mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 22:44:02 +08:00
491 lines
17 KiB
C++
491 lines
17 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
|
|
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
|
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// @Authors
|
|
// Niko Li, newlife20080214@gmail.com
|
|
// Jia Haipeng, jiahaipeng95@gmail.com
|
|
// Shengen Yan, yanshengen@gmail.com
|
|
// Jiang Liyuan, lyuan001.good@163.com
|
|
// Rock Li, Rock.Li@amd.com
|
|
// Wu Zailong, bullet@yeah.net
|
|
// Xu Pang, pangxu010@163.com
|
|
// Sen Liu, swjtuls1987@126.com
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
#ifdef HAVE_OPENCL
|
|
|
|
using namespace cv;
|
|
using namespace testing;
|
|
using namespace std;
|
|
|
|
static MatType noType = -1;
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
// warpAffine & warpPerspective
|
|
|
|
PARAM_TEST_CASE(WarpTestBase, MatType, Interpolation, bool, bool)
|
|
{
|
|
int type, interpolation;
|
|
Size dsize;
|
|
bool useRoi, mapInverse;
|
|
|
|
Mat src, dst_whole, src_roi, dst_roi;
|
|
ocl::oclMat gsrc_whole, gsrc_roi, gdst_whole, gdst_roi;
|
|
|
|
virtual void SetUp()
|
|
{
|
|
type = GET_PARAM(0);
|
|
interpolation = GET_PARAM(1);
|
|
mapInverse = GET_PARAM(2);
|
|
useRoi = GET_PARAM(3);
|
|
|
|
if (mapInverse)
|
|
interpolation |= WARP_INVERSE_MAP;
|
|
}
|
|
|
|
void random_roi()
|
|
{
|
|
dsize = randomSize(1, MAX_VALUE);
|
|
|
|
Size roiSize = randomSize(1, MAX_VALUE);
|
|
Border srcBorder = randomBorder(0, useRoi ? MAX_VALUE : 0);
|
|
randomSubMat(src, src_roi, roiSize, srcBorder, type, -MAX_VALUE, MAX_VALUE);
|
|
|
|
Border dstBorder = randomBorder(0, useRoi ? MAX_VALUE : 0);
|
|
randomSubMat(dst_whole, dst_roi, dsize, dstBorder, type, -MAX_VALUE, MAX_VALUE);
|
|
|
|
generateOclMat(gsrc_whole, gsrc_roi, src, roiSize, srcBorder);
|
|
generateOclMat(gdst_whole, gdst_roi, dst_whole, dsize, dstBorder);
|
|
}
|
|
|
|
void Near(double threshold = 0.0)
|
|
{
|
|
Mat whole, roi;
|
|
gdst_whole.download(whole);
|
|
gdst_roi.download(roi);
|
|
|
|
EXPECT_MAT_NEAR(dst_whole, whole, threshold);
|
|
EXPECT_MAT_NEAR(dst_roi, roi, threshold);
|
|
}
|
|
};
|
|
|
|
/////warpAffine
|
|
|
|
typedef WarpTestBase WarpAffine;
|
|
|
|
OCL_TEST_P(WarpAffine, Mat)
|
|
{
|
|
for (int j = 0; j < LOOP_TIMES; j++)
|
|
{
|
|
random_roi();
|
|
|
|
Mat M = getRotationMatrix2D(Point2f(src_roi.cols / 2.0f, src_roi.rows / 2.0f),
|
|
rng.uniform(-180.f, 180.f), rng.uniform(0.4f, 2.0f));
|
|
|
|
warpAffine(src_roi, dst_roi, M, dsize, interpolation);
|
|
ocl::warpAffine(gsrc_roi, gdst_roi, M, dsize, interpolation);
|
|
|
|
Near(1.0);
|
|
}
|
|
}
|
|
|
|
// warpPerspective
|
|
|
|
typedef WarpTestBase WarpPerspective;
|
|
|
|
OCL_TEST_P(WarpPerspective, Mat)
|
|
{
|
|
for (int j = 0; j < LOOP_TIMES; j++)
|
|
{
|
|
random_roi();
|
|
|
|
float cols = static_cast<float>(src_roi.cols), rows = static_cast<float>(src_roi.rows);
|
|
float cols2 = cols / 2.0f, rows2 = rows / 2.0f;
|
|
Point2f sp[] = { Point2f(0.0f, 0.0f), Point2f(cols, 0.0f), Point2f(0.0f, rows), Point2f(cols, rows) };
|
|
Point2f dp[] = { Point2f(rng.uniform(0.0f, cols2), rng.uniform(0.0f, rows2)),
|
|
Point2f(rng.uniform(cols2, cols), rng.uniform(0.0f, rows2)),
|
|
Point2f(rng.uniform(0.0f, cols2), rng.uniform(rows2, rows)),
|
|
Point2f(rng.uniform(cols2, cols), rng.uniform(rows2, rows)) };
|
|
Mat M = getPerspectiveTransform(sp, dp);
|
|
|
|
warpPerspective(src_roi, dst_roi, M, dsize, interpolation);
|
|
ocl::warpPerspective(gsrc_roi, gdst_roi, M, dsize, interpolation);
|
|
|
|
Near(1.0);
|
|
}
|
|
}
|
|
|
|
// buildWarpPerspectiveMaps
|
|
|
|
PARAM_TEST_CASE(BuildWarpPerspectiveMaps, bool, bool)
|
|
{
|
|
bool useRoi, mapInverse;
|
|
Size dsize;
|
|
|
|
Mat xmap_whole, ymap_whole, xmap_roi, ymap_roi;
|
|
ocl::oclMat gxmap_whole, gymap_whole, gxmap_roi, gymap_roi;
|
|
|
|
void SetUp()
|
|
{
|
|
mapInverse = GET_PARAM(0);
|
|
useRoi = GET_PARAM(1);
|
|
}
|
|
|
|
void random_roi()
|
|
{
|
|
dsize = randomSize(1, MAX_VALUE);
|
|
|
|
Border xmapBorder = randomBorder(0, useRoi ? MAX_VALUE : 0);
|
|
randomSubMat(xmap_whole, xmap_roi, dsize, xmapBorder, CV_32FC1, -MAX_VALUE, MAX_VALUE);
|
|
|
|
Border ymapBorder = randomBorder(0, useRoi ? MAX_VALUE : 0);
|
|
randomSubMat(ymap_whole, ymap_roi, dsize, ymapBorder, CV_32FC1, -MAX_VALUE, MAX_VALUE);
|
|
|
|
generateOclMat(gxmap_whole, gxmap_roi, xmap_whole, dsize, xmapBorder);
|
|
generateOclMat(gymap_whole, gymap_roi, ymap_whole, dsize, ymapBorder);
|
|
}
|
|
|
|
void Near(double threshold = 0.0)
|
|
{
|
|
Mat whole, roi;
|
|
gxmap_whole.download(whole);
|
|
gxmap_roi.download(roi);
|
|
|
|
EXPECT_MAT_NEAR(xmap_whole, whole, threshold);
|
|
EXPECT_MAT_NEAR(xmap_roi, roi, threshold);
|
|
}
|
|
|
|
void Near1(double threshold = 0.0)
|
|
{
|
|
Mat whole, roi;
|
|
gymap_whole.download(whole);
|
|
gymap_roi.download(roi);
|
|
|
|
EXPECT_MAT_NEAR(ymap_whole, whole, threshold);
|
|
EXPECT_MAT_NEAR(ymap_roi, roi, threshold);
|
|
}
|
|
};
|
|
|
|
static void buildWarpPerspectiveMaps(const Mat &M, bool inverse, Size dsize, Mat &xmap, Mat &ymap)
|
|
{
|
|
CV_Assert(M.rows == 3 && M.cols == 3);
|
|
CV_Assert(dsize.area() > 0);
|
|
|
|
xmap.create(dsize, CV_32FC1);
|
|
ymap.create(dsize, CV_32FC1);
|
|
|
|
float coeffs[3 * 3];
|
|
Mat coeffsMat(3, 3, CV_32F, (void *)coeffs);
|
|
|
|
if (inverse)
|
|
M.convertTo(coeffsMat, coeffsMat.type());
|
|
else
|
|
{
|
|
cv::Mat iM;
|
|
invert(M, iM);
|
|
iM.convertTo(coeffsMat, coeffsMat.type());
|
|
}
|
|
|
|
for (int y = 0; y < dsize.height; ++y)
|
|
{
|
|
float * const xmap_ptr = xmap.ptr<float>(y);
|
|
float * const ymap_ptr = ymap.ptr<float>(y);
|
|
|
|
for (int x = 0; x < dsize.width; ++x)
|
|
{
|
|
float coeff = 1.0f / (x * coeffs[6] + y * coeffs[7] + coeffs[8]);
|
|
xmap_ptr[x] = (x * coeffs[0] + y * coeffs[1] + coeffs[2]) * coeff;
|
|
ymap_ptr[x] = (x * coeffs[3] + y * coeffs[4] + coeffs[5]) * coeff;
|
|
}
|
|
}
|
|
}
|
|
|
|
OCL_TEST_P(BuildWarpPerspectiveMaps, Mat)
|
|
{
|
|
for (int j = 0; j < LOOP_TIMES; j++)
|
|
{
|
|
random_roi();
|
|
|
|
float cols = static_cast<float>(MAX_VALUE), rows = static_cast<float>(MAX_VALUE);
|
|
float cols2 = cols / 2.0f, rows2 = rows / 2.0f;
|
|
Point2f sp[] = { Point2f(0.0f, 0.0f), Point2f(cols, 0.0f), Point2f(0.0f, rows), Point2f(cols, rows) };
|
|
Point2f dp[] = { Point2f(rng.uniform(0.0f, cols2), rng.uniform(0.0f, rows2)),
|
|
Point2f(rng.uniform(cols2, cols), rng.uniform(0.0f, rows2)),
|
|
Point2f(rng.uniform(0.0f, cols2), rng.uniform(rows2, rows)),
|
|
Point2f(rng.uniform(cols2, cols), rng.uniform(rows2, rows)) };
|
|
Mat M = getPerspectiveTransform(sp, dp);
|
|
|
|
buildWarpPerspectiveMaps(M, mapInverse, dsize, xmap_roi, ymap_roi);
|
|
ocl::buildWarpPerspectiveMaps(M, mapInverse, dsize, gxmap_roi, gymap_roi);
|
|
|
|
Near(5e-3);
|
|
Near1(5e-3);
|
|
}
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
// remap
|
|
|
|
PARAM_TEST_CASE(Remap, MatDepth, Channels, pair<MatType, MatType>, Border, bool)
|
|
{
|
|
int srcType, map1Type, map2Type;
|
|
int borderType;
|
|
bool useRoi;
|
|
|
|
Scalar val;
|
|
|
|
Mat src, src_roi;
|
|
Mat dst, dst_roi;
|
|
Mat map1, map1_roi;
|
|
Mat map2, map2_roi;
|
|
|
|
// ocl mat with roi
|
|
ocl::oclMat gsrc, gsrc_roi;
|
|
ocl::oclMat gdst, gdst_roi;
|
|
ocl::oclMat gmap1, gmap1_roi;
|
|
ocl::oclMat gmap2, gmap2_roi;
|
|
|
|
virtual void SetUp()
|
|
{
|
|
srcType = CV_MAKE_TYPE(GET_PARAM(0), GET_PARAM(1));
|
|
map1Type = GET_PARAM(2).first;
|
|
map2Type = GET_PARAM(2).second;
|
|
borderType = GET_PARAM(3);
|
|
useRoi = GET_PARAM(4);
|
|
}
|
|
|
|
void random_roi()
|
|
{
|
|
val = randomScalar(-MAX_VALUE, MAX_VALUE);
|
|
Size srcROISize = randomSize(1, MAX_VALUE);
|
|
Size dstROISize = randomSize(1, MAX_VALUE);
|
|
|
|
Border srcBorder = randomBorder(0, useRoi ? MAX_VALUE : 0);
|
|
randomSubMat(src, src_roi, srcROISize, srcBorder, srcType, 5, 256);
|
|
|
|
Border dstBorder = randomBorder(0, useRoi ? MAX_VALUE : 0);
|
|
randomSubMat(dst, dst_roi, dstROISize, dstBorder, srcType, -MAX_VALUE, MAX_VALUE);
|
|
|
|
int mapMaxValue = MAX_VALUE << 2;
|
|
Border map1Border = randomBorder(0, useRoi ? MAX_VALUE : 0);
|
|
randomSubMat(map1, map1_roi, dstROISize, map1Border, map1Type, -mapMaxValue, mapMaxValue);
|
|
|
|
Border map2Border = randomBorder(0, useRoi ? MAX_VALUE : 0);
|
|
if (map2Type != noType)
|
|
{
|
|
int mapMinValue = -mapMaxValue;
|
|
if (map2Type == CV_16UC1 || map2Type == CV_16SC1)
|
|
mapMinValue = 0, mapMaxValue = INTER_TAB_SIZE2;
|
|
randomSubMat(map2, map2_roi, dstROISize, map2Border, map2Type, mapMinValue, mapMaxValue);
|
|
}
|
|
|
|
generateOclMat(gsrc, gsrc_roi, src, srcROISize, srcBorder);
|
|
generateOclMat(gdst, gdst_roi, dst, dstROISize, dstBorder);
|
|
generateOclMat(gmap1, gmap1_roi, map1, dstROISize, map1Border);
|
|
if (noType != map2Type)
|
|
generateOclMat(gmap2, gmap2_roi, map2, dstROISize, map2Border);
|
|
}
|
|
|
|
void Near(double threshold = 0.0)
|
|
{
|
|
Mat whole, roi;
|
|
gdst.download(whole);
|
|
gdst_roi.download(roi);
|
|
|
|
EXPECT_MAT_NEAR(dst, whole, threshold);
|
|
EXPECT_MAT_NEAR(dst_roi, roi, threshold);
|
|
}
|
|
};
|
|
|
|
typedef Remap Remap_INTER_NEAREST;
|
|
|
|
OCL_TEST_P(Remap_INTER_NEAREST, Mat)
|
|
{
|
|
for (int j = 0; j < LOOP_TIMES; j++)
|
|
{
|
|
random_roi();
|
|
|
|
remap(src_roi, dst_roi, map1_roi, map2_roi, INTER_NEAREST, borderType, val);
|
|
ocl::remap(gsrc_roi, gdst_roi, gmap1_roi, gmap2_roi, INTER_NEAREST, borderType, val);
|
|
|
|
Near(1.0);
|
|
}
|
|
}
|
|
|
|
typedef Remap Remap_INTER_LINEAR;
|
|
|
|
OCL_TEST_P(Remap_INTER_LINEAR, Mat)
|
|
{
|
|
for (int j = 0; j < LOOP_TIMES; j++)
|
|
{
|
|
random_roi();
|
|
|
|
cv::remap(src_roi, dst_roi, map1_roi, map2_roi, INTER_LINEAR, borderType, val);
|
|
ocl::remap(gsrc_roi, gdst_roi, gmap1_roi, gmap2_roi, INTER_LINEAR, borderType, val);
|
|
|
|
Near(2.0);
|
|
}
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////
|
|
// resize
|
|
|
|
PARAM_TEST_CASE(Resize, MatType, double, double, Interpolation, bool)
|
|
{
|
|
int type, interpolation;
|
|
double fx, fy;
|
|
bool useRoi;
|
|
|
|
Mat src, dst_whole, src_roi, dst_roi;
|
|
ocl::oclMat gsrc_whole, gsrc_roi, gdst_whole, gdst_roi;
|
|
|
|
virtual void SetUp()
|
|
{
|
|
type = GET_PARAM(0);
|
|
fx = GET_PARAM(1);
|
|
fy = GET_PARAM(2);
|
|
interpolation = GET_PARAM(3);
|
|
useRoi = GET_PARAM(4);
|
|
}
|
|
|
|
void random_roi()
|
|
{
|
|
CV_Assert(fx > 0 && fy > 0);
|
|
|
|
Size srcRoiSize = randomSize(1, MAX_VALUE), dstRoiSize;
|
|
dstRoiSize.width = cvRound(srcRoiSize.width * fx);
|
|
dstRoiSize.height = cvRound(srcRoiSize.height * fy);
|
|
|
|
if (dstRoiSize.area() == 0)
|
|
{
|
|
random_roi();
|
|
return;
|
|
}
|
|
|
|
Border srcBorder = randomBorder(0, useRoi ? MAX_VALUE : 0);
|
|
randomSubMat(src, src_roi, srcRoiSize, srcBorder, type, -MAX_VALUE, MAX_VALUE);
|
|
|
|
Border dstBorder = randomBorder(0, useRoi ? MAX_VALUE : 0);
|
|
randomSubMat(dst_whole, dst_roi, dstRoiSize, dstBorder, type, -MAX_VALUE, MAX_VALUE);
|
|
|
|
generateOclMat(gsrc_whole, gsrc_roi, src, srcRoiSize, srcBorder);
|
|
generateOclMat(gdst_whole, gdst_roi, dst_whole, dstRoiSize, dstBorder);
|
|
}
|
|
|
|
void Near(double threshold = 0.0)
|
|
{
|
|
Mat whole, roi;
|
|
gdst_whole.download(whole);
|
|
gdst_roi.download(roi);
|
|
|
|
EXPECT_MAT_NEAR(dst_whole, whole, threshold);
|
|
EXPECT_MAT_NEAR(dst_roi, roi, threshold);
|
|
}
|
|
};
|
|
|
|
OCL_TEST_P(Resize, Mat)
|
|
{
|
|
for (int j = 0; j < LOOP_TIMES; j++)
|
|
{
|
|
random_roi();
|
|
|
|
cv::resize(src_roi, dst_roi, Size(), fx, fy, interpolation);
|
|
ocl::resize(gsrc_roi, gdst_roi, Size(), fx, fy, interpolation);
|
|
|
|
Near(1.0);
|
|
}
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
INSTANTIATE_TEST_CASE_P(ImgprocWarp, WarpAffine, Combine(
|
|
Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_32FC1, CV_32FC3, CV_32FC4),
|
|
Values((Interpolation)INTER_NEAREST, (Interpolation)INTER_LINEAR, (Interpolation)INTER_CUBIC),
|
|
Bool(),
|
|
Bool()));
|
|
|
|
INSTANTIATE_TEST_CASE_P(ImgprocWarp, WarpPerspective, Combine(
|
|
Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_32FC1, CV_32FC3, CV_32FC4),
|
|
Values((Interpolation)INTER_NEAREST, (Interpolation)INTER_LINEAR, (Interpolation)INTER_CUBIC),
|
|
Bool(),
|
|
Bool()));
|
|
|
|
INSTANTIATE_TEST_CASE_P(ImgprocWarp, BuildWarpPerspectiveMaps, Combine(Bool(), Bool()));
|
|
|
|
INSTANTIATE_TEST_CASE_P(ImgprocWarp, Remap_INTER_LINEAR, Combine(
|
|
Values(CV_8U, CV_16U, CV_16S, CV_32F, CV_64F),
|
|
Values(1, 2, 3, 4),
|
|
Values(pair<MatType, MatType>((MatType)CV_32FC1, (MatType)CV_32FC1),
|
|
pair<MatType, MatType>((MatType)CV_16SC2, (MatType)CV_16UC1),
|
|
pair<MatType, MatType>((MatType)CV_32FC2, noType)),
|
|
Values((Border)BORDER_CONSTANT,
|
|
(Border)BORDER_REPLICATE,
|
|
(Border)BORDER_WRAP,
|
|
(Border)BORDER_REFLECT,
|
|
(Border)BORDER_REFLECT_101),
|
|
Bool()));
|
|
|
|
INSTANTIATE_TEST_CASE_P(ImgprocWarp, Remap_INTER_NEAREST, Combine(
|
|
Values(CV_8U, CV_16U, CV_16S, CV_32F, CV_64F),
|
|
Values(1, 2, 3, 4),
|
|
Values(pair<MatType, MatType>((MatType)CV_32FC1, (MatType)CV_32FC1),
|
|
pair<MatType, MatType>((MatType)CV_32FC2, noType),
|
|
pair<MatType, MatType>((MatType)CV_16SC2, (MatType)CV_16UC1),
|
|
pair<MatType, MatType>((MatType)CV_16SC2, noType)),
|
|
Values((Border)BORDER_CONSTANT,
|
|
(Border)BORDER_REPLICATE,
|
|
(Border)BORDER_WRAP,
|
|
(Border)BORDER_REFLECT,
|
|
(Border)BORDER_REFLECT_101),
|
|
Bool()));
|
|
|
|
INSTANTIATE_TEST_CASE_P(ImgprocWarp, Resize, Combine(
|
|
Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_32FC1, CV_32FC3, CV_32FC4),
|
|
Values(0.5, 1.5, 2.0),
|
|
Values(0.5, 1.5, 2.0),
|
|
Values((Interpolation)INTER_NEAREST, (Interpolation)INTER_LINEAR),
|
|
Bool()));
|
|
|
|
#endif // HAVE_OPENCL
|