mirror of
https://github.com/opencv/opencv.git
synced 2024-11-28 21:20:18 +08:00
215 lines
7.4 KiB
C++
215 lines
7.4 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
// This file originates from the openFABMAP project:
|
|
// [http://code.google.com/p/openfabmap/]
|
|
//
|
|
// For published work which uses all or part of OpenFABMAP, please cite:
|
|
// [http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6224843]
|
|
//
|
|
// Original Algorithm by Mark Cummins and Paul Newman:
|
|
// [http://ijr.sagepub.com/content/27/6/647.short]
|
|
// [http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5613942]
|
|
// [http://ijr.sagepub.com/content/30/9/1100.abstract]
|
|
//
|
|
// License Agreement
|
|
//
|
|
// Copyright (C) 2012 Arren Glover [aj.glover@qut.edu.au] and
|
|
// Will Maddern [w.maddern@qut.edu.au], all rights reserved.
|
|
//
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
|
|
#include "opencv2/opencv.hpp"
|
|
#include "opencv2/nonfree/nonfree.hpp"
|
|
|
|
using namespace cv;
|
|
using namespace std;
|
|
|
|
int main(int argc, char * argv[]) {
|
|
|
|
/*
|
|
|
|
Note: the vocabulary and training data is specifically made for this openCV
|
|
example. It is not reccomended for use with other datasets as it is
|
|
intentionally small to reduce baggage in the openCV project.
|
|
|
|
A new vocabulary can be generated using the supplied BOWMSCtrainer (or other
|
|
clustering method such as K-means
|
|
|
|
New training data can be generated by extracting bag-of-words using the
|
|
openCV BOWImgDescriptorExtractor class.
|
|
|
|
vocabulary, chow-liu tree, training data, and test data can all be saved and
|
|
loaded using openCV's FileStorage class and it is not necessary to generate
|
|
data each time as done in this example
|
|
|
|
*/
|
|
|
|
cout << "This sample program demonstrates the FAB-MAP image matching "
|
|
"algorithm" << endl << endl;
|
|
|
|
string dataDir;
|
|
if (argc == 1) {
|
|
dataDir = "fabmap/";
|
|
} else if (argc == 2) {
|
|
dataDir = string(argv[1]);
|
|
dataDir += "/";
|
|
} else {
|
|
//incorrect arguments
|
|
cout << "Usage: fabmap_sample <sample data directory>" <<
|
|
endl;
|
|
return -1;
|
|
}
|
|
|
|
FileStorage fs;
|
|
|
|
//load/generate vocab
|
|
cout << "Loading Vocabulary: " <<
|
|
dataDir + string("vocab_small.yml") << endl << endl;
|
|
fs.open(dataDir + string("vocab_small.yml"), FileStorage::READ);
|
|
Mat vocab;
|
|
fs["Vocabulary"] >> vocab;
|
|
if (vocab.empty()) {
|
|
cerr << "Vocabulary not found" << endl;
|
|
return -1;
|
|
}
|
|
fs.release();
|
|
|
|
//load/generate training data
|
|
|
|
cout << "Loading Training Data: " <<
|
|
dataDir + string("train_data_small.yml") << endl << endl;
|
|
fs.open(dataDir + string("train_data_small.yml"), FileStorage::READ);
|
|
Mat trainData;
|
|
fs["BOWImageDescs"] >> trainData;
|
|
if (trainData.empty()) {
|
|
cerr << "Training Data not found" << endl;
|
|
return -1;
|
|
}
|
|
fs.release();
|
|
|
|
//create Chow-liu tree
|
|
cout << "Making Chow-Liu Tree from training data" << endl <<
|
|
endl;
|
|
of2::ChowLiuTree treeBuilder;
|
|
treeBuilder.add(trainData);
|
|
Mat tree = treeBuilder.make();
|
|
|
|
//generate test data
|
|
cout << "Extracting Test Data from images" << endl <<
|
|
endl;
|
|
Ptr<FeatureDetector> detector =
|
|
new DynamicAdaptedFeatureDetector(
|
|
AdjusterAdapter::create("STAR"), 130, 150, 5);
|
|
Ptr<DescriptorExtractor> extractor =
|
|
new SurfDescriptorExtractor(1000, 4, 2, false, true);
|
|
Ptr<DescriptorMatcher> matcher =
|
|
DescriptorMatcher::create("FlannBased");
|
|
|
|
BOWImgDescriptorExtractor bide(extractor, matcher);
|
|
bide.setVocabulary(vocab);
|
|
|
|
vector<string> imageNames;
|
|
imageNames.push_back(string("stlucia_test_small0000.jpeg"));
|
|
imageNames.push_back(string("stlucia_test_small0001.jpeg"));
|
|
imageNames.push_back(string("stlucia_test_small0002.jpeg"));
|
|
imageNames.push_back(string("stlucia_test_small0003.jpeg"));
|
|
imageNames.push_back(string("stlucia_test_small0004.jpeg"));
|
|
imageNames.push_back(string("stlucia_test_small0005.jpeg"));
|
|
imageNames.push_back(string("stlucia_test_small0006.jpeg"));
|
|
imageNames.push_back(string("stlucia_test_small0007.jpeg"));
|
|
imageNames.push_back(string("stlucia_test_small0008.jpeg"));
|
|
imageNames.push_back(string("stlucia_test_small0009.jpeg"));
|
|
|
|
Mat testData;
|
|
Mat frame;
|
|
Mat bow;
|
|
vector<KeyPoint> kpts;
|
|
|
|
for(size_t i = 0; i < imageNames.size(); i++) {
|
|
cout << dataDir + imageNames[i] << endl;
|
|
frame = imread(dataDir + imageNames[i]);
|
|
if(frame.empty()) {
|
|
cerr << "Test images not found" << endl;
|
|
return -1;
|
|
}
|
|
|
|
detector->detect(frame, kpts);
|
|
|
|
bide.compute(frame, kpts, bow);
|
|
|
|
testData.push_back(bow);
|
|
|
|
drawKeypoints(frame, kpts, frame);
|
|
imshow(imageNames[i], frame);
|
|
waitKey(10);
|
|
}
|
|
|
|
//run fabmap
|
|
cout << "Running FAB-MAP algorithm" << endl <<
|
|
endl;
|
|
Ptr<of2::FabMap> fabmap;
|
|
|
|
fabmap = new of2::FabMap2(tree, 0.39, 0, of2::FabMap::SAMPLED |
|
|
of2::FabMap::CHOW_LIU);
|
|
fabmap->addTraining(trainData);
|
|
|
|
vector<of2::IMatch> matches;
|
|
fabmap->compare(testData, matches, true);
|
|
|
|
//display output
|
|
Mat result_small = Mat::zeros(10, 10, CV_8UC1);
|
|
vector<of2::IMatch>::iterator l;
|
|
|
|
for(l = matches.begin(); l != matches.end(); l++) {
|
|
if(l->imgIdx < 0) {
|
|
result_small.at<char>(l->queryIdx, l->queryIdx) =
|
|
(char)(l->match*255);
|
|
|
|
} else {
|
|
result_small.at<char>(l->queryIdx, l->imgIdx) =
|
|
(char)(l->match*255);
|
|
}
|
|
}
|
|
|
|
Mat result_large(100, 100, CV_8UC1);
|
|
resize(result_small, result_large, Size(500, 500), 0, 0, CV_INTER_NN);
|
|
|
|
cout << endl << "Press any key to exit" << endl;
|
|
imshow("Confusion Matrix", result_large);
|
|
waitKey();
|
|
|
|
return 0;
|
|
}
|