opencv/modules/dnn/src/layers/accum_layer.cpp
Liubov Batanina d991c22090
Merge pull request #16575 from l-bat:flownet2
Support FlowNet2 model

* Support DataAugmentation layer

* Fix warnings

* Fix comments

* Support Correlation layer

* TEST

* Support Correlation layer

* Supported Accum and FlowWarp layers

* Supported ChannelNorm layer

* Supported Resample with inputs.size() > 1

* Fixed comments

* Refactoring

* Added tests

* Add resample test

* Added asserts in resize layer

* Updated DataAugmentation layer

* Update convolution layer

* Refactoring

* Fix data augmentation layer

* Fix caffe importer

* Fix resize

* Switch to Mat ptr

* Remove useless resize type

* Used ResizeLayer in Accum

* Split ChannelNormLayer

* Delete duplicate assert

* Add sample

* Fix sample

* Added colormap
2020-05-19 12:29:50 +00:00

142 lines
4.6 KiB
C++

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// Copyright (C) 2020, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
#include "../precomp.hpp"
#include "layers_common.hpp"
namespace cv { namespace dnn {
class AccumLayerImpl CV_FINAL : public AccumLayer
{
public:
AccumLayerImpl(const LayerParams& params)
{
setParamsFrom(params);
top_height = params.get<int>("top_height", 0);
top_width = params.get<int>("top_width", 0);
divisor = params.get<int>("size_divisible_by", 0);
have_reference = params.get<String>("have_reference", "false") == "true";
}
virtual bool getMemoryShapes(const std::vector<MatShape> &inputs,
const int requiredOutputs,
std::vector<MatShape> &outputs,
std::vector<MatShape> &internals) const CV_OVERRIDE
{
std::vector<int> outShape;
int batch = inputs[0][0];
outShape.push_back(batch);
if (have_reference)
{
CV_Assert(inputs.size() >= 2);
int totalchannels = 0;
for (int i = 0; i < inputs.size() - 1; i++) {
CV_Assert(inputs[i][0] == batch);
totalchannels += inputs[i][1];
}
outShape.push_back(totalchannels);
int height = inputs.back()[2];
int width = inputs.back()[3];
outShape.push_back(height);
outShape.push_back(width);
}
else
{
int maxwidth = -1;
int maxheight = -1;
int totalchannels = 0;
// Find largest blob size and count total channels
for (int i = 0; i < inputs.size(); ++i)
{
totalchannels += inputs[i][1];
maxheight = std::max(maxheight, inputs[i][2]);
maxwidth = std::max(maxwidth, inputs[i][3]);
CV_Assert(inputs[i][0] == batch);
}
outShape.push_back(totalchannels);
int out_h = divisor ? static_cast<int>(ceil(maxheight / divisor) * divisor) : top_height;
int out_w = divisor ? static_cast<int>(ceil(maxwidth / divisor) * divisor) : top_width;
// Layer can specify custom top size which is larger than default
if (out_h <= maxheight || out_w <= maxwidth)
{
out_h = maxheight;
out_w = maxwidth;
}
outShape.push_back(out_h);
outShape.push_back(out_w);
}
outputs.assign(1, outShape);
return false;
}
virtual void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr) CV_OVERRIDE
{
LayerParams resizeParams;
resizeParams.set("interpolation", "bilinear");
resizeParams.set("align_corners", true);
resize = ResizeLayer::create(resizeParams);
}
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr) CV_OVERRIDE
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
std::vector<Mat> inputs, outputs;
inputs_arr.getMatVector(inputs);
outputs_arr.getMatVector(outputs);
const int out_h = outputs[0].size[2];
const int out_w = outputs[0].size[3];
float* out_data = outputs[0].ptr<float>();
std::vector<int> sizes(&outputs[0].size[0], &outputs[0].size[0] + outputs[0].size.dims());
for (int i = 0; i < inputs.size() - have_reference; i++)
{
sizes[1] = inputs[i].size[1];
Mat outSlice(sizes, CV_32F, out_data);
if (out_h == inputs[i].size[2] && out_w == inputs[i].size[3])
{
inputs[i].copyTo(outSlice);
}
else
{
std::vector<Mat> inp_slices, out_slices;
inp_slices.push_back(inputs[i]);
out_slices.push_back(outSlice);
resize->finalize(inp_slices, out_slices);
resize->forward(inp_slices, out_slices, internals_arr);
}
out_data += outSlice.total(1);
}
}
private:
int top_height;
int top_width;
int divisor;
bool have_reference;
Ptr<ResizeLayer> resize;
};
Ptr<AccumLayer> AccumLayer::create(const LayerParams& params)
{
return Ptr<AccumLayer>(new AccumLayerImpl(params));
}
}} // namespace cv::dnn