mirror of
https://github.com/opencv/opencv.git
synced 2025-06-12 20:42:53 +08:00

Support FlowNet2 model * Support DataAugmentation layer * Fix warnings * Fix comments * Support Correlation layer * TEST * Support Correlation layer * Supported Accum and FlowWarp layers * Supported ChannelNorm layer * Supported Resample with inputs.size() > 1 * Fixed comments * Refactoring * Added tests * Add resample test * Added asserts in resize layer * Updated DataAugmentation layer * Update convolution layer * Refactoring * Fix data augmentation layer * Fix caffe importer * Fix resize * Switch to Mat ptr * Remove useless resize type * Used ResizeLayer in Accum * Split ChannelNormLayer * Delete duplicate assert * Add sample * Fix sample * Added colormap
142 lines
4.6 KiB
C++
142 lines
4.6 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
// Copyright (C) 2020, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
#include "../precomp.hpp"
|
|
#include "layers_common.hpp"
|
|
|
|
|
|
namespace cv { namespace dnn {
|
|
|
|
class AccumLayerImpl CV_FINAL : public AccumLayer
|
|
{
|
|
public:
|
|
AccumLayerImpl(const LayerParams& params)
|
|
{
|
|
setParamsFrom(params);
|
|
top_height = params.get<int>("top_height", 0);
|
|
top_width = params.get<int>("top_width", 0);
|
|
divisor = params.get<int>("size_divisible_by", 0);
|
|
have_reference = params.get<String>("have_reference", "false") == "true";
|
|
}
|
|
|
|
virtual bool getMemoryShapes(const std::vector<MatShape> &inputs,
|
|
const int requiredOutputs,
|
|
std::vector<MatShape> &outputs,
|
|
std::vector<MatShape> &internals) const CV_OVERRIDE
|
|
{
|
|
std::vector<int> outShape;
|
|
int batch = inputs[0][0];
|
|
outShape.push_back(batch);
|
|
|
|
if (have_reference)
|
|
{
|
|
CV_Assert(inputs.size() >= 2);
|
|
int totalchannels = 0;
|
|
for (int i = 0; i < inputs.size() - 1; i++) {
|
|
CV_Assert(inputs[i][0] == batch);
|
|
totalchannels += inputs[i][1];
|
|
}
|
|
outShape.push_back(totalchannels);
|
|
|
|
int height = inputs.back()[2];
|
|
int width = inputs.back()[3];
|
|
|
|
outShape.push_back(height);
|
|
outShape.push_back(width);
|
|
}
|
|
else
|
|
{
|
|
int maxwidth = -1;
|
|
int maxheight = -1;
|
|
int totalchannels = 0;
|
|
|
|
// Find largest blob size and count total channels
|
|
for (int i = 0; i < inputs.size(); ++i)
|
|
{
|
|
totalchannels += inputs[i][1];
|
|
maxheight = std::max(maxheight, inputs[i][2]);
|
|
maxwidth = std::max(maxwidth, inputs[i][3]);
|
|
CV_Assert(inputs[i][0] == batch);
|
|
}
|
|
outShape.push_back(totalchannels);
|
|
|
|
int out_h = divisor ? static_cast<int>(ceil(maxheight / divisor) * divisor) : top_height;
|
|
int out_w = divisor ? static_cast<int>(ceil(maxwidth / divisor) * divisor) : top_width;
|
|
|
|
// Layer can specify custom top size which is larger than default
|
|
if (out_h <= maxheight || out_w <= maxwidth)
|
|
{
|
|
out_h = maxheight;
|
|
out_w = maxwidth;
|
|
}
|
|
|
|
outShape.push_back(out_h);
|
|
outShape.push_back(out_w);
|
|
}
|
|
|
|
outputs.assign(1, outShape);
|
|
return false;
|
|
}
|
|
|
|
virtual void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr) CV_OVERRIDE
|
|
{
|
|
LayerParams resizeParams;
|
|
resizeParams.set("interpolation", "bilinear");
|
|
resizeParams.set("align_corners", true);
|
|
resize = ResizeLayer::create(resizeParams);
|
|
}
|
|
|
|
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
|
|
|
std::vector<Mat> inputs, outputs;
|
|
inputs_arr.getMatVector(inputs);
|
|
outputs_arr.getMatVector(outputs);
|
|
|
|
const int out_h = outputs[0].size[2];
|
|
const int out_w = outputs[0].size[3];
|
|
float* out_data = outputs[0].ptr<float>();
|
|
std::vector<int> sizes(&outputs[0].size[0], &outputs[0].size[0] + outputs[0].size.dims());
|
|
for (int i = 0; i < inputs.size() - have_reference; i++)
|
|
{
|
|
sizes[1] = inputs[i].size[1];
|
|
Mat outSlice(sizes, CV_32F, out_data);
|
|
|
|
if (out_h == inputs[i].size[2] && out_w == inputs[i].size[3])
|
|
{
|
|
inputs[i].copyTo(outSlice);
|
|
}
|
|
else
|
|
{
|
|
std::vector<Mat> inp_slices, out_slices;
|
|
inp_slices.push_back(inputs[i]);
|
|
out_slices.push_back(outSlice);
|
|
|
|
resize->finalize(inp_slices, out_slices);
|
|
resize->forward(inp_slices, out_slices, internals_arr);
|
|
}
|
|
out_data += outSlice.total(1);
|
|
}
|
|
}
|
|
|
|
private:
|
|
int top_height;
|
|
int top_width;
|
|
int divisor;
|
|
bool have_reference;
|
|
Ptr<ResizeLayer> resize;
|
|
};
|
|
|
|
Ptr<AccumLayer> AccumLayer::create(const LayerParams& params)
|
|
{
|
|
return Ptr<AccumLayer>(new AccumLayerImpl(params));
|
|
}
|
|
|
|
}} // namespace cv::dnn
|