mirror of
https://github.com/opencv/opencv.git
synced 2025-01-10 14:19:03 +08:00
c1a57a10a4
[G-API]: Performance tests for BackgroundSubtractor * Perf.Tests for BackgroundSubtractor kernel * Fix CI * Addressing comments * Addressing a comment * Test cycle and validation changes * Addressing comment * Added assert
361 lines
12 KiB
C++
361 lines
12 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
//
|
|
// Copyright (C) 2020 Intel Corporation
|
|
|
|
#ifndef OPENCV_GAPI_VIDEO_TESTS_INL_HPP
|
|
#define OPENCV_GAPI_VIDEO_TESTS_INL_HPP
|
|
|
|
#include "gapi_video_tests.hpp"
|
|
#include <opencv2/gapi/streaming/cap.hpp>
|
|
|
|
namespace opencv_test
|
|
{
|
|
|
|
TEST_P(BuildOptFlowPyramidTest, AccuracyTest)
|
|
{
|
|
std::vector<Mat> outPyrOCV, outPyrGAPI;
|
|
int outMaxLevelOCV = 0, outMaxLevelGAPI = 0;
|
|
|
|
BuildOpticalFlowPyramidTestParams params { fileName, winSize, maxLevel,
|
|
withDerivatives, pyrBorder, derivBorder,
|
|
tryReuseInputImage, getCompileArgs() };
|
|
|
|
BuildOpticalFlowPyramidTestOutput outOCV { outPyrOCV, outMaxLevelOCV };
|
|
BuildOpticalFlowPyramidTestOutput outGAPI { outPyrGAPI, outMaxLevelGAPI };
|
|
|
|
runOCVnGAPIBuildOptFlowPyramid(*this, params, outOCV, outGAPI);
|
|
|
|
compareOutputPyramids(outGAPI, outOCV);
|
|
}
|
|
|
|
TEST_P(OptFlowLKTest, AccuracyTest)
|
|
{
|
|
std::vector<cv::Point2f> outPtsOCV, outPtsGAPI, inPts;
|
|
std::vector<uchar> outStatusOCV, outStatusGAPI;
|
|
std::vector<float> outErrOCV, outErrGAPI;
|
|
|
|
OptFlowLKTestParams params { fileNamePattern, channels, pointsNum,
|
|
winSize, criteria, getCompileArgs() };
|
|
|
|
OptFlowLKTestOutput outOCV { outPtsOCV, outStatusOCV, outErrOCV };
|
|
OptFlowLKTestOutput outGAPI { outPtsGAPI, outStatusGAPI, outErrGAPI };
|
|
|
|
runOCVnGAPIOptFlowLK(*this, inPts, params, outOCV, outGAPI);
|
|
|
|
compareOutputsOptFlow(outGAPI, outOCV);
|
|
}
|
|
|
|
TEST_P(OptFlowLKTestForPyr, AccuracyTest)
|
|
{
|
|
std::vector<cv::Mat> inPyr1, inPyr2;
|
|
std::vector<cv::Point2f> outPtsOCV, outPtsGAPI, inPts;
|
|
std::vector<uchar> outStatusOCV, outStatusGAPI;
|
|
std::vector<float> outErrOCV, outErrGAPI;
|
|
|
|
OptFlowLKTestParams params { fileNamePattern, channels, pointsNum,
|
|
winSize, criteria, getCompileArgs() };
|
|
|
|
OptFlowLKTestInput<std::vector<cv::Mat>> in { inPyr1, inPyr2, inPts };
|
|
OptFlowLKTestOutput outOCV { outPtsOCV, outStatusOCV, outErrOCV };
|
|
OptFlowLKTestOutput outGAPI { outPtsGAPI, outStatusGAPI, outErrGAPI };
|
|
|
|
runOCVnGAPIOptFlowLKForPyr(*this, in, params, withDeriv, outOCV, outGAPI);
|
|
|
|
compareOutputsOptFlow(outGAPI, outOCV);
|
|
}
|
|
|
|
TEST_P(BuildPyr_CalcOptFlow_PipelineTest, AccuracyTest)
|
|
{
|
|
std::vector<Point2f> outPtsOCV, outPtsGAPI, inPts;
|
|
std::vector<uchar> outStatusOCV, outStatusGAPI;
|
|
std::vector<float> outErrOCV, outErrGAPI;
|
|
|
|
BuildOpticalFlowPyramidTestParams params { fileNamePattern, winSize, maxLevel,
|
|
withDerivatives, BORDER_DEFAULT, BORDER_DEFAULT,
|
|
true, getCompileArgs() };
|
|
|
|
auto customKernel = gapi::kernels<GCPUMinScalar>();
|
|
auto kernels = gapi::combine(customKernel,
|
|
params.compileArgs[0].get<gapi::GKernelPackage>());
|
|
params.compileArgs = compile_args(kernels);
|
|
|
|
OptFlowLKTestOutput outOCV { outPtsOCV, outStatusOCV, outErrOCV };
|
|
OptFlowLKTestOutput outGAPI { outPtsGAPI, outStatusGAPI, outErrGAPI };
|
|
|
|
runOCVnGAPIOptFlowPipeline(*this, params, outOCV, outGAPI, inPts);
|
|
|
|
compareOutputsOptFlow(outGAPI, outOCV);
|
|
}
|
|
|
|
#ifdef HAVE_OPENCV_VIDEO
|
|
TEST_P(BackgroundSubtractorTest, AccuracyTest)
|
|
{
|
|
initTestDataPath();
|
|
|
|
cv::gapi::video::BackgroundSubtractorType opType;
|
|
double thr = -1;
|
|
std::tie(opType, thr) = typeAndThreshold;
|
|
|
|
cv::gapi::video::BackgroundSubtractorParams bsp(opType, histLength, thr,
|
|
detectShadows, learningRate);
|
|
|
|
// G-API graph declaration
|
|
cv::GMat in;
|
|
cv::GMat out = cv::gapi::BackgroundSubtractor(in, bsp);
|
|
// Preserving 'in' in output to have possibility to compare with OpenCV reference
|
|
cv::GComputation c(cv::GIn(in), cv::GOut(cv::gapi::copy(in), out));
|
|
|
|
// G-API compilation of graph for streaming mode
|
|
auto gapiBackSub = c.compileStreaming(getCompileArgs());
|
|
|
|
// Testing G-API Background Substractor in streaming mode
|
|
const auto path = findDataFile(filePath);
|
|
try
|
|
{
|
|
gapiBackSub.setSource(gapi::wip::make_src<cv::gapi::wip::GCaptureSource>(path));
|
|
}
|
|
catch (...)
|
|
{ throw SkipTestException("Video file can't be opened."); }
|
|
|
|
cv::Ptr<cv::BackgroundSubtractor> pOCVBackSub;
|
|
|
|
if (opType == cv::gapi::video::TYPE_BS_MOG2)
|
|
pOCVBackSub = cv::createBackgroundSubtractorMOG2(histLength, thr,
|
|
detectShadows);
|
|
else if (opType == cv::gapi::video::TYPE_BS_KNN)
|
|
pOCVBackSub = cv::createBackgroundSubtractorKNN(histLength, thr,
|
|
detectShadows);
|
|
|
|
// Allowing 1% difference of all pixels between G-API and reference OpenCV results
|
|
testBackgroundSubtractorStreaming(gapiBackSub, pOCVBackSub, 1, 1, learningRate, testNumFrames);
|
|
}
|
|
|
|
inline void initKalmanParams(cv::gapi::KalmanParams& kp, int type, int dDim, int mDim, int cDim)
|
|
{
|
|
kp.state = Mat::zeros(dDim, 1, type);
|
|
cv::randu(kp.state, Scalar::all(0), Scalar::all(0.1));
|
|
kp.errorCov = Mat::eye(dDim, dDim, type);
|
|
|
|
kp.transitionMatrix = Mat::ones(dDim, dDim, type) * 2;
|
|
kp.processNoiseCov = Mat::eye(dDim, dDim, type)*(1e-5);
|
|
kp.measurementMatrix = Mat::eye(mDim, dDim, type) * 2;
|
|
kp.measurementNoiseCov = Mat::eye(mDim, mDim, type)*(1e-5);
|
|
|
|
if (cDim > 0)
|
|
kp.controlMatrix = Mat::eye(dDim, cDim, type)* (1e-3);
|
|
}
|
|
|
|
inline void initKalmanFilter(const cv::gapi::KalmanParams& kp,
|
|
cv::KalmanFilter& ocvKalman, bool control)
|
|
{
|
|
kp.state.copyTo(ocvKalman.statePost);
|
|
kp.errorCov.copyTo(ocvKalman.errorCovPost);
|
|
|
|
kp.transitionMatrix.copyTo(ocvKalman.transitionMatrix);
|
|
kp.measurementMatrix.copyTo(ocvKalman.measurementMatrix);
|
|
kp.measurementNoiseCov.copyTo(ocvKalman.measurementNoiseCov);
|
|
kp.processNoiseCov.copyTo(ocvKalman.processNoiseCov);
|
|
|
|
if (control)
|
|
kp.controlMatrix.copyTo(ocvKalman.controlMatrix);
|
|
}
|
|
|
|
TEST_P(KalmanFilterTest, AccuracyTest)
|
|
{
|
|
cv::gapi::KalmanParams kp;
|
|
initKalmanParams(kp, type, dDim, mDim, cDim);
|
|
|
|
// OpenCV reference KalmanFilter initialization
|
|
cv::KalmanFilter ocvKalman(dDim, mDim, cDim, type);
|
|
initKalmanFilter(kp, ocvKalman, true);
|
|
|
|
//measurement vector
|
|
cv::Mat measure_vec(mDim, 1, type);
|
|
|
|
//control vector
|
|
cv::Mat ctrl_vec = Mat::zeros(cDim > 0 ? cDim : 2, 1, type);
|
|
|
|
// G-API Kalman's output state
|
|
cv::Mat gapiKState(dDim, 1, type);
|
|
// OCV Kalman's output state
|
|
cv::Mat ocvKState(dDim, 1, type);
|
|
|
|
// G-API graph initialization
|
|
cv::GMat m, ctrl;
|
|
cv::GOpaque<bool> have_m;
|
|
cv::GMat out = cv::gapi::KalmanFilter(m, have_m, ctrl, kp);
|
|
cv::GComputation comp(cv::GIn(m, have_m, ctrl), cv::GOut(out));
|
|
|
|
cv::RNG& rng = cv::theRNG();
|
|
bool haveMeasure;
|
|
|
|
for (int i = 0; i < numIter; i++)
|
|
{
|
|
haveMeasure = (rng(2u) == 1) ? true : false; // returns 0 or 1 - whether we have measurement at this iteration or not
|
|
|
|
if (haveMeasure)
|
|
cv::randu(measure_vec, Scalar::all(-1), Scalar::all(1));
|
|
if (cDim > 0)
|
|
cv::randu(ctrl_vec, Scalar::all(-1), Scalar::all(1));
|
|
|
|
// G-API KalmanFilter call
|
|
comp.apply(cv::gin(measure_vec, haveMeasure, ctrl_vec), cv::gout(gapiKState));
|
|
// OpenCV KalmanFilter call
|
|
ocvKState = cDim > 0 ? ocvKalman.predict(ctrl_vec) : ocvKalman.predict();
|
|
if (haveMeasure)
|
|
ocvKState = ocvKalman.correct(measure_vec);
|
|
}
|
|
|
|
// Comparison //////////////////////////////////////////////////////////////
|
|
{
|
|
double diff = 0;
|
|
vector<int> idx;
|
|
EXPECT_TRUE(cmpEps(gapiKState, ocvKState, &diff, 1.0, &idx, false) >= 0);
|
|
}
|
|
}
|
|
|
|
TEST_P(KalmanFilterNoControlTest, AccuracyTest)
|
|
{
|
|
cv::gapi::KalmanParams kp;
|
|
initKalmanParams(kp, type, dDim, mDim, 0);
|
|
|
|
// OpenCV reference KalmanFilter initialization
|
|
cv::KalmanFilter ocvKalman(dDim, mDim, 0, type);
|
|
initKalmanFilter(kp, ocvKalman, false);
|
|
|
|
//measurement vector
|
|
cv::Mat measure_vec(mDim, 1, type);
|
|
|
|
// G-API Kalman's output state
|
|
cv::Mat gapiKState(dDim, 1, type);
|
|
// OCV Kalman's output state
|
|
cv::Mat ocvKState(dDim, 1, type);
|
|
|
|
// G-API graph initialization
|
|
cv::GMat m;
|
|
cv::GOpaque<bool> have_m;
|
|
cv::GMat out = cv::gapi::KalmanFilter(m, have_m, kp);
|
|
cv::GComputation comp(cv::GIn(m, have_m), cv::GOut(out));
|
|
|
|
cv::RNG& rng = cv::theRNG();
|
|
bool haveMeasure;
|
|
|
|
for (int i = 0; i < numIter; i++)
|
|
{
|
|
haveMeasure = (rng(2u) == 1) ? true : false; // returns 0 or 1 - whether we have measurement at this iteration or not
|
|
|
|
if (haveMeasure)
|
|
cv::randu(measure_vec, Scalar::all(-1), Scalar::all(1));
|
|
|
|
// G-API
|
|
comp.apply(cv::gin(measure_vec, haveMeasure), cv::gout(gapiKState));
|
|
|
|
// OpenCV
|
|
ocvKState = ocvKalman.predict();
|
|
if (haveMeasure)
|
|
ocvKState = ocvKalman.correct(measure_vec);
|
|
}
|
|
|
|
// Comparison //////////////////////////////////////////////////////////////
|
|
{
|
|
double diff = 0;
|
|
vector<int> idx;
|
|
EXPECT_TRUE(cmpEps(gapiKState, ocvKState, &diff, 1.0, &idx, false) >= 0);
|
|
}
|
|
}
|
|
|
|
TEST_P(KalmanFilterCircleSampleTest, AccuracyTest)
|
|
{
|
|
// auxiliary variables
|
|
cv::Mat processNoise(2, 1, type);
|
|
// For comparison
|
|
double diff = 0;
|
|
vector<int> idx;
|
|
|
|
// Input mesurement
|
|
cv::Mat measurement = Mat::zeros(1, 1, type);
|
|
// Angle and it's delta(phi, delta_phi)
|
|
cv::Mat state(2, 1, type);
|
|
|
|
// G-API graph initialization
|
|
cv::gapi::KalmanParams kp;
|
|
|
|
kp.state = Mat::zeros(2, 1, type);
|
|
cv::randn(kp.state, Scalar::all(0), Scalar::all(0.1));
|
|
|
|
kp.errorCov = Mat::eye(2, 2, type);
|
|
|
|
if (type == CV_32F)
|
|
kp.transitionMatrix = (Mat_<float>(2, 2) << 1, 1, 0, 1);
|
|
else
|
|
kp.transitionMatrix = (Mat_<double>(2, 2) << 1, 1, 0, 1);
|
|
|
|
kp.processNoiseCov = Mat::eye(2, 2, type) * (1e-5);
|
|
kp.measurementMatrix = Mat::eye(1, 2, type);
|
|
kp.measurementNoiseCov = Mat::eye(1, 1, type) * (1e-1);
|
|
|
|
cv::GMat m;
|
|
cv::GOpaque<bool> have_measure;
|
|
cv::GMat out = cv::gapi::KalmanFilter(m, have_measure, kp);
|
|
cv::GComputation comp(cv::GIn(m, have_measure), cv::GOut(out));
|
|
|
|
// OCV Kalman initialization
|
|
cv::KalmanFilter KF(2, 1, 0);
|
|
initKalmanFilter(kp, KF, false);
|
|
|
|
cv::randn(state, Scalar::all(0), Scalar::all(0.1));
|
|
|
|
// GAPI Corrected state
|
|
cv::Mat gapiState(2, 1, type);
|
|
// OCV Corrected state
|
|
cv::Mat ocvCorrState(2, 1, type);
|
|
// OCV Predicted state
|
|
cv::Mat ocvPreState(2, 1, type);
|
|
|
|
bool haveMeasure;
|
|
|
|
for (int i = 0; i < numIter; ++i)
|
|
{
|
|
// Get OCV Prediction
|
|
ocvPreState = KF.predict();
|
|
|
|
GAPI_DbgAssert(cv::norm(kp.measurementNoiseCov, KF.measurementNoiseCov, cv::NORM_INF) == 0);
|
|
// generation measurement
|
|
cv::randn(measurement, Scalar::all(0), Scalar::all((type == CV_32FC1) ?
|
|
kp.measurementNoiseCov.at<float>(0) : kp.measurementNoiseCov.at<double>(0)));
|
|
|
|
GAPI_DbgAssert(cv::norm(kp.measurementMatrix, KF.measurementMatrix, cv::NORM_INF) == 0);
|
|
measurement += kp.measurementMatrix*state;
|
|
|
|
if (cv::theRNG().uniform(0, 4) != 0)
|
|
{
|
|
haveMeasure = true;
|
|
ocvCorrState = KF.correct(measurement);
|
|
comp.apply(cv::gin(measurement, haveMeasure), cv::gout(gapiState));
|
|
EXPECT_TRUE(cmpEps(gapiState, ocvCorrState, &diff, 1.0, &idx, false) >= 0);
|
|
}
|
|
else
|
|
{
|
|
// Get GAPI Prediction
|
|
haveMeasure = false;
|
|
comp.apply(cv::gin(measurement, haveMeasure), cv::gout(gapiState));
|
|
EXPECT_TRUE(cmpEps(gapiState, ocvPreState, &diff, 1.0, &idx, false) >= 0);
|
|
}
|
|
|
|
GAPI_DbgAssert(cv::norm(kp.processNoiseCov, KF.processNoiseCov, cv::NORM_INF) == 0);
|
|
cv::randn(processNoise, Scalar(0), Scalar::all(sqrt(type == CV_32FC1 ?
|
|
kp.processNoiseCov.at<float>(0, 0):
|
|
kp.processNoiseCov.at<double>(0, 0))));
|
|
|
|
GAPI_DbgAssert(cv::norm(kp.transitionMatrix, KF.transitionMatrix, cv::NORM_INF) == 0);
|
|
state = kp.transitionMatrix*state + processNoise;
|
|
}
|
|
}
|
|
|
|
#endif
|
|
} // opencv_test
|
|
|
|
#endif // OPENCV_GAPI_VIDEO_TESTS_INL_HPP
|