mirror of
https://github.com/opencv/opencv.git
synced 2025-06-18 08:05:23 +08:00
193 lines
6.2 KiB
C++
193 lines
6.2 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//M*/
|
|
|
|
#include <precomp.hpp>
|
|
#include <opencv2/objdetect/objdetect.hpp>
|
|
|
|
#include <vector>
|
|
|
|
|
|
struct cv::SoftCascade::Filds
|
|
{
|
|
std::vector<float> octaves;
|
|
// cv::Mat luv;
|
|
// std::vector<cv::Mat> bins;
|
|
// cv::Mat magnitude;
|
|
// double scaleFactor;
|
|
// int windowStep;
|
|
};
|
|
|
|
namespace {
|
|
|
|
struct Cascade {
|
|
int logOctave;
|
|
float octave;
|
|
cv::Size objSize;
|
|
};
|
|
|
|
struct Level {
|
|
int index;
|
|
float factor;
|
|
float logFactor;
|
|
int width;
|
|
int height;
|
|
float octave;
|
|
cv::Size objSize;
|
|
|
|
Level(int i,float f, float lf, int w, int h) : index(i), factor(f), logFactor(lf), width(w), height(h), octave(0.f) {}
|
|
|
|
void assign(float o, int detW, int detH)
|
|
{
|
|
octave = o;
|
|
objSize = cv::Size(cv::saturate_cast<int>(detW * o), cv::saturate_cast<int>(detH * o));
|
|
}
|
|
|
|
float relScale() {return (factor / octave); }
|
|
};
|
|
// compute levels of full pyramid
|
|
void pyrLevels(int frameW, int frameH, int detW, int detH, int scales, float minScale, float maxScale, std::vector<Level> levels)
|
|
{
|
|
CV_Assert(scales > 1);
|
|
levels.clear();
|
|
float logFactor = (log(maxScale) - log(minScale)) / (scales -1);
|
|
|
|
float scale = minScale;
|
|
for (int sc = 0; sc < scales; ++sc)
|
|
{
|
|
Level level(sc, scale, log(scale) + logFactor, std::max(0.0f, frameW - (detW * scale)), std::max(0.0f, frameH - (detH * scale)));
|
|
if (!level.width || !level.height)
|
|
break;
|
|
else
|
|
levels.push_back(level);
|
|
|
|
if (fabs(scale - maxScale) < FLT_EPSILON) break;
|
|
scale = std::min(maxScale, expf(log(scale) + logFactor));
|
|
}
|
|
|
|
}
|
|
|
|
// according to R. Benenson, M. Mathias, R. Timofte and L. Van Gool paper
|
|
struct CascadeIntrinsics {
|
|
static const float lambda = 1.099f/ 0.301029996f, a = 0.89f;
|
|
static const float intrinsics[10][4];
|
|
|
|
static float getFor(int chennel, int scaling, int ab)
|
|
{
|
|
CV_Assert(chennel < 10 && scaling < 2 && ab < 2);
|
|
return intrinsics[chennel][(scaling << 1) + ab];
|
|
}
|
|
|
|
};
|
|
|
|
const float CascadeIntrinsics::intrinsics[10][4] =
|
|
{ //da, db, ua, ub
|
|
// hog-like orientation bins
|
|
{a, lambda, 1, 2},
|
|
{a, lambda, 1, 2},
|
|
{a, lambda, 1, 2},
|
|
{a, lambda, 1, 2},
|
|
{a, lambda, 1, 2},
|
|
{a, lambda, 1, 2},
|
|
// gradient magnitude
|
|
{a, lambda / log(2), 1, 2},
|
|
// luv -color chennels
|
|
{1, 2, 1, 2},
|
|
{1, 2, 1, 2},
|
|
{1, 2, 1, 2}
|
|
};
|
|
}
|
|
|
|
|
|
|
|
|
|
cv::SoftCascade::SoftCascade() : filds(0) {}
|
|
|
|
cv::SoftCascade::SoftCascade( const string& filename )
|
|
{
|
|
filds = new Filds;
|
|
load(filename);
|
|
}
|
|
cv::SoftCascade::~SoftCascade()
|
|
{
|
|
delete filds;
|
|
}
|
|
|
|
bool cv::SoftCascade::load( const string& filename )
|
|
{
|
|
// temp fixture
|
|
Filds& flds = *filds;
|
|
flds.octaves.push_back(0.5f);
|
|
flds.octaves.push_back(1.0f);
|
|
flds.octaves.push_back(2.0f);
|
|
flds.octaves.push_back(4.0f);
|
|
flds.octaves.push_back(8.0f);
|
|
|
|
// scales calculations
|
|
int origObjectW = 64;
|
|
int origObjectH = 128;
|
|
float maxScale = 5.f, minScale = 0.4f;
|
|
std::vector<Level> levels;
|
|
|
|
pyrLevels(FRAME_WIDTH, FRAME_HEIGHT, origObjectW, origObjectH, TOTAL_SCALES, minScale, maxScale,levels);
|
|
|
|
for (std::vector<Level>::iterator level = levels.begin(); level < levels.end(); ++level)
|
|
{
|
|
float minAbsLog = FLT_MAX;
|
|
for (std::vector<float>::iterator oct = flds.octaves.begin(); oct < flds.octaves.end(); ++oct)
|
|
{
|
|
float logOctave = log(*oct);
|
|
float logAbsScale = fabs((*level).logFactor - logOctave);
|
|
|
|
if(logAbsScale < minAbsLog)
|
|
(*level).assign(*oct, origObjectW, origObjectH);
|
|
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void cv::SoftCascade::detectMultiScale(const Mat& image, const std::vector<cv::Rect>& rois, std::vector<cv::Rect>& objects,
|
|
const double factor, const int step, const int rejectfactor)
|
|
{}
|
|
|
|
void cv::SoftCascade::detectForOctave(const int octave)
|
|
{} |