mirror of
https://github.com/opencv/opencv.git
synced 2025-08-05 14:06:35 +08:00

* imgproc: templmatch: Add support for mask for all methods Add support for masked template matching. Fix/scrub old implementation for masked matching, as it did partly not even really do a meaningful masking, and only supported limited template matching methods. Add documentation including formulas for masked matching. * imgproc: test: Add tests for masked template matching Test accuracy by comparing to naive implementation for one point. Test compatibility/correctness by comparing results without mask and with all ones mask. All tests are done for all methods, all supported depths, and for 1 and 3 channels. * imgproc: test: templmatch: Add test for crossCorr Add a test for the crossCorr function in templmatch.cpp. crossCorr() had to be added to exported functions to be testable. This test can maybe help to identify the problem with template matching on MacOSX. * fix: Fixed wrong evaluations of the MatExpr on Clang * fix: removed crossCorr from public interface. If it should be exported, it should be done as separate PR. Co-authored-by: Vadim Levin <vadim.levin@xperience.ai>
1207 lines
43 KiB
C++
1207 lines
43 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// Intel License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
#include "opencl_kernels_imgproc.hpp"
|
|
|
|
////////////////////////////////////////////////// matchTemplate //////////////////////////////////////////////////////////
|
|
|
|
namespace cv
|
|
{
|
|
|
|
#ifdef HAVE_OPENCL
|
|
|
|
/////////////////////////////////////////////////// CCORR //////////////////////////////////////////////////////////////
|
|
|
|
enum
|
|
{
|
|
SUM_1 = 0, SUM_2 = 1
|
|
};
|
|
|
|
static bool extractFirstChannel_32F(InputArray _image, OutputArray _result, int cn)
|
|
{
|
|
int depth = _image.depth();
|
|
|
|
ocl::Device dev = ocl::Device::getDefault();
|
|
int pxPerWIy = (dev.isIntel() && (dev.type() & ocl::Device::TYPE_GPU)) ? 4 : 1;
|
|
|
|
ocl::Kernel k("extractFirstChannel", ocl::imgproc::match_template_oclsrc, format("-D FIRST_CHANNEL -D T1=%s -D cn=%d -D PIX_PER_WI_Y=%d",
|
|
ocl::typeToStr(depth), cn, pxPerWIy));
|
|
if (k.empty())
|
|
return false;
|
|
|
|
UMat image = _image.getUMat();
|
|
UMat result = _result.getUMat();
|
|
|
|
|
|
size_t globalsize[2] = {(size_t)result.cols, ((size_t)result.rows+pxPerWIy-1)/pxPerWIy};
|
|
return k.args(ocl::KernelArg::ReadOnlyNoSize(image), ocl::KernelArg::WriteOnly(result)).run( 2, globalsize, NULL, false);
|
|
}
|
|
|
|
static bool sumTemplate(InputArray _src, UMat & result)
|
|
{
|
|
int type = _src.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
|
|
int wdepth = CV_32F, wtype = CV_MAKE_TYPE(wdepth, cn);
|
|
size_t wgs = ocl::Device::getDefault().maxWorkGroupSize();
|
|
|
|
int wgs2_aligned = 1;
|
|
while (wgs2_aligned < (int)wgs)
|
|
wgs2_aligned <<= 1;
|
|
wgs2_aligned >>= 1;
|
|
|
|
char cvt[40];
|
|
ocl::Kernel k("calcSum", ocl::imgproc::match_template_oclsrc,
|
|
format("-D CALC_SUM -D T=%s -D T1=%s -D WT=%s -D cn=%d -D convertToWT=%s -D WGS=%d -D WGS2_ALIGNED=%d",
|
|
ocl::typeToStr(type), ocl::typeToStr(depth), ocl::typeToStr(wtype), cn,
|
|
ocl::convertTypeStr(depth, wdepth, cn, cvt),
|
|
(int)wgs, wgs2_aligned));
|
|
if (k.empty())
|
|
return false;
|
|
|
|
UMat src = _src.getUMat();
|
|
result.create(1, 1, CV_32FC1);
|
|
|
|
ocl::KernelArg srcarg = ocl::KernelArg::ReadOnlyNoSize(src),
|
|
resarg = ocl::KernelArg::PtrWriteOnly(result);
|
|
|
|
k.args(srcarg, src.cols, (int)src.total(), resarg);
|
|
|
|
size_t globalsize = wgs;
|
|
return k.run(1, &globalsize, &wgs, false);
|
|
}
|
|
|
|
static bool useNaive(Size size)
|
|
{
|
|
int dft_size = 18;
|
|
return size.height < dft_size && size.width < dft_size;
|
|
}
|
|
|
|
struct ConvolveBuf
|
|
{
|
|
Size result_size;
|
|
Size block_size;
|
|
Size user_block_size;
|
|
Size dft_size;
|
|
|
|
UMat image_spect, templ_spect, result_spect;
|
|
UMat image_block, templ_block, result_data;
|
|
|
|
void create(Size image_size, Size templ_size);
|
|
};
|
|
|
|
void ConvolveBuf::create(Size image_size, Size templ_size)
|
|
{
|
|
result_size = Size(image_size.width - templ_size.width + 1,
|
|
image_size.height - templ_size.height + 1);
|
|
|
|
const double blockScale = 4.5;
|
|
const int minBlockSize = 256;
|
|
|
|
block_size.width = cvRound(templ_size.width*blockScale);
|
|
block_size.width = std::max( block_size.width, minBlockSize - templ_size.width + 1 );
|
|
block_size.width = std::min( block_size.width, result_size.width );
|
|
block_size.height = cvRound(templ_size.height*blockScale);
|
|
block_size.height = std::max( block_size.height, minBlockSize - templ_size.height + 1 );
|
|
block_size.height = std::min( block_size.height, result_size.height );
|
|
|
|
dft_size.width = std::max(getOptimalDFTSize(block_size.width + templ_size.width - 1), 2);
|
|
dft_size.height = getOptimalDFTSize(block_size.height + templ_size.height - 1);
|
|
if( dft_size.width <= 0 || dft_size.height <= 0 )
|
|
CV_Error( CV_StsOutOfRange, "the input arrays are too big" );
|
|
|
|
// recompute block size
|
|
block_size.width = dft_size.width - templ_size.width + 1;
|
|
block_size.width = std::min( block_size.width, result_size.width);
|
|
block_size.height = dft_size.height - templ_size.height + 1;
|
|
block_size.height = std::min( block_size.height, result_size.height );
|
|
|
|
image_block.create(dft_size, CV_32F);
|
|
templ_block.create(dft_size, CV_32F);
|
|
result_data.create(dft_size, CV_32F);
|
|
|
|
image_spect.create(dft_size.height, dft_size.width / 2 + 1, CV_32FC2);
|
|
templ_spect.create(dft_size.height, dft_size.width / 2 + 1, CV_32FC2);
|
|
result_spect.create(dft_size.height, dft_size.width / 2 + 1, CV_32FC2);
|
|
|
|
// Use maximum result matrix block size for the estimated DFT block size
|
|
block_size.width = std::min(dft_size.width - templ_size.width + 1, result_size.width);
|
|
block_size.height = std::min(dft_size.height - templ_size.height + 1, result_size.height);
|
|
}
|
|
|
|
static bool convolve_dft(InputArray _image, InputArray _templ, OutputArray _result)
|
|
{
|
|
ConvolveBuf buf;
|
|
CV_Assert(_image.type() == CV_32F);
|
|
CV_Assert(_templ.type() == CV_32F);
|
|
|
|
buf.create(_image.size(), _templ.size());
|
|
_result.create(buf.result_size, CV_32F);
|
|
|
|
UMat image = _image.getUMat();
|
|
UMat templ = _templ.getUMat();
|
|
|
|
UMat result = _result.getUMat();
|
|
|
|
Size& block_size = buf.block_size;
|
|
Size& dft_size = buf.dft_size;
|
|
|
|
UMat& image_block = buf.image_block;
|
|
UMat& templ_block = buf.templ_block;
|
|
UMat& result_data = buf.result_data;
|
|
|
|
UMat& image_spect = buf.image_spect;
|
|
UMat& templ_spect = buf.templ_spect;
|
|
UMat& result_spect = buf.result_spect;
|
|
|
|
UMat templ_roi = templ;
|
|
copyMakeBorder(templ_roi, templ_block, 0, templ_block.rows - templ_roi.rows, 0,
|
|
templ_block.cols - templ_roi.cols, BORDER_ISOLATED);
|
|
|
|
dft(templ_block, templ_spect, 0, templ.rows);
|
|
|
|
// Process all blocks of the result matrix
|
|
for (int y = 0; y < result.rows; y += block_size.height)
|
|
{
|
|
for (int x = 0; x < result.cols; x += block_size.width)
|
|
{
|
|
Size image_roi_size(std::min(x + dft_size.width, image.cols) - x,
|
|
std::min(y + dft_size.height, image.rows) - y);
|
|
Rect roi0(x, y, image_roi_size.width, image_roi_size.height);
|
|
|
|
UMat image_roi(image, roi0);
|
|
|
|
copyMakeBorder(image_roi, image_block, 0, image_block.rows - image_roi.rows,
|
|
0, image_block.cols - image_roi.cols, BORDER_ISOLATED);
|
|
|
|
dft(image_block, image_spect, 0);
|
|
|
|
mulSpectrums(image_spect, templ_spect, result_spect, 0, true);
|
|
|
|
dft(result_spect, result_data, cv::DFT_INVERSE | cv::DFT_REAL_OUTPUT | cv::DFT_SCALE);
|
|
|
|
Size result_roi_size(std::min(x + block_size.width, result.cols) - x,
|
|
std::min(y + block_size.height, result.rows) - y);
|
|
|
|
Rect roi1(x, y, result_roi_size.width, result_roi_size.height);
|
|
Rect roi2(0, 0, result_roi_size.width, result_roi_size.height);
|
|
|
|
UMat result_roi(result, roi1);
|
|
UMat result_block(result_data, roi2);
|
|
|
|
result_block.copyTo(result_roi);
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool convolve_32F(InputArray _image, InputArray _templ, OutputArray _result)
|
|
{
|
|
_result.create(_image.rows() - _templ.rows() + 1, _image.cols() - _templ.cols() + 1, CV_32F);
|
|
|
|
if (_image.channels() == 1)
|
|
return(convolve_dft(_image, _templ, _result));
|
|
else
|
|
{
|
|
UMat image = _image.getUMat();
|
|
UMat templ = _templ.getUMat();
|
|
UMat result_(image.rows-templ.rows+1,(image.cols-templ.cols+1)*image.channels(), CV_32F);
|
|
bool ok = convolve_dft(image.reshape(1), templ.reshape(1), result_);
|
|
if (ok==false)
|
|
return false;
|
|
UMat result = _result.getUMat();
|
|
return (extractFirstChannel_32F(result_, _result, _image.channels()));
|
|
}
|
|
}
|
|
|
|
static bool matchTemplateNaive_CCORR(InputArray _image, InputArray _templ, OutputArray _result)
|
|
{
|
|
int type = _image.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
|
|
int wdepth = CV_32F, wtype = CV_MAKE_TYPE(wdepth, cn);
|
|
|
|
ocl::Device dev = ocl::Device::getDefault();
|
|
int pxPerWIx = (cn==1 && dev.isIntel() && (dev.type() & ocl::Device::TYPE_GPU)) ? 4 : 1;
|
|
int rated_cn = cn;
|
|
int wtype1 = wtype;
|
|
|
|
if (pxPerWIx!=1)
|
|
{
|
|
rated_cn = pxPerWIx;
|
|
type = CV_MAKE_TYPE(depth, rated_cn);
|
|
wtype1 = CV_MAKE_TYPE(wdepth, rated_cn);
|
|
}
|
|
|
|
char cvt[40];
|
|
char cvt1[40];
|
|
const char* convertToWT1 = ocl::convertTypeStr(depth, wdepth, cn, cvt);
|
|
const char* convertToWT = ocl::convertTypeStr(depth, wdepth, rated_cn, cvt1);
|
|
|
|
ocl::Kernel k("matchTemplate_Naive_CCORR", ocl::imgproc::match_template_oclsrc,
|
|
format("-D CCORR -D T=%s -D T1=%s -D WT=%s -D WT1=%s -D convertToWT=%s -D convertToWT1=%s -D cn=%d -D PIX_PER_WI_X=%d", ocl::typeToStr(type), ocl::typeToStr(depth), ocl::typeToStr(wtype1), ocl::typeToStr(wtype),
|
|
convertToWT, convertToWT1, cn, pxPerWIx));
|
|
if (k.empty())
|
|
return false;
|
|
|
|
UMat image = _image.getUMat(), templ = _templ.getUMat();
|
|
_result.create(image.rows - templ.rows + 1, image.cols - templ.cols + 1, CV_32FC1);
|
|
UMat result = _result.getUMat();
|
|
|
|
k.args(ocl::KernelArg::ReadOnlyNoSize(image), ocl::KernelArg::ReadOnly(templ),
|
|
ocl::KernelArg::WriteOnly(result));
|
|
|
|
size_t globalsize[2] = { ((size_t)result.cols+pxPerWIx-1)/pxPerWIx, (size_t)result.rows};
|
|
return k.run(2, globalsize, NULL, false);
|
|
}
|
|
|
|
|
|
static bool matchTemplate_CCORR(InputArray _image, InputArray _templ, OutputArray _result)
|
|
{
|
|
if (useNaive(_templ.size()))
|
|
return( matchTemplateNaive_CCORR(_image, _templ, _result));
|
|
else
|
|
{
|
|
if(_image.depth() == CV_8U)
|
|
{
|
|
UMat imagef, templf;
|
|
UMat image = _image.getUMat();
|
|
UMat templ = _templ.getUMat();
|
|
image.convertTo(imagef, CV_32F);
|
|
templ.convertTo(templf, CV_32F);
|
|
return(convolve_32F(imagef, templf, _result));
|
|
}
|
|
else
|
|
{
|
|
return(convolve_32F(_image, _templ, _result));
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool matchTemplate_CCORR_NORMED(InputArray _image, InputArray _templ, OutputArray _result)
|
|
{
|
|
matchTemplate(_image, _templ, _result, CV_TM_CCORR);
|
|
|
|
int type = _image.type(), cn = CV_MAT_CN(type);
|
|
|
|
ocl::Kernel k("matchTemplate_CCORR_NORMED", ocl::imgproc::match_template_oclsrc,
|
|
format("-D CCORR_NORMED -D T=%s -D cn=%d", ocl::typeToStr(type), cn));
|
|
if (k.empty())
|
|
return false;
|
|
|
|
UMat image = _image.getUMat(), templ = _templ.getUMat();
|
|
_result.create(image.rows - templ.rows + 1, image.cols - templ.cols + 1, CV_32FC1);
|
|
UMat result = _result.getUMat();
|
|
|
|
UMat image_sums, image_sqsums;
|
|
integral(image.reshape(1), image_sums, image_sqsums, CV_32F, CV_32F);
|
|
|
|
UMat templ_sqsum;
|
|
if (!sumTemplate(templ, templ_sqsum))
|
|
return false;
|
|
|
|
k.args(ocl::KernelArg::ReadOnlyNoSize(image_sqsums), ocl::KernelArg::ReadWrite(result),
|
|
templ.rows, templ.cols, ocl::KernelArg::PtrReadOnly(templ_sqsum));
|
|
|
|
size_t globalsize[2] = { (size_t)result.cols, (size_t)result.rows };
|
|
return k.run(2, globalsize, NULL, false);
|
|
}
|
|
|
|
////////////////////////////////////// SQDIFF //////////////////////////////////////////////////////////////
|
|
|
|
static bool matchTemplateNaive_SQDIFF(InputArray _image, InputArray _templ, OutputArray _result)
|
|
{
|
|
int type = _image.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
|
|
int wdepth = CV_32F, wtype = CV_MAKE_TYPE(wdepth, cn);
|
|
|
|
char cvt[40];
|
|
ocl::Kernel k("matchTemplate_Naive_SQDIFF", ocl::imgproc::match_template_oclsrc,
|
|
format("-D SQDIFF -D T=%s -D T1=%s -D WT=%s -D convertToWT=%s -D cn=%d", ocl::typeToStr(type), ocl::typeToStr(depth),
|
|
ocl::typeToStr(wtype), ocl::convertTypeStr(depth, wdepth, cn, cvt), cn));
|
|
if (k.empty())
|
|
return false;
|
|
|
|
UMat image = _image.getUMat(), templ = _templ.getUMat();
|
|
_result.create(image.rows - templ.rows + 1, image.cols - templ.cols + 1, CV_32F);
|
|
UMat result = _result.getUMat();
|
|
|
|
k.args(ocl::KernelArg::ReadOnlyNoSize(image), ocl::KernelArg::ReadOnly(templ),
|
|
ocl::KernelArg::WriteOnly(result));
|
|
|
|
size_t globalsize[2] = { (size_t)result.cols, (size_t)result.rows };
|
|
return k.run(2, globalsize, NULL, false);
|
|
}
|
|
|
|
static bool matchTemplate_SQDIFF(InputArray _image, InputArray _templ, OutputArray _result)
|
|
{
|
|
if (useNaive(_templ.size()))
|
|
return( matchTemplateNaive_SQDIFF(_image, _templ, _result));
|
|
else
|
|
{
|
|
matchTemplate(_image, _templ, _result, CV_TM_CCORR);
|
|
|
|
int type = _image.type(), cn = CV_MAT_CN(type);
|
|
|
|
ocl::Kernel k("matchTemplate_Prepared_SQDIFF", ocl::imgproc::match_template_oclsrc,
|
|
format("-D SQDIFF_PREPARED -D T=%s -D cn=%d", ocl::typeToStr(type), cn));
|
|
if (k.empty())
|
|
return false;
|
|
|
|
UMat image = _image.getUMat(), templ = _templ.getUMat();
|
|
_result.create(image.rows - templ.rows + 1, image.cols - templ.cols + 1, CV_32F);
|
|
UMat result = _result.getUMat();
|
|
|
|
UMat image_sums, image_sqsums;
|
|
integral(image.reshape(1), image_sums, image_sqsums, CV_32F, CV_32F);
|
|
|
|
UMat templ_sqsum;
|
|
if (!sumTemplate(_templ, templ_sqsum))
|
|
return false;
|
|
|
|
k.args(ocl::KernelArg::ReadOnlyNoSize(image_sqsums), ocl::KernelArg::ReadWrite(result),
|
|
templ.rows, templ.cols, ocl::KernelArg::PtrReadOnly(templ_sqsum));
|
|
|
|
size_t globalsize[2] = { (size_t)result.cols, (size_t)result.rows };
|
|
|
|
return k.run(2, globalsize, NULL, false);
|
|
}
|
|
}
|
|
|
|
static bool matchTemplate_SQDIFF_NORMED(InputArray _image, InputArray _templ, OutputArray _result)
|
|
{
|
|
matchTemplate(_image, _templ, _result, CV_TM_CCORR);
|
|
|
|
int type = _image.type(), cn = CV_MAT_CN(type);
|
|
|
|
ocl::Kernel k("matchTemplate_SQDIFF_NORMED", ocl::imgproc::match_template_oclsrc,
|
|
format("-D SQDIFF_NORMED -D T=%s -D cn=%d", ocl::typeToStr(type), cn));
|
|
if (k.empty())
|
|
return false;
|
|
|
|
UMat image = _image.getUMat(), templ = _templ.getUMat();
|
|
_result.create(image.rows - templ.rows + 1, image.cols - templ.cols + 1, CV_32F);
|
|
UMat result = _result.getUMat();
|
|
|
|
UMat image_sums, image_sqsums;
|
|
integral(image.reshape(1), image_sums, image_sqsums, CV_32F, CV_32F);
|
|
|
|
UMat templ_sqsum;
|
|
if (!sumTemplate(_templ, templ_sqsum))
|
|
return false;
|
|
|
|
k.args(ocl::KernelArg::ReadOnlyNoSize(image_sqsums), ocl::KernelArg::ReadWrite(result),
|
|
templ.rows, templ.cols, ocl::KernelArg::PtrReadOnly(templ_sqsum));
|
|
|
|
size_t globalsize[2] = { (size_t)result.cols, (size_t)result.rows };
|
|
|
|
return k.run(2, globalsize, NULL, false);
|
|
}
|
|
|
|
///////////////////////////////////// CCOEFF /////////////////////////////////////////////////////////////////
|
|
|
|
static bool matchTemplate_CCOEFF(InputArray _image, InputArray _templ, OutputArray _result)
|
|
{
|
|
matchTemplate(_image, _templ, _result, CV_TM_CCORR);
|
|
|
|
UMat image_sums, temp;
|
|
integral(_image, image_sums, CV_32F);
|
|
|
|
int type = image_sums.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
|
|
|
|
ocl::Kernel k("matchTemplate_Prepared_CCOEFF", ocl::imgproc::match_template_oclsrc,
|
|
format("-D CCOEFF -D T=%s -D T1=%s -D cn=%d", ocl::typeToStr(type), ocl::typeToStr(depth), cn));
|
|
if (k.empty())
|
|
return false;
|
|
|
|
UMat templ = _templ.getUMat();
|
|
UMat result = _result.getUMat();
|
|
|
|
if (cn==1)
|
|
{
|
|
Scalar templMean = mean(templ);
|
|
float templ_sum = (float)templMean[0];
|
|
|
|
k.args(ocl::KernelArg::ReadOnlyNoSize(image_sums), ocl::KernelArg::ReadWrite(result), templ.rows, templ.cols, templ_sum);
|
|
}
|
|
else
|
|
{
|
|
Vec4f templ_sum = Vec4f::all(0);
|
|
templ_sum = (Vec4f)mean(templ);
|
|
|
|
k.args(ocl::KernelArg::ReadOnlyNoSize(image_sums), ocl::KernelArg::ReadWrite(result), templ.rows, templ.cols, templ_sum); }
|
|
|
|
size_t globalsize[2] = { (size_t)result.cols, (size_t)result.rows };
|
|
return k.run(2, globalsize, NULL, false);
|
|
}
|
|
|
|
static bool matchTemplate_CCOEFF_NORMED(InputArray _image, InputArray _templ, OutputArray _result)
|
|
{
|
|
matchTemplate(_image, _templ, _result, CV_TM_CCORR);
|
|
|
|
UMat temp, image_sums, image_sqsums;
|
|
integral(_image, image_sums, image_sqsums, CV_32F, CV_32F);
|
|
|
|
int type = image_sums.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
|
|
CV_Assert(cn >= 1 && cn <= 4);
|
|
|
|
ocl::Kernel k("matchTemplate_CCOEFF_NORMED", ocl::imgproc::match_template_oclsrc,
|
|
format("-D CCOEFF_NORMED -D T=%s -D T1=%s -D cn=%d", ocl::typeToStr(type), ocl::typeToStr(depth), cn));
|
|
if (k.empty())
|
|
return false;
|
|
|
|
UMat templ = _templ.getUMat();
|
|
Size size = _image.size(), tsize = templ.size();
|
|
_result.create(size.height - templ.rows + 1, size.width - templ.cols + 1, CV_32F);
|
|
UMat result = _result.getUMat();
|
|
|
|
float scale = 1.f / tsize.area();
|
|
|
|
if (cn == 1)
|
|
{
|
|
float templ_sum = (float)sum(templ)[0];
|
|
|
|
multiply(templ, templ, temp, 1, CV_32F);
|
|
float templ_sqsum = (float)sum(temp)[0];
|
|
|
|
templ_sqsum -= scale * templ_sum * templ_sum;
|
|
templ_sum *= scale;
|
|
|
|
if (templ_sqsum < DBL_EPSILON)
|
|
{
|
|
result = Scalar::all(1);
|
|
return true;
|
|
}
|
|
|
|
k.args(ocl::KernelArg::ReadOnlyNoSize(image_sums), ocl::KernelArg::ReadOnlyNoSize(image_sqsums),
|
|
ocl::KernelArg::ReadWrite(result), templ.rows, templ.cols, scale, templ_sum, templ_sqsum);
|
|
}
|
|
else
|
|
{
|
|
Vec4f templ_sum = Vec4f::all(0), templ_sqsum = Vec4f::all(0);
|
|
templ_sum = sum(templ);
|
|
|
|
multiply(templ, templ, temp, 1, CV_32F);
|
|
templ_sqsum = sum(temp);
|
|
|
|
float templ_sqsum_sum = 0;
|
|
for (int i = 0; i < cn; i ++)
|
|
templ_sqsum_sum += templ_sqsum[i] - scale * templ_sum[i] * templ_sum[i];
|
|
|
|
templ_sum *= scale;
|
|
|
|
if (templ_sqsum_sum < DBL_EPSILON)
|
|
{
|
|
result = Scalar::all(1);
|
|
return true;
|
|
}
|
|
|
|
k.args(ocl::KernelArg::ReadOnlyNoSize(image_sums), ocl::KernelArg::ReadOnlyNoSize(image_sqsums),
|
|
ocl::KernelArg::ReadWrite(result), templ.rows, templ.cols, scale,
|
|
templ_sum, templ_sqsum_sum); }
|
|
|
|
size_t globalsize[2] = { (size_t)result.cols, (size_t)result.rows };
|
|
return k.run(2, globalsize, NULL, false);
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
static bool ocl_matchTemplate( InputArray _img, InputArray _templ, OutputArray _result, int method)
|
|
{
|
|
int cn = _img.channels();
|
|
|
|
if (cn > 4)
|
|
return false;
|
|
|
|
typedef bool (*Caller)(InputArray _img, InputArray _templ, OutputArray _result);
|
|
|
|
static const Caller callers[] =
|
|
{
|
|
matchTemplate_SQDIFF, matchTemplate_SQDIFF_NORMED, matchTemplate_CCORR,
|
|
matchTemplate_CCORR_NORMED, matchTemplate_CCOEFF, matchTemplate_CCOEFF_NORMED
|
|
};
|
|
const Caller caller = callers[method];
|
|
|
|
return caller(_img, _templ, _result);
|
|
}
|
|
|
|
#endif
|
|
|
|
#include "opencv2/core/hal/hal.hpp"
|
|
|
|
void crossCorr( const Mat& img, const Mat& _templ, Mat& corr,
|
|
Point anchor, double delta, int borderType )
|
|
{
|
|
const double blockScale = 4.5;
|
|
const int minBlockSize = 256;
|
|
std::vector<uchar> buf;
|
|
|
|
Mat templ = _templ;
|
|
int depth = img.depth(), cn = img.channels();
|
|
int tdepth = templ.depth(), tcn = templ.channels();
|
|
int cdepth = corr.depth(), ccn = corr.channels();
|
|
|
|
CV_Assert( img.dims <= 2 && templ.dims <= 2 && corr.dims <= 2 );
|
|
|
|
if( depth != tdepth && tdepth != std::max(CV_32F, depth) )
|
|
{
|
|
_templ.convertTo(templ, std::max(CV_32F, depth));
|
|
tdepth = templ.depth();
|
|
}
|
|
|
|
CV_Assert( depth == tdepth || tdepth == CV_32F);
|
|
CV_Assert( corr.rows <= img.rows + templ.rows - 1 &&
|
|
corr.cols <= img.cols + templ.cols - 1 );
|
|
|
|
CV_Assert( ccn == 1 || delta == 0 );
|
|
|
|
int maxDepth = depth > CV_8S ? CV_64F : std::max(std::max(CV_32F, tdepth), cdepth);
|
|
Size blocksize, dftsize;
|
|
|
|
blocksize.width = cvRound(templ.cols*blockScale);
|
|
blocksize.width = std::max( blocksize.width, minBlockSize - templ.cols + 1 );
|
|
blocksize.width = std::min( blocksize.width, corr.cols );
|
|
blocksize.height = cvRound(templ.rows*blockScale);
|
|
blocksize.height = std::max( blocksize.height, minBlockSize - templ.rows + 1 );
|
|
blocksize.height = std::min( blocksize.height, corr.rows );
|
|
|
|
dftsize.width = std::max(getOptimalDFTSize(blocksize.width + templ.cols - 1), 2);
|
|
dftsize.height = getOptimalDFTSize(blocksize.height + templ.rows - 1);
|
|
if( dftsize.width <= 0 || dftsize.height <= 0 )
|
|
CV_Error( CV_StsOutOfRange, "the input arrays are too big" );
|
|
|
|
// recompute block size
|
|
blocksize.width = dftsize.width - templ.cols + 1;
|
|
blocksize.width = MIN( blocksize.width, corr.cols );
|
|
blocksize.height = dftsize.height - templ.rows + 1;
|
|
blocksize.height = MIN( blocksize.height, corr.rows );
|
|
|
|
Mat dftTempl( dftsize.height*tcn, dftsize.width, maxDepth );
|
|
Mat dftImg( dftsize, maxDepth );
|
|
|
|
int i, k, bufSize = 0;
|
|
if( tcn > 1 && tdepth != maxDepth )
|
|
bufSize = templ.cols*templ.rows*CV_ELEM_SIZE(tdepth);
|
|
|
|
if( cn > 1 && depth != maxDepth )
|
|
bufSize = std::max( bufSize, (blocksize.width + templ.cols - 1)*
|
|
(blocksize.height + templ.rows - 1)*CV_ELEM_SIZE(depth));
|
|
|
|
if( (ccn > 1 || cn > 1) && cdepth != maxDepth )
|
|
bufSize = std::max( bufSize, blocksize.width*blocksize.height*CV_ELEM_SIZE(cdepth));
|
|
|
|
buf.resize(bufSize);
|
|
|
|
Ptr<hal::DFT2D> c = hal::DFT2D::create(dftsize.width, dftsize.height, dftTempl.depth(), 1, 1, CV_HAL_DFT_IS_INPLACE, templ.rows);
|
|
|
|
// compute DFT of each template plane
|
|
for( k = 0; k < tcn; k++ )
|
|
{
|
|
int yofs = k*dftsize.height;
|
|
Mat src = templ;
|
|
Mat dst(dftTempl, Rect(0, yofs, dftsize.width, dftsize.height));
|
|
Mat dst1(dftTempl, Rect(0, yofs, templ.cols, templ.rows));
|
|
|
|
if( tcn > 1 )
|
|
{
|
|
src = tdepth == maxDepth ? dst1 : Mat(templ.size(), tdepth, &buf[0]);
|
|
int pairs[] = {k, 0};
|
|
mixChannels(&templ, 1, &src, 1, pairs, 1);
|
|
}
|
|
|
|
if( dst1.data != src.data )
|
|
src.convertTo(dst1, dst1.depth());
|
|
|
|
if( dst.cols > templ.cols )
|
|
{
|
|
Mat part(dst, Range(0, templ.rows), Range(templ.cols, dst.cols));
|
|
part = Scalar::all(0);
|
|
}
|
|
c->apply(dst.data, (int)dst.step, dst.data, (int)dst.step);
|
|
}
|
|
|
|
int tileCountX = (corr.cols + blocksize.width - 1)/blocksize.width;
|
|
int tileCountY = (corr.rows + blocksize.height - 1)/blocksize.height;
|
|
int tileCount = tileCountX * tileCountY;
|
|
|
|
Size wholeSize = img.size();
|
|
Point roiofs(0,0);
|
|
Mat img0 = img;
|
|
|
|
if( !(borderType & BORDER_ISOLATED) )
|
|
{
|
|
img.locateROI(wholeSize, roiofs);
|
|
img0.adjustROI(roiofs.y, wholeSize.height-img.rows-roiofs.y,
|
|
roiofs.x, wholeSize.width-img.cols-roiofs.x);
|
|
}
|
|
borderType |= BORDER_ISOLATED;
|
|
|
|
Ptr<hal::DFT2D> cF, cR;
|
|
int f = CV_HAL_DFT_IS_INPLACE;
|
|
int f_inv = f | CV_HAL_DFT_INVERSE | CV_HAL_DFT_SCALE;
|
|
cF = hal::DFT2D::create(dftsize.width, dftsize.height, maxDepth, 1, 1, f, blocksize.height + templ.rows - 1);
|
|
cR = hal::DFT2D::create(dftsize.width, dftsize.height, maxDepth, 1, 1, f_inv, blocksize.height);
|
|
|
|
// calculate correlation by blocks
|
|
for( i = 0; i < tileCount; i++ )
|
|
{
|
|
int x = (i%tileCountX)*blocksize.width;
|
|
int y = (i/tileCountX)*blocksize.height;
|
|
|
|
Size bsz(std::min(blocksize.width, corr.cols - x),
|
|
std::min(blocksize.height, corr.rows - y));
|
|
Size dsz(bsz.width + templ.cols - 1, bsz.height + templ.rows - 1);
|
|
int x0 = x - anchor.x + roiofs.x, y0 = y - anchor.y + roiofs.y;
|
|
int x1 = std::max(0, x0), y1 = std::max(0, y0);
|
|
int x2 = std::min(img0.cols, x0 + dsz.width);
|
|
int y2 = std::min(img0.rows, y0 + dsz.height);
|
|
Mat src0(img0, Range(y1, y2), Range(x1, x2));
|
|
Mat dst(dftImg, Rect(0, 0, dsz.width, dsz.height));
|
|
Mat dst1(dftImg, Rect(x1-x0, y1-y0, x2-x1, y2-y1));
|
|
Mat cdst(corr, Rect(x, y, bsz.width, bsz.height));
|
|
|
|
for( k = 0; k < cn; k++ )
|
|
{
|
|
Mat src = src0;
|
|
dftImg = Scalar::all(0);
|
|
|
|
if( cn > 1 )
|
|
{
|
|
src = depth == maxDepth ? dst1 : Mat(y2-y1, x2-x1, depth, &buf[0]);
|
|
int pairs[] = {k, 0};
|
|
mixChannels(&src0, 1, &src, 1, pairs, 1);
|
|
}
|
|
|
|
if( dst1.data != src.data )
|
|
src.convertTo(dst1, dst1.depth());
|
|
|
|
if( x2 - x1 < dsz.width || y2 - y1 < dsz.height )
|
|
copyMakeBorder(dst1, dst, y1-y0, dst.rows-dst1.rows-(y1-y0),
|
|
x1-x0, dst.cols-dst1.cols-(x1-x0), borderType);
|
|
|
|
if (bsz.height == blocksize.height)
|
|
cF->apply(dftImg.data, (int)dftImg.step, dftImg.data, (int)dftImg.step);
|
|
else
|
|
dft( dftImg, dftImg, 0, dsz.height );
|
|
|
|
Mat dftTempl1(dftTempl, Rect(0, tcn > 1 ? k*dftsize.height : 0,
|
|
dftsize.width, dftsize.height));
|
|
mulSpectrums(dftImg, dftTempl1, dftImg, 0, true);
|
|
|
|
if (bsz.height == blocksize.height)
|
|
cR->apply(dftImg.data, (int)dftImg.step, dftImg.data, (int)dftImg.step);
|
|
else
|
|
dft( dftImg, dftImg, DFT_INVERSE + DFT_SCALE, bsz.height );
|
|
|
|
src = dftImg(Rect(0, 0, bsz.width, bsz.height));
|
|
|
|
if( ccn > 1 )
|
|
{
|
|
if( cdepth != maxDepth )
|
|
{
|
|
Mat plane(bsz, cdepth, &buf[0]);
|
|
src.convertTo(plane, cdepth, 1, delta);
|
|
src = plane;
|
|
}
|
|
int pairs[] = {0, k};
|
|
mixChannels(&src, 1, &cdst, 1, pairs, 1);
|
|
}
|
|
else
|
|
{
|
|
if( k == 0 )
|
|
src.convertTo(cdst, cdepth, 1, delta);
|
|
else
|
|
{
|
|
if( maxDepth != cdepth )
|
|
{
|
|
Mat plane(bsz, cdepth, &buf[0]);
|
|
src.convertTo(plane, cdepth);
|
|
src = plane;
|
|
}
|
|
add(src, cdst, cdst);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void matchTemplateMask( InputArray _img, InputArray _templ, OutputArray _result, int method, InputArray _mask )
|
|
{
|
|
CV_Assert(_mask.depth() == CV_8U || _mask.depth() == CV_32F);
|
|
CV_Assert(_mask.channels() == _templ.channels() || _mask.channels() == 1);
|
|
CV_Assert(_templ.size() == _mask.size());
|
|
CV_Assert(_img.size().height >= _templ.size().height &&
|
|
_img.size().width >= _templ.size().width);
|
|
|
|
Mat img = _img.getMat(), templ = _templ.getMat(), mask = _mask.getMat();
|
|
|
|
if (img.depth() == CV_8U)
|
|
{
|
|
img.convertTo(img, CV_32F);
|
|
}
|
|
if (templ.depth() == CV_8U)
|
|
{
|
|
templ.convertTo(templ, CV_32F);
|
|
}
|
|
if (mask.depth() == CV_8U)
|
|
{
|
|
// To keep compatibility to other masks in OpenCV: CV_8U masks are binary masks
|
|
threshold(mask, mask, 0/*threshold*/, 1.0/*maxVal*/, THRESH_BINARY);
|
|
mask.convertTo(mask, CV_32F);
|
|
}
|
|
|
|
Size corrSize(img.cols - templ.cols + 1, img.rows - templ.rows + 1);
|
|
_result.create(corrSize, CV_32F);
|
|
Mat result = _result.getMat();
|
|
|
|
// If mask has only one channel, we repeat it for every image/template channel
|
|
if (templ.type() != mask.type())
|
|
{
|
|
// Assertions above ensured, that depth is the same and only number of channel differ
|
|
std::vector<Mat> maskChannels(templ.channels(), mask);
|
|
merge(maskChannels.data(), templ.channels(), mask);
|
|
}
|
|
|
|
if (method == CV_TM_SQDIFF || method == CV_TM_SQDIFF_NORMED)
|
|
{
|
|
Mat temp_result(corrSize, CV_32F);
|
|
Mat img2 = img.mul(img);
|
|
Mat mask2 = mask.mul(mask);
|
|
// If the mul() is ever unnested, declare MatExpr, *not* Mat, to be more efficient.
|
|
// NORM_L2SQR calculates sum of squares
|
|
double templ2_mask2_sum = norm(templ.mul(mask), NORM_L2SQR);
|
|
crossCorr(img2, mask2, temp_result, Point(0,0), 0, 0);
|
|
crossCorr(img, templ.mul(mask2), result, Point(0,0), 0, 0);
|
|
// result and temp_result should not be switched, because temp_result is potentially needed
|
|
// for normalization.
|
|
result = -2 * result + temp_result + templ2_mask2_sum;
|
|
|
|
if (method == CV_TM_SQDIFF_NORMED)
|
|
{
|
|
sqrt(templ2_mask2_sum * temp_result, temp_result);
|
|
result /= temp_result;
|
|
}
|
|
}
|
|
else if (method == CV_TM_CCORR || method == CV_TM_CCORR_NORMED)
|
|
{
|
|
// If the mul() is ever unnested, declare MatExpr, *not* Mat, to be more efficient.
|
|
Mat templ_mask2 = templ.mul(mask.mul(mask));
|
|
crossCorr(img, templ_mask2, result, Point(0,0), 0, 0);
|
|
|
|
if (method == CV_TM_CCORR_NORMED)
|
|
{
|
|
Mat temp_result(corrSize, CV_32F);
|
|
Mat img2 = img.mul(img);
|
|
Mat mask2 = mask.mul(mask);
|
|
// NORM_L2SQR calculates sum of squares
|
|
double templ2_mask2_sum = norm(templ.mul(mask), NORM_L2SQR);
|
|
crossCorr( img2, mask2, temp_result, Point(0,0), 0, 0 );
|
|
sqrt(templ2_mask2_sum * temp_result, temp_result);
|
|
result /= temp_result;
|
|
}
|
|
}
|
|
else if (method == CV_TM_CCOEFF || method == CV_TM_CCOEFF_NORMED)
|
|
{
|
|
// Do mul() inline or declare MatExpr where possible, *not* Mat, to be more efficient.
|
|
|
|
Scalar mask_sum = sum(mask);
|
|
// T' * M where T' = M * (T - 1/sum(M)*sum(M*T))
|
|
Mat templx_mask = mask.mul(mask.mul(templ - sum(mask.mul(templ)).div(mask_sum)));
|
|
Mat img_mask_corr(corrSize, img.type()); // Needs separate channels
|
|
|
|
// CCorr(I, T'*M)
|
|
crossCorr(img, templx_mask, result, Point(0, 0), 0, 0);
|
|
// CCorr(I, M)
|
|
crossCorr(img, mask, img_mask_corr, Point(0, 0), 0, 0);
|
|
|
|
// CCorr(I', T') = CCorr(I, T'*M) - sum(T'*M)/sum(M)*CCorr(I, M)
|
|
// It does not matter what to use Mat/MatExpr, it should be evaluated to perform assign subtraction
|
|
Mat temp_res = img_mask_corr.mul(sum(templx_mask).div(mask_sum));
|
|
if (img.channels() == 1)
|
|
{
|
|
result -= temp_res;
|
|
}
|
|
else
|
|
{
|
|
// Sum channels of expression
|
|
temp_res = temp_res.reshape(1, result.rows * result.cols);
|
|
// channels are now columns
|
|
reduce(temp_res, temp_res, 1, REDUCE_SUM);
|
|
// transform back, but now with only one channel
|
|
result -= temp_res.reshape(1, result.rows);
|
|
}
|
|
if (method == CV_TM_CCOEFF_NORMED)
|
|
{
|
|
// norm(T')
|
|
double norm_templx = norm(mask.mul(templ - sum(mask.mul(templ)).div(mask_sum)),
|
|
NORM_L2);
|
|
// norm(I') = sqrt{ CCorr(I^2, M^2) - 2*CCorr(I, M^2)/sum(M)*CCorr(I, M)
|
|
// + sum(M^2)*CCorr(I, M)^2/sum(M)^2 }
|
|
// = sqrt{ CCorr(I^2, M^2)
|
|
// + CCorr(I, M)/sum(M)*{ sum(M^2) / sum(M) * CCorr(I,M)
|
|
// - 2 * CCorr(I, M^2) } }
|
|
Mat norm_imgx(corrSize, CV_32F);
|
|
Mat img2 = img.mul(img);
|
|
Mat mask2 = mask.mul(mask);
|
|
Scalar mask2_sum = sum(mask2);
|
|
Mat img_mask2_corr(corrSize, img.type());
|
|
crossCorr(img2, mask2, norm_imgx, Point(0,0), 0, 0);
|
|
crossCorr(img, mask2, img_mask2_corr, Point(0,0), 0, 0);
|
|
temp_res = img_mask_corr.mul(Scalar(1.0, 1.0, 1.0, 1.0).div(mask_sum))
|
|
.mul(img_mask_corr.mul(mask2_sum.div(mask_sum)) - 2 * img_mask2_corr);
|
|
if (img.channels() == 1)
|
|
{
|
|
norm_imgx += temp_res;
|
|
}
|
|
else
|
|
{
|
|
// Sum channels of expression
|
|
temp_res = temp_res.reshape(1, result.rows*result.cols);
|
|
// channels are now columns
|
|
// reduce sums columns (= channels)
|
|
reduce(temp_res, temp_res, 1, REDUCE_SUM);
|
|
// transform back, but now with only one channel
|
|
norm_imgx += temp_res.reshape(1, result.rows);
|
|
}
|
|
sqrt(norm_imgx, norm_imgx);
|
|
result /= norm_imgx * norm_templx;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void common_matchTemplate( Mat& img, Mat& templ, Mat& result, int method, int cn )
|
|
{
|
|
if( method == CV_TM_CCORR )
|
|
return;
|
|
|
|
int numType = method == CV_TM_CCORR || method == CV_TM_CCORR_NORMED ? 0 :
|
|
method == CV_TM_CCOEFF || method == CV_TM_CCOEFF_NORMED ? 1 : 2;
|
|
bool isNormed = method == CV_TM_CCORR_NORMED ||
|
|
method == CV_TM_SQDIFF_NORMED ||
|
|
method == CV_TM_CCOEFF_NORMED;
|
|
|
|
double invArea = 1./((double)templ.rows * templ.cols);
|
|
|
|
Mat sum, sqsum;
|
|
Scalar templMean, templSdv;
|
|
double *q0 = 0, *q1 = 0, *q2 = 0, *q3 = 0;
|
|
double templNorm = 0, templSum2 = 0;
|
|
|
|
if( method == CV_TM_CCOEFF )
|
|
{
|
|
integral(img, sum, CV_64F);
|
|
templMean = mean(templ);
|
|
}
|
|
else
|
|
{
|
|
integral(img, sum, sqsum, CV_64F);
|
|
meanStdDev( templ, templMean, templSdv );
|
|
|
|
templNorm = templSdv[0]*templSdv[0] + templSdv[1]*templSdv[1] + templSdv[2]*templSdv[2] + templSdv[3]*templSdv[3];
|
|
|
|
if( templNorm < DBL_EPSILON && method == CV_TM_CCOEFF_NORMED )
|
|
{
|
|
result = Scalar::all(1);
|
|
return;
|
|
}
|
|
|
|
templSum2 = templNorm + templMean[0]*templMean[0] + templMean[1]*templMean[1] + templMean[2]*templMean[2] + templMean[3]*templMean[3];
|
|
|
|
if( numType != 1 )
|
|
{
|
|
templMean = Scalar::all(0);
|
|
templNorm = templSum2;
|
|
}
|
|
|
|
templSum2 /= invArea;
|
|
templNorm = std::sqrt(templNorm);
|
|
templNorm /= std::sqrt(invArea); // care of accuracy here
|
|
|
|
CV_Assert(sqsum.data != NULL);
|
|
q0 = (double*)sqsum.data;
|
|
q1 = q0 + templ.cols*cn;
|
|
q2 = (double*)(sqsum.data + templ.rows*sqsum.step);
|
|
q3 = q2 + templ.cols*cn;
|
|
}
|
|
|
|
CV_Assert(sum.data != NULL);
|
|
double* p0 = (double*)sum.data;
|
|
double* p1 = p0 + templ.cols*cn;
|
|
double* p2 = (double*)(sum.data + templ.rows*sum.step);
|
|
double* p3 = p2 + templ.cols*cn;
|
|
|
|
int sumstep = sum.data ? (int)(sum.step / sizeof(double)) : 0;
|
|
int sqstep = sqsum.data ? (int)(sqsum.step / sizeof(double)) : 0;
|
|
|
|
int i, j, k;
|
|
|
|
for( i = 0; i < result.rows; i++ )
|
|
{
|
|
float* rrow = result.ptr<float>(i);
|
|
int idx = i * sumstep;
|
|
int idx2 = i * sqstep;
|
|
|
|
for( j = 0; j < result.cols; j++, idx += cn, idx2 += cn )
|
|
{
|
|
double num = rrow[j], t;
|
|
double wndMean2 = 0, wndSum2 = 0;
|
|
|
|
if( numType == 1 )
|
|
{
|
|
for( k = 0; k < cn; k++ )
|
|
{
|
|
t = p0[idx+k] - p1[idx+k] - p2[idx+k] + p3[idx+k];
|
|
wndMean2 += t*t;
|
|
num -= t*templMean[k];
|
|
}
|
|
|
|
wndMean2 *= invArea;
|
|
}
|
|
|
|
if( isNormed || numType == 2 )
|
|
{
|
|
for( k = 0; k < cn; k++ )
|
|
{
|
|
t = q0[idx2+k] - q1[idx2+k] - q2[idx2+k] + q3[idx2+k];
|
|
wndSum2 += t;
|
|
}
|
|
|
|
if( numType == 2 )
|
|
{
|
|
num = wndSum2 - 2*num + templSum2;
|
|
num = MAX(num, 0.);
|
|
}
|
|
}
|
|
|
|
if( isNormed )
|
|
{
|
|
double diff2 = MAX(wndSum2 - wndMean2, 0);
|
|
if (diff2 <= std::min(0.5, 10 * FLT_EPSILON * wndSum2))
|
|
t = 0; // avoid rounding errors
|
|
else
|
|
t = std::sqrt(diff2)*templNorm;
|
|
|
|
if( fabs(num) < t )
|
|
num /= t;
|
|
else if( fabs(num) < t*1.125 )
|
|
num = num > 0 ? 1 : -1;
|
|
else
|
|
num = method != CV_TM_SQDIFF_NORMED ? 0 : 1;
|
|
}
|
|
|
|
rrow[j] = (float)num;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
#if defined HAVE_IPP
|
|
namespace cv
|
|
{
|
|
typedef IppStatus (CV_STDCALL * ippimatchTemplate)(const void*, int, IppiSize, const void*, int, IppiSize, Ipp32f* , int , IppEnum , Ipp8u*);
|
|
|
|
static bool ipp_crossCorr(const Mat& src, const Mat& tpl, Mat& dst, bool normed)
|
|
{
|
|
CV_INSTRUMENT_REGION_IPP();
|
|
|
|
IppStatus status;
|
|
|
|
IppiSize srcRoiSize = {src.cols,src.rows};
|
|
IppiSize tplRoiSize = {tpl.cols,tpl.rows};
|
|
|
|
IppAutoBuffer<Ipp8u> buffer;
|
|
int bufSize=0;
|
|
|
|
int depth = src.depth();
|
|
|
|
ippimatchTemplate ippiCrossCorrNorm =
|
|
depth==CV_8U ? (ippimatchTemplate)ippiCrossCorrNorm_8u32f_C1R:
|
|
depth==CV_32F? (ippimatchTemplate)ippiCrossCorrNorm_32f_C1R: 0;
|
|
|
|
if (ippiCrossCorrNorm==0)
|
|
return false;
|
|
|
|
IppEnum funCfg = (IppEnum)(ippAlgAuto | ippiROIValid);
|
|
if(normed)
|
|
funCfg |= ippiNorm;
|
|
else
|
|
funCfg |= ippiNormNone;
|
|
|
|
status = ippiCrossCorrNormGetBufferSize(srcRoiSize, tplRoiSize, funCfg, &bufSize);
|
|
if ( status < 0 )
|
|
return false;
|
|
|
|
buffer.allocate( bufSize );
|
|
|
|
status = CV_INSTRUMENT_FUN_IPP(ippiCrossCorrNorm, src.ptr(), (int)src.step, srcRoiSize, tpl.ptr(), (int)tpl.step, tplRoiSize, dst.ptr<Ipp32f>(), (int)dst.step, funCfg, buffer);
|
|
return status >= 0;
|
|
}
|
|
|
|
static bool ipp_sqrDistance(const Mat& src, const Mat& tpl, Mat& dst)
|
|
{
|
|
CV_INSTRUMENT_REGION_IPP();
|
|
|
|
IppStatus status;
|
|
|
|
IppiSize srcRoiSize = {src.cols,src.rows};
|
|
IppiSize tplRoiSize = {tpl.cols,tpl.rows};
|
|
|
|
IppAutoBuffer<Ipp8u> buffer;
|
|
int bufSize=0;
|
|
|
|
int depth = src.depth();
|
|
|
|
ippimatchTemplate ippiSqrDistanceNorm =
|
|
depth==CV_8U ? (ippimatchTemplate)ippiSqrDistanceNorm_8u32f_C1R:
|
|
depth==CV_32F? (ippimatchTemplate)ippiSqrDistanceNorm_32f_C1R: 0;
|
|
|
|
if (ippiSqrDistanceNorm==0)
|
|
return false;
|
|
|
|
IppEnum funCfg = (IppEnum)(ippAlgAuto | ippiROIValid | ippiNormNone);
|
|
status = ippiSqrDistanceNormGetBufferSize(srcRoiSize, tplRoiSize, funCfg, &bufSize);
|
|
if ( status < 0 )
|
|
return false;
|
|
|
|
buffer.allocate( bufSize );
|
|
|
|
status = CV_INSTRUMENT_FUN_IPP(ippiSqrDistanceNorm, src.ptr(), (int)src.step, srcRoiSize, tpl.ptr(), (int)tpl.step, tplRoiSize, dst.ptr<Ipp32f>(), (int)dst.step, funCfg, buffer);
|
|
return status >= 0;
|
|
}
|
|
|
|
static bool ipp_matchTemplate( Mat& img, Mat& templ, Mat& result, int method)
|
|
{
|
|
CV_INSTRUMENT_REGION_IPP();
|
|
|
|
if(img.channels() != 1)
|
|
return false;
|
|
|
|
// These functions are not efficient if template size is comparable with image size
|
|
if(templ.size().area()*4 > img.size().area())
|
|
return false;
|
|
|
|
if(method == CV_TM_SQDIFF)
|
|
{
|
|
if(ipp_sqrDistance(img, templ, result))
|
|
return true;
|
|
}
|
|
else if(method == CV_TM_SQDIFF_NORMED)
|
|
{
|
|
if(ipp_crossCorr(img, templ, result, false))
|
|
{
|
|
common_matchTemplate(img, templ, result, CV_TM_SQDIFF_NORMED, 1);
|
|
return true;
|
|
}
|
|
}
|
|
else if(method == CV_TM_CCORR)
|
|
{
|
|
if(ipp_crossCorr(img, templ, result, false))
|
|
return true;
|
|
}
|
|
else if(method == CV_TM_CCORR_NORMED)
|
|
{
|
|
if(ipp_crossCorr(img, templ, result, true))
|
|
return true;
|
|
}
|
|
else if(method == CV_TM_CCOEFF || method == CV_TM_CCOEFF_NORMED)
|
|
{
|
|
if(ipp_crossCorr(img, templ, result, false))
|
|
{
|
|
common_matchTemplate(img, templ, result, method, 1);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
void cv::matchTemplate( InputArray _img, InputArray _templ, OutputArray _result, int method, InputArray _mask )
|
|
{
|
|
CV_INSTRUMENT_REGION();
|
|
|
|
int type = _img.type(), depth = CV_MAT_DEPTH(type), cn = CV_MAT_CN(type);
|
|
CV_Assert( CV_TM_SQDIFF <= method && method <= CV_TM_CCOEFF_NORMED );
|
|
CV_Assert( (depth == CV_8U || depth == CV_32F) && type == _templ.type() && _img.dims() <= 2 );
|
|
|
|
if (!_mask.empty())
|
|
{
|
|
cv::matchTemplateMask(_img, _templ, _result, method, _mask);
|
|
return;
|
|
}
|
|
|
|
bool needswap = _img.size().height < _templ.size().height || _img.size().width < _templ.size().width;
|
|
if (needswap)
|
|
{
|
|
CV_Assert(_img.size().height <= _templ.size().height && _img.size().width <= _templ.size().width);
|
|
}
|
|
|
|
CV_OCL_RUN(_img.dims() <= 2 && _result.isUMat(),
|
|
(!needswap ? ocl_matchTemplate(_img, _templ, _result, method) : ocl_matchTemplate(_templ, _img, _result, method)))
|
|
|
|
Mat img = _img.getMat(), templ = _templ.getMat();
|
|
if (needswap)
|
|
std::swap(img, templ);
|
|
|
|
Size corrSize(img.cols - templ.cols + 1, img.rows - templ.rows + 1);
|
|
_result.create(corrSize, CV_32F);
|
|
Mat result = _result.getMat();
|
|
|
|
CV_IPP_RUN_FAST(ipp_matchTemplate(img, templ, result, method))
|
|
|
|
crossCorr( img, templ, result, Point(0,0), 0, 0);
|
|
|
|
common_matchTemplate(img, templ, result, method, cn);
|
|
}
|
|
|
|
CV_IMPL void
|
|
cvMatchTemplate( const CvArr* _img, const CvArr* _templ, CvArr* _result, int method )
|
|
{
|
|
cv::Mat img = cv::cvarrToMat(_img), templ = cv::cvarrToMat(_templ),
|
|
result = cv::cvarrToMat(_result);
|
|
CV_Assert( result.size() == cv::Size(std::abs(img.cols - templ.cols) + 1,
|
|
std::abs(img.rows - templ.rows) + 1) &&
|
|
result.type() == CV_32F );
|
|
matchTemplate(img, templ, result, method);
|
|
}
|
|
|
|
/* End of file. */
|