV_OVERRIDE
{
if (Subgraph::match(net, nodeId, matchedNodesIds, targetNodesIds))
{
// Check Mul[A=0.044714998453855515]
float coef = extractConstant(net, matchedNodesIds[2], 0);
if (coef - 0.044714998453855515 >= 1e-6)
return false;
// Check Mul[A=sqrt(2/pie)]
float sqrt_2_pie = extractConstant(net, matchedNodesIds[4], 0);
if (sqrt_2_pie - 0.7978845834732056 >= 1e-6)
return false;
// Check Add[A=1]
float add_const = extractConstant(net, matchedNodesIds[6], 0);
if (add_const - 1.f >= 1e-6)
return false;
// Check Mul[A=0.5]
float mul_const = extractConstant(net, matchedNodesIds[8], 0);
if (mul_const - 0.5f >= 1e-6)
return false;
return true;
}
return false;
}
};
/* Fusion for LayerNormalization.
Graph before fusion
+-> ReduceMean ->+
| |
[Input] -------> Sub -----------------------------------------------> Div -> Mul(B=weight) -> Add(B=bias) -> [Output]
| |
+-> Pow(Y=2) -> ReduceMean -> Add(B=epsilon) -> Sqrt ->+
Graph after fusion
[Input] -> LayerNorm -> [Output]
\
[weight], [bias]
*/
class LayerNormSubGraph : public Subgraph
{
public:
LayerNormSubGraph() : axis(-1), epsilon(1e-5)
{
int input = addNodeToMatch("");
int mean = addNodeToMatch("ReduceMean", input);
int sub = addNodeToMatch("Sub", input, mean);
int pow = addNodeToMatch("Pow", sub, addNodeToMatch(""));
int mean1 = addNodeToMatch("ReduceMean", pow);
int add = addNodeToMatch("Add", mean1, addNodeToMatch(""));
int sqrt = addNodeToMatch("Sqrt", add);
int div = addNodeToMatch("Div", sub, sqrt);
int mul = addNodeToMatch("Mul", div, addNodeToMatch(""));
addNodeToMatch("Add", mul, addNodeToMatch(""));
setFusedNode("LayerNormalization", input);
}
static float extractConstant(const Ptr<ImportGraphWrapper>& net, int node_id, int input_id)
{
auto onnx_net = net.dynamicCast<ONNXGraphWrapper>();
int initializer_id = onnx_net->getInputInitializerId(node_id, input_id);
if (initializer_id != -1) // initializer
{
Mat const_mat = onnx_net->getMatFromInitializer(initializer_id);
return *const_mat.ptr<float>();
}
else
{
const Ptr<ImportNodeWrapper> node = net->getNode(node_id);
int constant_id = getInputNodeId(net, node, input_id);
Ptr<ImportNodeWrapper> constant_ptr = net->getNode(constant_id);
opencv_onnx::NodeProto* constant_node = constant_ptr.dynamicCast<ONNXNodeWrapper>()->node;
opencv_onnx::TensorProto constant_proto = constant_node->attribute(0).t();
Mat constant_mat = getMatFromTensor(constant_proto);
return *constant_mat.ptr<float>();
}
}
static float extractAxis(const Ptr<ImportGraphWrapper>& net, int node_id)
{
Ptr<ImportNodeWrapper> mean_ptr = net->getNode(node_id);
opencv_onnx::NodeProto* mean_node = mean_ptr.dynamicCast<ONNXNodeWrapper>()->node;
int axis_ = -1;
for (int i = 0; i < mean_node->attribute_size(); i++)
{
opencv_onnx::AttributeProto attr = mean_node->attribute(i);
if (attr.name() != "axes")
continue;
axis_ = static_cast<int>(attr.ints(0));
}
return axis_;
}
static std::string getInputName(const Ptr<ImportGraphWrapper>& net, int node_id, int input_id)
{
auto onnx_net = net.dynamicCast<ONNXGraphWrapper>();
int initializer_id = onnx_net->getInputInitializerId(node_id, input_id);
if (initializer_id != -1)
{
return onnx_net->getNameOfInitializer(initializer_id);
}
else
{
const auto node = net->getNode(node_id);
return node->getInputName(input_id);
}
}
virtual bool match(const Ptr<ImportGraphWrapper>& net, int nodeId,
std::vector<int>& matchedNodesIds,
std::vector<int>& targetNodesIds) CV_OVERRIDE
{
if (Subgraph::match(net, nodeId, matchedNodesIds, targetNodesIds))
{
float pow_exp = extractConstant(net, matchedNodesIds[2], 1);
if (pow_exp - 2 > 1e-5) // not pow(2)
return false;
int axis_mean1 = extractAxis(net, matchedNodesIds[0]);
int axis_mean2 = extractAxis(net, matchedNodesIds[3]);
if (axis_mean1 != axis_mean2)
return false;
axis = axis_mean1;
epsilon = extractConstant(net, matchedNodesIds[4], 1);
weight_name = getInputName(net, matchedNodesIds[7], 1);
bias_name = getInputName(net, matchedNodesIds[8], 1);
return true;
}
return false;
}
virtual void finalize(const Ptr<ImportGraphWrapper>&,
const Ptr<ImportNodeWrapper>& fusedNode,
std::vector<Ptr<ImportNodeWrapper> >&) CV_OVERRIDE
{
opencv_onnx::NodeProto* node = fusedNode.dynamicCast<ONNXNodeWrapper>()->node;
// axis
opencv_onnx::AttributeProto* attr_axis = node->add_attribute();
attr_axis->set_name("axis");
attr_axis->set_i(axis);
// epsilon
opencv_onnx::AttributeProto* attr_epsilon = node->add_attribute();
attr_epsilon->set_name("epsilon");
attr_epsilon->set_f(epsilon);
// add input
node->add_input(weight_name);
node->add_input(bias_name);
}
protected:
int axis;
float epsilon;
std::string weight_name;
std::string bias_name;
};
class SoftMaxSubgraphBase : public Subgraph
{
public:
SoftMaxSubgraphBase() : axis(1), id(-1) {}
virtual bool match(const Ptr<ImportGraphWrapper>& net, int nodeId,
std::vector<int>& matchedNodesIds,
std::vector<int>& targetNodesIds) CV_OVERRIDE
{
if (Subgraph::match(net, nodeId, matchedNodesIds, targetNodesIds))
{
CV_Assert(id >= 0 && id < matchedNodesIds.size());
Ptr<ImportNodeWrapper> sum = net->getNode(matchedNodesIds[id]);
opencv_onnx::NodeProto* node = sum.dynamicCast<ONNXNodeWrapper>()->node;
for (int i = 0; i < node->attribute_size(); i++)
{
opencv_onnx::AttributeProto attr = node->attribute(i);
if (attr.name() != "axes")
continue;
if (attr.ints_size() != 1)
CV_Error(Error::StsNotImplemented, format("Unexpected number of axes: %d", attr.ints_size()));
axis = attr.ints(0);
return true;
}
CV_Error(Error::StsNotImplemented, "Missed axes attribute");
}
return false;
}
virtual void finalize(const Ptr<ImportGraphWrapper>&,
const Ptr<ImportNodeWrapper>& fusedNode,
std::vector<Ptr<ImportNodeWrapper> >&) CV_OVERRIDE
{
opencv_onnx::NodeProto* node = fusedNode.dynamicCast<ONNXNodeWrapper>()->node;
opencv_onnx::AttributeProto* attr = node->add_attribute();
attr->set_name("axis");
attr->set_i(axis);
}
protected:
int axis;
int id;
};
class SoftMaxSubgraph : public SoftMaxSubgraphBase
{
public:
SoftMaxSubgraph()
{
int input = addNodeToMatch("");
int inpExp = addNodeToMatch("Exp", input);
int sum = addNodeToMatch("ReduceSum", inpExp);
id = 1;
addNodeToMatch("Div", inpExp, sum);
setFusedNode("Softmax", input);
}
};
class SoftMaxSubgraph2 : public SoftMaxSubgraphBase {
public:
SoftMaxSubgraph2() {
int input = addNodeToMatch("");
int reducemax = addNodeToMatch("ReduceMax", input);
id = 0;
int sub = addNodeToMatch("Sub", input, reducemax);
int exp = addNodeToMatch("Exp", sub);
int reducesum = addNodeToMatch("ReduceSum", exp, addNodeToMatch(""));
addNodeToMatch("Div", exp, reducesum);
setFusedNode("Softmax", input);
}
};
class LogSoftMaxSubgraph : public SoftMaxSubgraphBase
{
public:
LogSoftMaxSubgraph()
{
int input = addNodeToMatch("");
int reducemax = addNodeToMatch("ReduceMax", input);
id = 0;
int sub_1 = addNodeToMatch("Sub", input, reducemax);
int exp = addNodeToMatch("Exp", sub_1);
int reducesum = addNodeToMatch("ReduceSum", exp, addNodeToMatch(""));
int log = addNodeToMatch("Log", reducesum);
addNodeToMatch("Sub", sub_1, log);
setFusedNode("LogSoftmax", input);
}
};
class HardSwishSubgraph : public Subgraph
{
public:
HardSwishSubgraph()
{
int input = addNodeToMatch("");
int hardSigmoid = addNodeToMatch("HardSigmoid", input);
addNodeToMatch("Mul", input, hardSigmoid);
setFusedNode("HardSwish", input);
}
virtual bool match(const Ptr<ImportGraphWrapper>& net, int nodeId,
std::vector<int>& matchedNodesIds,
std::vector<int>& targetNodesIds) CV_OVERRIDE
{
if (Subgraph::match(net, nodeId, matchedNodesIds, targetNodesIds))
{
Ptr<ImportNodeWrapper> hardSigmoid = net->getNode(matchedNodesIds[0]);
opencv_onnx::NodeProto* node = hardSigmoid.dynamicCast<ONNXNodeWrapper>()->node;
uint8_t matched = 0;
for (int i = 0; i < node->attribute_size(); i++)
{
opencv_onnx::AttributeProto attr = node->attribute(i);
if ((attr.name() == "alpha" && attr.f() == 1.f / 6.f) ||
(attr.name() == "beta" && attr.f() == 0.5f))
{
++matched;
}
}
return matched == 2;
}
return false;
}
};
class CeluSubgraph : public Subgraph
{
public:
CeluSubgraph() : alpha(1.f)
{
int input = addNodeToMatch("");
int div = addNodeToMatch("Div", input, addNodeToMatch(""));
int elu = addNodeToMatch("Elu", div);
addNodeToMatch("Mul", addNodeToMatch(""), elu);
setFusedNode("Celu", input);
}
static float extractAlpha(const Ptr<ImportGraphWrapper>& net, int node_id, int input_id)
{
const Ptr<ImportNodeWrapper> node = net->getNode(node_id);
int const_id = getInputNodeId(net, node, input_id);
Ptr<ImportNodeWrapper> alpha_ptr = net->getNode(const_id);
opencv_onnx::NodeProto* alpha_node = alpha_ptr.dynamicCast<ONNXNodeWrapper>()->node;
opencv_onnx::TensorProto alpha_proto = alpha_node->attribute(0).t();
Mat alpha_mat = getMatFromTensor(alpha_proto);
return *alpha_mat.ptr<float>();
}
virtual bool match(const Ptr<ImportGraphWrapper>& net, int nodeId,
std::vector<int>& matchedNodesIds,
std::vector<int>& targetNodesIds) CV_OVERRIDE
{
if (Subgraph::match(net, nodeId, matchedNodesIds, targetNodesIds))
{
float alpha_div = extractAlpha(net, matchedNodesIds[0], 1);
float alpha_mul = extractAlpha(net, matchedNodesIds[2], 0);
float alpha_elu = 1.f;
Ptr<ImportNodeWrapper> elu_ptr = net->getNode(matchedNodesIds[1]);
opencv_onnx::NodeProto* elu_node = elu_ptr.dynamicCast<ONNXNodeWrapper>()->node;
for (int i = 0; i < elu_node->attribute_size(); i++)
{
opencv_onnx::AttributeProto attr = elu_node->attribute(i);
if (attr.name() != "alpha")
continue;
alpha_elu = attr.f();
}
alpha = alpha_div;
return alpha_elu == 1.f && alpha_div == alpha_mul;
}
return false;
}
virtual void finalize(const Ptr<ImportGraphWrapper>&,
const Ptr<ImportNodeWrapper>& fusedNode,
std::vector<Ptr<ImportNodeWrapper> >&) CV_OVERRIDE
{
opencv_onnx::NodeProto* node = fusedNode.dynamicCast<ONNXNodeWrapper>()->node;
opencv_onnx::AttributeProto* alpha_attr = node->add_attribute();
alpha_attr->set_name("alpha");
alpha_attr->set_f(alpha);
}
protected:
float alpha;
};
class NormalizeSubgraphBase : public Subgraph
{
public:
NormalizeSubgraphBase(int _normNodeOrder = 0) : axis(1), normNodeOrder(_normNodeOrder) {}
virtual bool match(const Ptr<ImportGraphWrapper>& net, int nodeId,
std::vector<int>& matchedNodesIds,
std::vector<int>& targetNodesIds) CV_OVERRIDE
{
if (Subgraph::match(net, nodeId, matchedNodesIds, targetNodesIds))
{
Ptr<ImportNodeWrapper> norm = net->getNode(matchedNodesIds[normNodeOrder]);
opencv_onnx::NodeProto* node = norm.dynamicCast<ONNXNodeWrapper>()->node;
for (int i = 0; i < node->attribute_size(); i++)
{
opencv_onnx::AttributeProto attr = node->attribute(i);
if (attr.name() != "axes")
continue;
if (attr.ints_size() != 1)
CV_Error(Error::StsNotImplemented, format("Unexpected number of axes: %d", attr.ints_size()));
axis = attr.ints(0);
return true;
}
CV_Error(Error::StsNotImplemented, "Missed axes attribute");
}
return false;
}
virtual void finalize(const Ptr<ImportGraphWrapper>&,
const Ptr<ImportNodeWrapper>& fusedNode,
std::vector<Ptr<ImportNodeWrapper> >&) CV_OVERRIDE
{
opencv_onnx::NodeProto* node = fusedNode.dynamicCast<ONNXNodeWrapper>()->node;
opencv_onnx::AttributeProto* axis_attr = node->add_attribute();
axis_attr->set_name("axis");
axis_attr->set_i(axis);
opencv_onnx::AttributeProto* end_axis_attr = node->add_attribute();
end_axis_attr->set_name("end_axis");
end_axis_attr->set_i(axis);
}
protected:
int axis, normNodeOrder;
};
class NormalizeSubgraph1 : public NormalizeSubgraphBase
{
public:
NormalizeSubgraph1()
{
int input = addNodeToMatch("");
int norm = addNodeToMatch("ReduceL2", input);
addNodeToMatch("Div", input, norm);
setFusedNode("Normalize", input);
}
};
class NormalizeSubgraph2 : public NormalizeSubgraphBase
{
public:
NormalizeSubgraph2()
{
int input = addNodeToMatch("");
int norm = addNodeToMatch("ReduceL2", input);
int clip = addNodeToMatch("Clip", norm);
int shape = addNodeToMatch("Shape", input);
int expand = addNodeToMatch("Expand", clip, shape);
addNodeToMatch("Div", input, expand);
setFusedNode("Normalize", input);
}
};
class NormalizeSubgraph2_2 : public NormalizeSubgraphBase
{
public:
NormalizeSubgraph2_2()
{
int input = addNodeToMatch("");
int norm = addNodeToMatch("ReduceL2", input);
int min = addNodeToMatch("");
int max = addNodeToMatch("");
int clip = addNodeToMatch("Clip", norm, min, max);
int shape = addNodeToMatch("");
int expand = addNodeToMatch("Expand", clip, shape);
addNodeToMatch("Div", input, expand);
setFusedNode("Normalize", input);
}
};
class NormalizeSubgraph3 : public NormalizeSubgraphBase
{
public:
NormalizeSubgraph3() : NormalizeSubgraphBase(1)
{
int input = addNodeToMatch("");
int power = addNodeToMatch("Constant");
int squared = addNodeToMatch("Pow", input, power);
int sum = addNodeToMatch("ReduceSum", squared);
int sqrtNode = addNodeToMatch("Sqrt", sum);
int eps = addNodeToMatch("Constant");
int add = addNodeToMatch("Add", sqrtNode, eps);
addNodeToMatch("Div", input, add);
setFusedNode("Normalize", input);
}
};
class NormalizeSubgraph4 : public NormalizeSubgraphBase
{
public:
NormalizeSubgraph4() : NormalizeSubgraphBase(1)
{
int input = addNodeToMatch("");
int mul = addNodeToMatch("Mul", input, input);
int sum = addNodeToMatch("ReduceSum", mul);
int eps = addNodeToMatch("");
int max = addNodeToMatch("Max", sum, eps);
int sqrt = addNodeToMatch("Sqrt", max);
int reciprocal = addNodeToMatch("Reciprocal", sqrt);
addNodeToMatch("Mul", input, reciprocal);
setFusedNode("Normalize", input);
}
};
class NormalizeSubgraph5 : public NormalizeSubgraphBase
{
public:
NormalizeSubgraph5() : NormalizeSubgraphBase(1)
{
int input = addNodeToMatch("");
int mul = addNodeToMatch("Mul", input, input);
int sum = addNodeToMatch("ReduceSum", mul);
int clip = addNodeToMatch("Clip", sum);
int sqrt = addNodeToMatch("Sqrt", clip);
int one = addNodeToMatch("Constant");
int div = addNodeToMatch("Div", one, sqrt);
addNodeToMatch("Mul", input, div);
setFusedNode("Normalize", input);
}
};
class GatherCastSubgraph : public Subgraph
{
public:
GatherCastSubgraph()
{
int input = addNodeToMatch("");
int index = addNodeToMatch("Constant");
int gather = addNodeToMatch("Gather", input, index);
addNodeToMatch("Cast", gather);
setFusedNode("Gather", input, index);
}
virtual bool match(const Ptr<ImportGraphWrapper>& net, int nodeId,
std::vector<int>& matchedNodesIds,
std::vector<int>& targetNodesIds) CV_OVERRIDE
{
bool retVal = Subgraph::match(net, nodeId, matchedNodesIds, targetNodesIds);
size_t matchedNodesNum = matchedNodesIds.size();
// Now we check if merging can be made for these Gather and Cast nodes
if (!retVal || matchedNodesNum < 2)
return retVal;
else {
int nodeToMatch = matchedNodesIds[matchedNodesNum - 1];
const Ptr<ImportNodeWrapper> node = net->getNode(nodeToMatch);
if (node->getType() == "Cast") {
int inpNodeId = matchedNodesIds[matchedNodesNum - 2];
const Ptr<ImportNodeWrapper> inpNode = net->getNode(inpNodeId);
if (inpNode->getType() == "Gather") {
int numNodes = net->getNumNodes();
std::string inpNodeName = node->getInputName(0);
for (int i = 0; i < numNodes; ++i) {
const Ptr<ImportNodeWrapper> node_to_check = net->getNode(i);
int numInp = node_to_check->getNumInputs();
for (int inp = 0; inp < numInp; ++inp) {
if (i != nodeToMatch && inpNodeName == node_to_check->getInputName(inp)) {
// Another node has the same input node, so it cannot be merged.
return false;
}
}
}
}
}
}
return retVal;
}
};
/* Constant folding shape for Expand.
Before fusion:
+--------------------------------------------------------------+ (X)
| |
ConstantOfShape[input=[4]] -> Mul[B=-1] -> Equal[A=[2, -1, -1, -1]] -> Where[Y=[2, -1, -1, -1]] -> Expand
\ \
value=[1] (condition)
*/
class ExpandSubgraph : public Subgraph
{
public:
ExpandSubgraph()
{
int input = addNodeToMatch("");
int values = addNodeToMatch("");
int init = addNodeToMatch("ConstantOfShape", values);
int coeff = addNodeToMatch("Constant");
int mul = addNodeToMatch("Mul", init, coeff);
int shape = addNodeToMatch("Constant");
int condition = addNodeToMatch("Equal", shape, mul);
int where = addNodeToMatch("Where", condition, init, addNodeToMatch("Constant"));
addNodeToMatch("Expand", input, where);
setFusedNode("Expand", input, shape);
}
static int extractValue(const Ptr<ImportGraphWrapper>& net, int node_id, int64_t &val) {
Ptr<ImportNodeWrapper> node_wrapper = net->getNode(node_id);
opencv_onnx::NodeProto* node = node_wrapper.dynamicCast<ONNXNodeWrapper>()->node;
if (node->attribute_size() == 0) {
val = 0;
return 1;
} else if (node->attribute_size() == 1) {
opencv_onnx::AttributeProto attr = node->attribute(0);
if (attr.name() != "value") {
return 0;
}
Mat mat_value = getMatFromTensor(attr.t());
switch (mat_value.type()) {
case CV_32S: {
val = static_cast<int64_t>(mat_value.at<int>());
} break;
default: return 0;
}
return 1;
}
return 0;
}
static std::vector<int64_t> extractConstant(const Ptr<ImportGraphWrapper>& net, int node_id, int input_id)
{
auto onnx_net = net.dynamicCast<ONNXGraphWrapper>();
int initializer_id = onnx_net->getInputInitializerId(node_id, input_id);
Mat mat_constant;
if (initializer_id != -1) // initializer
{
mat_constant = onnx_net->getMatFromInitializer(initializer_id);
}
else
{
const Ptr<ImportNodeWrapper> node = net->getNode(node_id);
int constant_id = getInputNodeId(net, node, input_id);
Ptr<ImportNodeWrapper> constant_ptr = net->getNode(constant_id);
opencv_onnx::NodeProto* constant_node = constant_ptr.dynamicCast<ONNXNodeWrapper>()->node;
opencv_onnx::TensorProto constant_proto = constant_node->attribute(0).t();
mat_constant = getMatFromTensor(constant_proto);
}
std::vector<int64_t> retvals{mat_constant.begin<int>(), mat_constant.end<int>()};
return retvals;
}
virtual bool match(const Ptr<ImportGraphWrapper>& net, int nodeId,
std::vector<int>& matchedNodesIds,
std::vector<int>& targetNodesIds) CV_OVERRIDE {
if (Subgraph::match(net, nodeId, matchedNodesIds, targetNodesIds)) {
int64_t value_ConstantOfShape;
if (!extractValue(net, matchedNodesIds[0], value_ConstantOfShape)) {
return false;
}
std::vector<int64_t> input_ConstantOfShape = extractConstant(net, matchedNodesIds[0], 0);
if (input_ConstantOfShape.size() != static_cast<size_t>(1)) {
return false;
}
auto B_Mul = extractConstant(net, matchedNodesIds[1], 1);
if (B_Mul.size() != static_cast<size_t>(1)) {
return false;
}
auto A_Equal = extractConstant(net, matchedNodesIds[2], 0);
if (A_Equal.size() != static_cast<size_t>(input_ConstantOfShape[0])) {
return false;
}
auto Y_Where = extractConstant(net, matchedNodesIds[3], 2);
if (Y_Where.size() != A_Equal.size()) {
return false;
}
// run ConstantOfShape
std::vector<int64_t> output_ConstantOfShape(std::accumulate(input_ConstantOfShape.begin(), input_ConstantOfShape.end(), static_cast<int64_t>(1), std::multiplies<int64_t>()), value_ConstantOfShape);
// run Mul
std::vector<int64_t> output_Mul = output_ConstantOfShape;
for (size_t i = 0; i < output_Mul.size(); i++) {
int64_t b = B_Mul[0];
output_Mul[i] *= b;
}
// run Equal
std::vector<bool> output_Equal(output_Mul.size());
for (int i = 0; i < output_Equal.size(); i++) {
if (A_Equal[i] == output_Mul[i]) {
output_Equal[i] = true;
} else {
output_Equal[i] = false;
}
}
// run Where
std::vector<int64_t> output_Where(output_Equal.size());
for (int i = 0; i < output_Where.size(); i++) {
if (output_Equal[i]) {
output_Where[i] = output_ConstantOfShape[i];
} else {
output_Where[i] = Y_Where[i];
}
}
shape = output_Where;
return true;
}
return false;
}
virtual void finalize(const Ptr<ImportGraphWrapper>& graph,
const Ptr<ImportNodeWrapper>& fusedNode,
std::vector<Ptr<ImportNodeWrapper> >& inputs) CV_OVERRIDE {
// replace values
opencv_onnx::NodeProto* node_shape = inputs[1].dynamicCast<ONNXNodeWrapper>()->node;
auto attr = node_shape->mutable_attribute()->Mutable(0);
auto tensor = attr->mutable_t();
tensor->clear_raw_data();
tensor->set_raw_data(std::string((const char*)(shape.data()), shape.size() * sizeof(int64_t)));
}
protected:
std::vector<int64_t> shape;
};
class MishSubgraph : public Subgraph
{
public:
MishSubgraph()
{
int input = addNodeToMatch("");
int softplus = addNodeToMatch("Softplus", input);
int tanh = addNodeToMatch("Tanh", softplus);
addNodeToMatch("Mul", input, tanh);
setFusedNode("Mish", input);
}
};
// softplus(x) = log(exp(x) + 1)
class SoftplusSubgraph: public Subgraph
{
public:
SoftplusSubgraph()
{
int input = addNodeToMatch("");
int exp = addNodeToMatch("Exp", input);
int addVal = addNodeToMatch("");
int add = addNodeToMatch("Add", addVal, exp);
addNodeToMatch("Log", add);
setFusedNode("Softplus", input);
}
};
class SoftplusSubgraph2: public Subgraph
{
public:
SoftplusSubgraph2()
{
int input = addNodeToMatch("");
int exp = addNodeToMatch("Exp", input);
int addVal = addNodeToMatch("");
int add = addNodeToMatch("Add", exp, addVal);
addNodeToMatch("Log", add);
setFusedNode("Softplus", input);
}
};
class MulCastSubgraph : public Subgraph
{
public:
MulCastSubgraph()
{
int input = addNodeToMatch("");
int scaleNode = addNodeToMatch("Constant");
int mul = addNodeToMatch("Mul", input, scaleNode);
addNodeToMatch("Cast", mul);
setFusedNode("Mul", input, scaleNode);
}
};
class ExtractScalesSubgraph : public Subgraph
{
public:
ExtractScalesSubgraph()
{
input = addNodeToMatch("");
int indexH = addNodeToMatch("Constant");
int shape1 = addNodeToMatch("Shape", input);
int gather1 = addNodeToMatch("Gather", shape1, indexH);
scaleHNode = addNodeToMatch("Constant");
int mul1 = addNodeToMatch("Mul", gather1, scaleHNode);
int floor1 = addNodeToMatch("Floor", mul1);
int indexW = addNodeToMatch("Constant");
int shape2 = addNodeToMatch("Shape", input);
int gather2 = addNodeToMatch("Gather", shape2, indexW);
scaleWNode = addNodeToMatch("Constant");
int mul2 = addNodeToMatch("Mul", gather2, scaleWNode);
int floor2 = addNodeToMatch("Floor", mul2);
int unsqueeze1 = addNodeToMatch("Unsqueeze", floor1);
int unsqueeze2 = addNodeToMatch("Unsqueeze", floor2);
concatId = addNodeToMatch("Concat", unsqueeze1, unsqueeze2);
}
void finalize(const Ptr<ImportGraphWrapper>& net,
const Ptr<ImportNodeWrapper>& fusedNode,
std::vector<Ptr<ImportNodeWrapper> >& inputs) CV_OVERRIDE
{
opencv_onnx::NodeProto* constant_node = inputs[1].dynamicCast<ONNXNodeWrapper>()->node;
opencv_onnx::TensorProto tensor_proto = constant_node->attribute(0).t();
Mat scaleW = getMatFromTensor(tensor_proto);
CV_Assert(scaleW.total() == 1);
scaleW.convertTo(scaleW, CV_32F);
constant_node = inputs[2].dynamicCast<ONNXNodeWrapper>()->node;
tensor_proto = constant_node->attribute(0).t();
Mat scaleH = getMatFromTensor(tensor_proto);
CV_Assert(scaleH.total() == 1);
scaleH.convertTo(scaleH, CV_32F);
opencv_onnx::NodeProto* node = fusedNode.dynamicCast<ONNXNodeWrapper>()->node;
opencv_onnx::AttributeProto* attrH = node->add_attribute();
attrH->set_name("height_scale");
attrH->set_i(scaleH.at<float>(0));
opencv_onnx::AttributeProto* attrW = node->add_attribute();
attrW->set_name("width_scale");
attrW->set_i(scaleW.at<float>(0));
node->mutable_input()->DeleteSubrange(1, 2); // Remove two last inputs
}
protected:
int input, concatId;
int scaleHNode, scaleWNode;
};
class UpsampleSubgraph : public ExtractScalesSubgraph
{
public:
UpsampleSubgraph() : ExtractScalesSubgraph()
{
int shape = addNodeToMatch("Shape", input);
int slice = addNodeToMatch("Slice", shape);
int castConcat = addNodeToMatch("Cast", concatId);
int castSlice = addNodeToMatch("Cast", slice);
int divide = addNodeToMatch("Div", castConcat, castSlice);
int constant = addNodeToMatch("Constant");
int concat = addNodeToMatch("Concat", constant, divide);
addNodeToMatch("Upsample", input, concat);
setFusedNode("Upsample", input, scaleWNode, scaleHNode);
}
};
class ResizeSubgraph1 : public ExtractScalesSubgraph
{
public:
ResizeSubgraph1() : ExtractScalesSubgraph()
{
int shape = addNodeToMatch("Shape", input);
int slice = addNodeToMatch("Slice", shape, addNodeToMatch("Constant"), addNodeToMatch("Constant"), addNodeToMatch("Constant"));
int castConcat = addNodeToMatch("Cast", concatId);
int concat = addNodeToMatch("Concat", slice, castConcat);
int constant = addNodeToMatch("Constant");
addNodeToMatch("Resize", input, constant, constant, concat);
setFusedNode("Upsample", input, scaleWNode, scaleHNode);
}
};
class ResizeSubgraph2 : public ExtractScalesSubgraph
{
public:
ResizeSubgraph2() : ExtractScalesSubgraph()
{
int constantConcat = addNodeToMatch("Constant");
int castConcat = addNodeToMatch("Cast", concatId);
int concat = addNodeToMatch("Concat", constantConcat, castConcat);
int constant = addNodeToMatch("Constant");
addNodeToMatch("Resize", input, constant, constant, concat);
setFusedNode("Upsample", input, scaleWNode, scaleHNode);
}
};
class ResizeSubgraph3 : public Subgraph
{
public:
ResizeSubgraph3() : Subgraph()
{
int shapeSrc = addNodeToMatch("");
int input = addNodeToMatch("");
int shape_h = addNodeToMatch("Shape", shapeSrc);
int shape_w = addNodeToMatch("Shape", shapeSrc);
int gather_h = addNodeToMatch("Gather", shape_h, addNodeToMatch("Constant"));
int gather_w = addNodeToMatch("Gather", shape_w, addNodeToMatch("Constant"));
int unsqueeze_h = addNodeToMatch("Unsqueeze", gather_h);
int unsqueeze_w = addNodeToMatch("Unsqueeze", gather_w);
int concat1 = addNodeToMatch("Concat", unsqueeze_h, unsqueeze_w);
int cast = addNodeToMatch("Cast", concat1);
int shape2 = addNodeToMatch("Shape", input);
int slice = addNodeToMatch("Slice", shape2, addNodeToMatch("Constant"), addNodeToMatch("Constant"), addNodeToMatch("Constant"));
int concat2 = addNodeToMatch("Concat", slice, cast);
addNodeToMatch("Resize", input, addNodeToMatch("Constant"), addNodeToMatch("Constant"), concat2);
setFusedNode("Upsample", input, shapeSrc);
}
};
class BatchNormalizationSubgraphBase : public Subgraph
{
public:
BatchNormalizationSubgraphBase()
{
input = addNodeToMatch("");
var = addNodeToMatch("");
mean = addNodeToMatch("");
weight = addNodeToMatch("");
bias = addNodeToMatch("");
A = addNodeToMatch("");
shape1 = addNodeToMatch("");
shape2 = addNodeToMatch("");
}
protected:
int input, var, mean, weight, bias, A, shape1, shape2;
};
class BatchNormalizationSubgraph1 : public BatchNormalizationSubgraphBase
{
public:
BatchNormalizationSubgraph1()
{
int reshape1 = addNodeToMatch("Reshape", weight, shape1);
int reshape2 = addNodeToMatch("Reshape", bias, shape2);
int shape3 = addNodeToMatch("Constant");
int reshape3 = addNodeToMatch("Reshape", var, shape3);
int shape4 = addNodeToMatch("Constant");
int reshape4 = addNodeToMatch("Reshape", mean, shape4);
int sqrtNode = addNodeToMatch("Sqrt", reshape3);
int divNode = addNodeToMatch("Div", A, sqrtNode);
int mul1 = addNodeToMatch("Mul", reshape1, divNode);
int mul2 = addNodeToMatch("Mul", reshape4, mul1);
int sub = addNodeToMatch("Sub", reshape2, mul2);
int mul3 = addNodeToMatch("Mul", input, mul1);
addNodeToMatch("Add", mul3, sub);
setFusedNode("BatchNormalization", input, weight, bias, mean, var);
}
};
class BatchNormalizationSubgraph2 : public BatchNormalizationSubgraphBase
{
public:
BatchNormalizationSubgraph2()
{
int sqrtNode = addNodeToMatch("Sqrt", var);
int divNode = addNodeToMatch("Div", A, sqrtNode);
int mul1 = addNodeToMatch("Mul", weight, divNode);
int reshape2 = addNodeToMatch("Reshape", mul1, shape2);
int mulMean = addNodeToMatch("Mul", mean, mul1);
int sub = addNodeToMatch("Sub", bias, mulMean);
int reshape1 = addNodeToMatch("Reshape", sub, shape1);
int mulInput = addNodeToMatch("Mul", input, reshape2);
addNodeToMatch("Add", mulInput, reshape1);
setFusedNode("BatchNormalization", input, weight, bias, mean, var);
}
};
void simplifySubgraphs(opencv_onnx::GraphProto& net)
{
std::vector<Ptr<Subgraph> > subgraphs;
subgraphs.push_back(makePtr<GeluSubGraph>());
subgraphs.push_back(makePtr<GeluApproximationSubGraph>());
subgraphs.push_back(makePtr<LayerNormSubGraph>());
subgraphs.push_back(makePtr<GatherCastSubgraph>());
subgraphs.push_back(makePtr<MulCastSubgraph>());
subgraphs.push_back(makePtr<UpsampleSubgraph>());
subgraphs.push_back(makePtr<ResizeSubgraph1>());
subgraphs.push_back(makePtr<ResizeSubgraph2>());
subgraphs.push_back(makePtr<ResizeSubgraph3>());
subgraphs.push_back(makePtr<SoftMaxSubgraph>());
subgraphs.push_back(makePtr<SoftMaxSubgraph2>());
subgraphs.push_back(makePtr<LogSoftMaxSubgraph>());
subgraphs.push_back(makePtr<HardSwishSubgraph>());
subgraphs.push_back(makePtr<CeluSubgraph>());
subgraphs.push_back(makePtr<NormalizeSubgraph1>());
subgraphs.push_back(makePtr<NormalizeSubgraph2>());
subgraphs.push_back(makePtr<NormalizeSubgraph2_2>());
subgraphs.push_back(makePtr<NormalizeSubgraph3>());
subgraphs.push_back(makePtr<BatchNormalizationSubgraph1>());
subgraphs.push_back(makePtr<BatchNormalizationSubgraph2>());
subgraphs.push_back(makePtr<ExpandSubgraph>());
subgraphs.push_back(makePtr<SoftplusSubgraph>());
subgraphs.push_back(makePtr<SoftplusSubgraph2>());
subgraphs.push_back(makePtr<MishSubgraph>());
subgraphs.push_back(makePtr<NormalizeSubgraph4>());
subgraphs.push_back(makePtr<NormalizeSubgraph5>());
simplifySubgraphs(Ptr<ImportGraphWrapper>(new ONNXGraphWrapper(net)), subgraphs);
}
Mat getMatFromTensor(const opencv_onnx::TensorProto& tensor_proto)
{
if (tensor_proto.raw_data().empty() && tensor_proto.float_data().empty() &&
tensor_proto.double_data().empty() && tensor_proto.int64_data().empty() &&
tensor_proto.int32_data().empty())
return Mat();
opencv_onnx::TensorProto_DataType datatype = tensor_proto.data_type();
Mat blob;
std::vector<int> sizes;
for (int i = 0; i < tensor_proto.dims_size(); i++) {
sizes.push_back(tensor_proto.dims(i));
}
if (sizes.empty())
sizes.assign(1, 1);
if (datatype == opencv_onnx::TensorProto_DataType_FLOAT) {
if (!tensor_proto.float_data().empty()) {
const ::google::protobuf::RepeatedField<float> field = tensor_proto.float_data();
Mat(sizes, CV_32FC1, (void*)field.data()).copyTo(blob);
}
else {
char* val = const_cast<char*>(tensor_proto.raw_data().c_str());
Mat(sizes, CV_32FC1, val).copyTo(blob);
}
}
else if (datatype == opencv_onnx::TensorProto_DataType_FLOAT16)
{
// FIXME, for now, we only load FP16 Tensor as FP32 Mat, full support for FP16 is required in the future.
CV_LOG_ONCE_INFO(NULL, "DNN: load FP16 model as FP32 model, and it takes twice the FP16 RAM requirement.");
// ONNX saves float 16 data in two format: int32 and raw_data.
// Link: https://github.com/onnx/onnx/issues/4460#issuecomment-1224373746
if (!tensor_proto.int32_data().empty())
{
int offset = 0;
#ifdef WORDS_BIGENDIAN
offset = 1;
#endif
const ::google::protobuf::RepeatedField<int32_t> field = tensor_proto.int32_data();
AutoBuffer<float16_t, 16> aligned_val;
size_t sz = tensor_proto.int32_data().size();
aligned_val.allocate(sz);
float16_t* bufPtr = aligned_val.data();
float16_t *fp16Ptr = (float16_t *)field.data();
for (int i = 0; i < sz; i++)
{
bufPtr[i] = fp16Ptr[i*2 + offset];
}
Mat(sizes, CV_16FC1, bufPtr).convertTo(blob, CV_32FC1);
}
else
{
char* val = const_cast<char*>(tensor_proto.raw_data().c_str());
#if CV_STRONG_ALIGNMENT
// Aligned pointer is required.
AutoBuffer<float16_t, 16> aligned_val;
if (!isAligned<sizeof(float16_t)>(val))
{
size_t sz = tensor_proto.raw_data().size();
aligned_val.allocate(divUp(sz, sizeof(float16_t)));
memcpy(aligned_val.data(), val, sz);
val = (char*)aligned_val.data();
}
#endif
Mat(sizes, CV_16FC1, val).convertTo(blob, CV_32FC1);
}
}
else if (datatype == opencv_onnx::TensorProto_DataType_DOUBLE)
{
const ::google::protobuf::RepeatedField<double> field = tensor_proto.double_data();
char* val = nullptr;
if (!field.empty())
val = (char *)field.data();
else
val = const_cast<char*>(tensor_proto.raw_data().c_str()); // sometime, the double will be stored at raw_data.
#if CV_STRONG_ALIGNMENT
// Aligned pointer is required.
AutoBuffer<double, 16> aligned_val;
if (!isAligned<sizeof(double)>(val))
{
size_t sz = tensor_proto.raw_data().size();
aligned_val.allocate(divUp(sz, sizeof(double)));
memcpy(aligned_val.data(), val, sz);
val = (char*)aligned_val.data();
}
#endif
Mat(sizes, CV_64FC1, val).convertTo(blob, CV_32FC1);
}
else if (datatype == opencv_onnx::TensorProto_DataType_INT32)
{
if (!tensor_proto.int32_data().empty())
{
const ::google::protobuf::RepeatedField<int32_t> field = tensor_proto.int32_data();
Mat(sizes, CV_32SC1, (void*)field.data()).copyTo(blob);
}
else
{
char* val = const_cast<char*>(tensor_proto.raw_data().c_str());
Mat(sizes, CV_32SC1, val).copyTo(blob);
}
}
else if (datatype == opencv_onnx::TensorProto_DataType_INT64)
{
blob.create(sizes, CV_32SC1);
int32_t* dst = reinterpret_cast<int32_t*>(blob.data);
if (!tensor_proto.int64_data().empty()) {
::google::protobuf::RepeatedField< ::google::protobuf::int64> src = tensor_proto.int64_data();
convertInt64ToInt32(src, dst, blob.total());
}
else
{
const char* val = tensor_proto.raw_data().c_str();
#if CV_STRONG_ALIGNMENT
// Aligned pointer is required: https://github.com/opencv/opencv/issues/16373
// this doesn't work: typedef int64_t CV_DECL_ALIGNED(1) unaligned_int64_t;
AutoBuffer<int64_t, 16> aligned_val;
if (!isAligned<sizeof(int64_t)>(val))
{
size_t sz = tensor_proto.raw_data().size();
aligned_val.allocate(divUp(sz, sizeof(int64_t)));
memcpy(aligned_val.data(), val, sz);
val = (const char*)aligned_val.data();
}
#endif
const int64_t* src = reinterpret_cast<const int64_t*>(val);
convertInt64ToInt32(src, dst, blob.total());
}
}
else if (datatype == opencv_onnx::TensorProto_DataType_INT8 ||
datatype == opencv_onnx::TensorProto_DataType_UINT8)
{
// TODO : Add support for uint8 weights and acitvations. For now, converting uint8 tensors to int8.
int offset = datatype == opencv_onnx::TensorProto_DataType_INT8 ? 0 : -128;
int depth = datatype == opencv_onnx::TensorProto_DataType_INT8 ? CV_8S : CV_8U;
if (!tensor_proto.int32_data().empty())
{
const ::google::protobuf::RepeatedField<int32_t> field = tensor_proto.int32_data();
Mat(sizes, CV_32SC1, (void*)field.data()).convertTo(blob, CV_8S, 1.0, offset);
}
else
{
char* val = const_cast<char*>(tensor_proto.raw_data().c_str());
Mat(sizes, depth, val).convertTo(blob, CV_8S, 1.0, offset);
}
}
else
{
std::string errorMsg = "Unsupported data type: " +
opencv_onnx::TensorProto_DataType_Name(datatype);
if (!DNN_DIAGNOSTICS_RUN)
{
CV_Error(Error::StsUnsupportedFormat, errorMsg);
}
CV_LOG_ERROR(NULL, errorMsg);
return blob;
}
if (tensor_proto.dims_size() == 0)
blob.dims = 1; // To force 1-dimensional cv::Mat for scalars.
return blob;
}
CV__DNN_INLINE_NS_END
}} // namespace cv::dnn
#endif // HAVE_PROTOBUF