opencv/modules/gpu/src/stereocsbp.cpp

315 lines
13 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other GpuMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
using namespace cv;
using namespace cv::gpu;
using namespace std;
#if !defined (HAVE_CUDA)
void cv::gpu::StereoConstantSpaceBP::estimateRecommendedParams(int, int, int&, int&, int&, int&) { throw_nogpu(); }
cv::gpu::StereoConstantSpaceBP::StereoConstantSpaceBP(int, int, int, int, int) { throw_nogpu(); }
cv::gpu::StereoConstantSpaceBP::StereoConstantSpaceBP(int, int, int, int, float, float, float, float, int, int) { throw_nogpu(); }
void cv::gpu::StereoConstantSpaceBP::operator()(const GpuMat&, const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); }
#else /* !defined (HAVE_CUDA) */
BEGIN_OPENCV_DEVICE_NAMESPACE
namespace stereocsbp
{
void load_constants(int ndisp, float max_data_term, float data_weight, float max_disc_term, float disc_single_jump, int min_disp_th,
const DevMem2Db& left, const DevMem2Db& right, const DevMem2Db& temp);
template<class T>
void init_data_cost(int rows, int cols, T* disp_selected_pyr, T* data_cost_selected, size_t msg_step,
int h, int w, int level, int nr_plane, int ndisp, int channels, bool use_local_init_data_cost, cudaStream_t stream);
template<class T>
void compute_data_cost(const T* disp_selected_pyr, T* data_cost, size_t msg_step1, size_t msg_step2,
int rows, int cols, int h, int w, int h2, int level, int nr_plane, int channels, cudaStream_t stream);
template<class T>
void init_message(T* u_new, T* d_new, T* l_new, T* r_new,
const T* u_cur, const T* d_cur, const T* l_cur, const T* r_cur,
T* selected_disp_pyr_new, const T* selected_disp_pyr_cur,
T* data_cost_selected, const T* data_cost, size_t msg_step1, size_t msg_step2,
int h, int w, int nr_plane, int h2, int w2, int nr_plane2, cudaStream_t stream);
template<class T>
void calc_all_iterations(T* u, T* d, T* l, T* r, const T* data_cost_selected,
const T* selected_disp_pyr_cur, size_t msg_step, int h, int w, int nr_plane, int iters, cudaStream_t stream);
template<class T>
void compute_disp(const T* u, const T* d, const T* l, const T* r, const T* data_cost_selected, const T* disp_selected, size_t msg_step,
const DevMem2D_<short>& disp, int nr_plane, cudaStream_t stream);
}
END_OPENCV_DEVICE_NAMESPACE
using namespace OPENCV_DEVICE_NAMESPACE_ stereocsbp;
namespace
{
const float DEFAULT_MAX_DATA_TERM = 30.0f;
const float DEFAULT_DATA_WEIGHT = 1.0f;
const float DEFAULT_MAX_DISC_TERM = 160.0f;
const float DEFAULT_DISC_SINGLE_JUMP = 10.0f;
}
void cv::gpu::StereoConstantSpaceBP::estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels, int& nr_plane)
{
ndisp = (int) ((float) width / 3.14f);
if ((ndisp & 1) != 0)
ndisp++;
int mm = ::max(width, height);
iters = mm / 100 + ((mm > 1200)? - 4 : 4);
levels = (int)::log(static_cast<double>(mm)) * 2 / 3;
if (levels == 0) levels++;
nr_plane = (int) ((float) ndisp / std::pow(2.0, levels + 1));
}
cv::gpu::StereoConstantSpaceBP::StereoConstantSpaceBP(int ndisp_, int iters_, int levels_, int nr_plane_,
int msg_type_)
: ndisp(ndisp_), iters(iters_), levels(levels_), nr_plane(nr_plane_),
max_data_term(DEFAULT_MAX_DATA_TERM), data_weight(DEFAULT_DATA_WEIGHT),
max_disc_term(DEFAULT_MAX_DISC_TERM), disc_single_jump(DEFAULT_DISC_SINGLE_JUMP), min_disp_th(0),
msg_type(msg_type_), use_local_init_data_cost(true)
{
CV_Assert(msg_type_ == CV_32F || msg_type_ == CV_16S);
}
cv::gpu::StereoConstantSpaceBP::StereoConstantSpaceBP(int ndisp_, int iters_, int levels_, int nr_plane_,
float max_data_term_, float data_weight_, float max_disc_term_, float disc_single_jump_,
int min_disp_th_, int msg_type_)
: ndisp(ndisp_), iters(iters_), levels(levels_), nr_plane(nr_plane_),
max_data_term(max_data_term_), data_weight(data_weight_),
max_disc_term(max_disc_term_), disc_single_jump(disc_single_jump_), min_disp_th(min_disp_th_),
msg_type(msg_type_), use_local_init_data_cost(true)
{
CV_Assert(msg_type_ == CV_32F || msg_type_ == CV_16S);
}
template<class T>
static void csbp_operator(StereoConstantSpaceBP& rthis, GpuMat u[2], GpuMat d[2], GpuMat l[2], GpuMat r[2],
GpuMat disp_selected_pyr[2], GpuMat& data_cost, GpuMat& data_cost_selected,
GpuMat& temp, GpuMat& out, const GpuMat& left, const GpuMat& right, GpuMat& disp, Stream& stream)
{
CV_DbgAssert(0 < rthis.ndisp && 0 < rthis.iters && 0 < rthis.levels && 0 < rthis.nr_plane
&& left.rows == right.rows && left.cols == right.cols && left.type() == right.type());
CV_Assert(rthis.levels <= 8 && (left.type() == CV_8UC1 || left.type() == CV_8UC3 || left.type() == CV_8UC4));
const Scalar zero = Scalar::all(0);
cudaStream_t cudaStream = StreamAccessor::getStream(stream);
////////////////////////////////////////////////////////////////////////////////////////////
// Init
int rows = left.rows;
int cols = left.cols;
rthis.levels = min(rthis.levels, int(log((double)rthis.ndisp) / log(2.0)));
int levels = rthis.levels;
AutoBuffer<int> buf(levels * 4);
int* cols_pyr = buf;
int* rows_pyr = cols_pyr + levels;
int* nr_plane_pyr = rows_pyr + levels;
int* step_pyr = nr_plane_pyr + levels;
cols_pyr[0] = cols;
rows_pyr[0] = rows;
nr_plane_pyr[0] = rthis.nr_plane;
const int n = 64;
step_pyr[0] = static_cast<int>(alignSize(cols * sizeof(T), n) / sizeof(T));
for (int i = 1; i < levels; i++)
{
cols_pyr[i] = (cols_pyr[i-1] + 1) / 2;
rows_pyr[i] = (rows_pyr[i-1] + 1) / 2;
nr_plane_pyr[i] = nr_plane_pyr[i-1] * 2;
step_pyr[i] = static_cast<int>(alignSize(cols_pyr[i] * sizeof(T), n) / sizeof(T));
}
Size msg_size(step_pyr[0], rows * nr_plane_pyr[0]);
Size data_cost_size(step_pyr[0], rows * nr_plane_pyr[0] * 2);
u[0].create(msg_size, DataType<T>::type);
d[0].create(msg_size, DataType<T>::type);
l[0].create(msg_size, DataType<T>::type);
r[0].create(msg_size, DataType<T>::type);
u[1].create(msg_size, DataType<T>::type);
d[1].create(msg_size, DataType<T>::type);
l[1].create(msg_size, DataType<T>::type);
r[1].create(msg_size, DataType<T>::type);
disp_selected_pyr[0].create(msg_size, DataType<T>::type);
disp_selected_pyr[1].create(msg_size, DataType<T>::type);
data_cost.create(data_cost_size, DataType<T>::type);
data_cost_selected.create(msg_size, DataType<T>::type);
step_pyr[0] = static_cast<int>(data_cost.step / sizeof(T));
Size temp_size = data_cost_size;
if (data_cost_size.width * data_cost_size.height < step_pyr[levels - 1] * rows_pyr[levels - 1] * rthis.ndisp)
temp_size = Size(step_pyr[levels - 1], rows_pyr[levels - 1] * rthis.ndisp);
temp.create(temp_size, DataType<T>::type);
////////////////////////////////////////////////////////////////////////////
// Compute
load_constants(rthis.ndisp, rthis.max_data_term, rthis.data_weight, rthis.max_disc_term, rthis.disc_single_jump, rthis.min_disp_th, left, right, temp);
if (stream)
{
stream.enqueueMemSet(l[0], zero);
stream.enqueueMemSet(d[0], zero);
stream.enqueueMemSet(r[0], zero);
stream.enqueueMemSet(u[0], zero);
stream.enqueueMemSet(l[1], zero);
stream.enqueueMemSet(d[1], zero);
stream.enqueueMemSet(r[1], zero);
stream.enqueueMemSet(u[1], zero);
stream.enqueueMemSet(data_cost, zero);
stream.enqueueMemSet(data_cost_selected, zero);
}
else
{
l[0].setTo(zero);
d[0].setTo(zero);
r[0].setTo(zero);
u[0].setTo(zero);
l[1].setTo(zero);
d[1].setTo(zero);
r[1].setTo(zero);
u[1].setTo(zero);
data_cost.setTo(zero);
data_cost_selected.setTo(zero);
}
int cur_idx = 0;
for (int i = levels - 1; i >= 0; i--)
{
if (i == levels - 1)
{
init_data_cost(left.rows, left.cols, disp_selected_pyr[cur_idx].ptr<T>(), data_cost_selected.ptr<T>(),
step_pyr[i], rows_pyr[i], cols_pyr[i], i, nr_plane_pyr[i], rthis.ndisp, left.channels(), rthis.use_local_init_data_cost, cudaStream);
}
else
{
compute_data_cost(disp_selected_pyr[cur_idx].ptr<T>(), data_cost.ptr<T>(), step_pyr[i], step_pyr[i+1],
left.rows, left.cols, rows_pyr[i], cols_pyr[i], rows_pyr[i+1], i, nr_plane_pyr[i+1], left.channels(), cudaStream);
int new_idx = (cur_idx + 1) & 1;
init_message(u[new_idx].ptr<T>(), d[new_idx].ptr<T>(), l[new_idx].ptr<T>(), r[new_idx].ptr<T>(),
u[cur_idx].ptr<T>(), d[cur_idx].ptr<T>(), l[cur_idx].ptr<T>(), r[cur_idx].ptr<T>(),
disp_selected_pyr[new_idx].ptr<T>(), disp_selected_pyr[cur_idx].ptr<T>(),
data_cost_selected.ptr<T>(), data_cost.ptr<T>(), step_pyr[i], step_pyr[i+1], rows_pyr[i],
cols_pyr[i], nr_plane_pyr[i], rows_pyr[i+1], cols_pyr[i+1], nr_plane_pyr[i+1], cudaStream);
cur_idx = new_idx;
}
calc_all_iterations(u[cur_idx].ptr<T>(), d[cur_idx].ptr<T>(), l[cur_idx].ptr<T>(), r[cur_idx].ptr<T>(),
data_cost_selected.ptr<T>(), disp_selected_pyr[cur_idx].ptr<T>(), step_pyr[i],
rows_pyr[i], cols_pyr[i], nr_plane_pyr[i], rthis.iters, cudaStream);
}
if (disp.empty())
disp.create(rows, cols, CV_16S);
out = ((disp.type() == CV_16S) ? disp : (out.create(rows, cols, CV_16S), out));
if (stream)
stream.enqueueMemSet(out, zero);
else
out.setTo(zero);
compute_disp(u[cur_idx].ptr<T>(), d[cur_idx].ptr<T>(), l[cur_idx].ptr<T>(), r[cur_idx].ptr<T>(),
data_cost_selected.ptr<T>(), disp_selected_pyr[cur_idx].ptr<T>(), step_pyr[0], out, nr_plane_pyr[0], cudaStream);
if (disp.type() != CV_16S)
{
if (stream)
stream.enqueueConvert(out, disp, disp.type());
else
out.convertTo(disp, disp.type());
}
}
typedef void (*csbp_operator_t)(StereoConstantSpaceBP& rthis, GpuMat u[2], GpuMat d[2], GpuMat l[2], GpuMat r[2],
GpuMat disp_selected_pyr[2], GpuMat& data_cost, GpuMat& data_cost_selected,
GpuMat& temp, GpuMat& out, const GpuMat& left, const GpuMat& right, GpuMat& disp, Stream& stream);
const static csbp_operator_t operators[] = {0, 0, 0, csbp_operator<short>, 0, csbp_operator<float>, 0, 0};
void cv::gpu::StereoConstantSpaceBP::operator()(const GpuMat& left, const GpuMat& right, GpuMat& disp, Stream& stream)
{
CV_Assert(msg_type == CV_32F || msg_type == CV_16S);
operators[msg_type](*this, u, d, l, r, disp_selected_pyr, data_cost, data_cost_selected, temp, out, left, right, disp, stream);
}
#endif /* !defined (HAVE_CUDA) */