mirror of
https://github.com/opencv/opencv.git
synced 2024-12-11 22:59:16 +08:00
4a297a2443
- removed tr1 usage (dropped in C++17) - moved includes of vector/map/iostream/limits into ts.hpp - require opencv_test + anonymous namespace (added compile check) - fixed norm() usage (must be from cvtest::norm for checks) and other conflict functions - added missing license headers
407 lines
12 KiB
C++
407 lines
12 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
#ifdef HAVE_CUDA
|
|
|
|
namespace opencv_test { namespace {
|
|
|
|
//////////////////////////////////////////////////////
|
|
// BroxOpticalFlow
|
|
|
|
//#define BROX_DUMP
|
|
|
|
struct BroxOpticalFlow : testing::TestWithParam<cv::cuda::DeviceInfo>
|
|
{
|
|
cv::cuda::DeviceInfo devInfo;
|
|
|
|
virtual void SetUp()
|
|
{
|
|
devInfo = GetParam();
|
|
|
|
cv::cuda::setDevice(devInfo.deviceID());
|
|
}
|
|
};
|
|
|
|
CUDA_TEST_P(BroxOpticalFlow, Regression)
|
|
{
|
|
cv::Mat frame0 = readImageType("opticalflow/frame0.png", CV_32FC1);
|
|
ASSERT_FALSE(frame0.empty());
|
|
|
|
cv::Mat frame1 = readImageType("opticalflow/frame1.png", CV_32FC1);
|
|
ASSERT_FALSE(frame1.empty());
|
|
|
|
cv::Ptr<cv::cuda::BroxOpticalFlow> brox =
|
|
cv::cuda::BroxOpticalFlow::create(0.197 /*alpha*/, 50.0 /*gamma*/, 0.8 /*scale_factor*/,
|
|
10 /*inner_iterations*/, 77 /*outer_iterations*/, 10 /*solver_iterations*/);
|
|
|
|
cv::cuda::GpuMat flow;
|
|
brox->calc(loadMat(frame0), loadMat(frame1), flow);
|
|
|
|
cv::cuda::GpuMat flows[2];
|
|
cv::cuda::split(flow, flows);
|
|
|
|
cv::cuda::GpuMat u = flows[0];
|
|
cv::cuda::GpuMat v = flows[1];
|
|
|
|
std::string fname(cvtest::TS::ptr()->get_data_path());
|
|
if (devInfo.majorVersion() >= 2)
|
|
fname += "opticalflow/brox_optical_flow_cc20.bin";
|
|
else
|
|
fname += "opticalflow/brox_optical_flow.bin";
|
|
|
|
#ifndef BROX_DUMP
|
|
std::ifstream f(fname.c_str(), std::ios_base::binary);
|
|
|
|
int rows, cols;
|
|
|
|
f.read((char*) &rows, sizeof(rows));
|
|
f.read((char*) &cols, sizeof(cols));
|
|
|
|
cv::Mat u_gold(rows, cols, CV_32FC1);
|
|
|
|
for (int i = 0; i < u_gold.rows; ++i)
|
|
f.read(u_gold.ptr<char>(i), u_gold.cols * sizeof(float));
|
|
|
|
cv::Mat v_gold(rows, cols, CV_32FC1);
|
|
|
|
for (int i = 0; i < v_gold.rows; ++i)
|
|
f.read(v_gold.ptr<char>(i), v_gold.cols * sizeof(float));
|
|
|
|
EXPECT_MAT_SIMILAR(u_gold, u, 1e-3);
|
|
EXPECT_MAT_SIMILAR(v_gold, v, 1e-3);
|
|
#else
|
|
std::ofstream f(fname.c_str(), std::ios_base::binary);
|
|
|
|
f.write((char*) &u.rows, sizeof(u.rows));
|
|
f.write((char*) &u.cols, sizeof(u.cols));
|
|
|
|
cv::Mat h_u(u);
|
|
cv::Mat h_v(v);
|
|
|
|
for (int i = 0; i < u.rows; ++i)
|
|
f.write(h_u.ptr<char>(i), u.cols * sizeof(float));
|
|
|
|
for (int i = 0; i < v.rows; ++i)
|
|
f.write(h_v.ptr<char>(i), v.cols * sizeof(float));
|
|
#endif
|
|
}
|
|
|
|
CUDA_TEST_P(BroxOpticalFlow, OpticalFlowNan)
|
|
{
|
|
cv::Mat frame0 = readImageType("opticalflow/frame0.png", CV_32FC1);
|
|
ASSERT_FALSE(frame0.empty());
|
|
|
|
cv::Mat frame1 = readImageType("opticalflow/frame1.png", CV_32FC1);
|
|
ASSERT_FALSE(frame1.empty());
|
|
|
|
cv::Mat r_frame0, r_frame1;
|
|
cv::resize(frame0, r_frame0, cv::Size(1380,1000));
|
|
cv::resize(frame1, r_frame1, cv::Size(1380,1000));
|
|
|
|
cv::Ptr<cv::cuda::BroxOpticalFlow> brox =
|
|
cv::cuda::BroxOpticalFlow::create(0.197 /*alpha*/, 50.0 /*gamma*/, 0.8 /*scale_factor*/,
|
|
10 /*inner_iterations*/, 77 /*outer_iterations*/, 10 /*solver_iterations*/);
|
|
|
|
cv::cuda::GpuMat flow;
|
|
brox->calc(loadMat(frame0), loadMat(frame1), flow);
|
|
|
|
cv::cuda::GpuMat flows[2];
|
|
cv::cuda::split(flow, flows);
|
|
|
|
cv::cuda::GpuMat u = flows[0];
|
|
cv::cuda::GpuMat v = flows[1];
|
|
|
|
cv::Mat h_u, h_v;
|
|
u.download(h_u);
|
|
v.download(h_v);
|
|
|
|
EXPECT_TRUE(cv::checkRange(h_u));
|
|
EXPECT_TRUE(cv::checkRange(h_v));
|
|
};
|
|
|
|
INSTANTIATE_TEST_CASE_P(CUDA_OptFlow, BroxOpticalFlow, ALL_DEVICES);
|
|
|
|
//////////////////////////////////////////////////////
|
|
// PyrLKOpticalFlow
|
|
|
|
namespace
|
|
{
|
|
IMPLEMENT_PARAM_CLASS(Chan, int)
|
|
IMPLEMENT_PARAM_CLASS(DataType, int)
|
|
}
|
|
|
|
PARAM_TEST_CASE(PyrLKOpticalFlow, cv::cuda::DeviceInfo, Chan, DataType)
|
|
{
|
|
cv::cuda::DeviceInfo devInfo;
|
|
int channels;
|
|
int dataType;
|
|
virtual void SetUp()
|
|
{
|
|
devInfo = GET_PARAM(0);
|
|
channels = GET_PARAM(1);
|
|
dataType = GET_PARAM(2);
|
|
cv::cuda::setDevice(devInfo.deviceID());
|
|
}
|
|
};
|
|
|
|
CUDA_TEST_P(PyrLKOpticalFlow, Sparse)
|
|
{
|
|
cv::Mat frame0 = readImage("opticalflow/frame0.png", channels == 1 ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR);
|
|
ASSERT_FALSE(frame0.empty());
|
|
|
|
cv::Mat frame1 = readImage("opticalflow/frame1.png", channels == 1 ? cv::IMREAD_GRAYSCALE : cv::IMREAD_COLOR);
|
|
ASSERT_FALSE(frame1.empty());
|
|
|
|
cv::Mat gray_frame;
|
|
if (channels == 1)
|
|
gray_frame = frame0;
|
|
else
|
|
cv::cvtColor(frame0, gray_frame, cv::COLOR_BGR2GRAY);
|
|
|
|
std::vector<cv::Point2f> pts;
|
|
cv::goodFeaturesToTrack(gray_frame, pts, 1000, 0.01, 0.0);
|
|
|
|
cv::cuda::GpuMat d_pts;
|
|
cv::Mat pts_mat(1, (int) pts.size(), CV_32FC2, (void*) &pts[0]);
|
|
d_pts.upload(pts_mat);
|
|
|
|
cv::Ptr<cv::cuda::SparsePyrLKOpticalFlow> pyrLK =
|
|
cv::cuda::SparsePyrLKOpticalFlow::create();
|
|
|
|
std::vector<cv::Point2f> nextPts_gold;
|
|
std::vector<unsigned char> status_gold;
|
|
cv::calcOpticalFlowPyrLK(frame0, frame1, pts, nextPts_gold, status_gold, cv::noArray());
|
|
|
|
|
|
cv::cuda::GpuMat d_nextPts;
|
|
cv::cuda::GpuMat d_status;
|
|
cv::Mat converted0, converted1;
|
|
if(channels == 4)
|
|
{
|
|
cv::cvtColor(frame0, frame0, cv::COLOR_BGR2BGRA);
|
|
cv::cvtColor(frame1, frame1, cv::COLOR_BGR2BGRA);
|
|
}
|
|
frame0.convertTo(converted0, dataType);
|
|
frame1.convertTo(converted1, dataType);
|
|
|
|
pyrLK->calc(loadMat(converted0), loadMat(converted1), d_pts, d_nextPts, d_status);
|
|
|
|
std::vector<cv::Point2f> nextPts(d_nextPts.cols);
|
|
cv::Mat nextPts_mat(1, d_nextPts.cols, CV_32FC2, (void*)&nextPts[0]);
|
|
d_nextPts.download(nextPts_mat);
|
|
|
|
std::vector<unsigned char> status(d_status.cols);
|
|
cv::Mat status_mat(1, d_status.cols, CV_8UC1, (void*)&status[0]);
|
|
d_status.download(status_mat);
|
|
|
|
ASSERT_EQ(nextPts_gold.size(), nextPts.size());
|
|
ASSERT_EQ(status_gold.size(), status.size());
|
|
|
|
size_t mistmatch = 0;
|
|
for (size_t i = 0; i < nextPts.size(); ++i)
|
|
{
|
|
cv::Point2i a = nextPts[i];
|
|
cv::Point2i b = nextPts_gold[i];
|
|
|
|
if (status[i] != status_gold[i])
|
|
{
|
|
++mistmatch;
|
|
continue;
|
|
}
|
|
|
|
if (status[i])
|
|
{
|
|
bool eq = std::abs(a.x - b.x) <= 1 && std::abs(a.y - b.y) <= 1;
|
|
|
|
if (!eq)
|
|
++mistmatch;
|
|
}
|
|
}
|
|
|
|
double bad_ratio = static_cast<double>(mistmatch) / nextPts.size();
|
|
|
|
ASSERT_LE(bad_ratio, 0.01);
|
|
|
|
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(CUDA_OptFlow, PyrLKOpticalFlow, testing::Combine(
|
|
ALL_DEVICES,
|
|
testing::Values(Chan(1), Chan(3), Chan(4)),
|
|
testing::Values(DataType(CV_8U), DataType(CV_16U), DataType(CV_32S), DataType(CV_32F))));
|
|
|
|
|
|
|
|
//////////////////////////////////////////////////////
|
|
// FarnebackOpticalFlow
|
|
|
|
namespace
|
|
{
|
|
IMPLEMENT_PARAM_CLASS(PyrScale, double)
|
|
IMPLEMENT_PARAM_CLASS(PolyN, int)
|
|
CV_FLAGS(FarnebackOptFlowFlags, 0, OPTFLOW_FARNEBACK_GAUSSIAN)
|
|
IMPLEMENT_PARAM_CLASS(UseInitFlow, bool)
|
|
}
|
|
|
|
PARAM_TEST_CASE(FarnebackOpticalFlow, cv::cuda::DeviceInfo, PyrScale, PolyN, FarnebackOptFlowFlags, UseInitFlow)
|
|
{
|
|
cv::cuda::DeviceInfo devInfo;
|
|
double pyrScale;
|
|
int polyN;
|
|
int flags;
|
|
bool useInitFlow;
|
|
|
|
virtual void SetUp()
|
|
{
|
|
devInfo = GET_PARAM(0);
|
|
pyrScale = GET_PARAM(1);
|
|
polyN = GET_PARAM(2);
|
|
flags = GET_PARAM(3);
|
|
useInitFlow = GET_PARAM(4);
|
|
|
|
cv::cuda::setDevice(devInfo.deviceID());
|
|
}
|
|
};
|
|
|
|
CUDA_TEST_P(FarnebackOpticalFlow, Accuracy)
|
|
{
|
|
cv::Mat frame0 = readImage("opticalflow/rubberwhale1.png", cv::IMREAD_GRAYSCALE);
|
|
ASSERT_FALSE(frame0.empty());
|
|
|
|
cv::Mat frame1 = readImage("opticalflow/rubberwhale2.png", cv::IMREAD_GRAYSCALE);
|
|
ASSERT_FALSE(frame1.empty());
|
|
|
|
double polySigma = polyN <= 5 ? 1.1 : 1.5;
|
|
|
|
cv::Ptr<cv::cuda::FarnebackOpticalFlow> farn =
|
|
cv::cuda::FarnebackOpticalFlow::create();
|
|
farn->setPyrScale(pyrScale);
|
|
farn->setPolyN(polyN);
|
|
farn->setPolySigma(polySigma);
|
|
farn->setFlags(flags);
|
|
|
|
cv::cuda::GpuMat d_flow;
|
|
farn->calc(loadMat(frame0), loadMat(frame1), d_flow);
|
|
|
|
cv::Mat flow;
|
|
if (useInitFlow)
|
|
{
|
|
d_flow.download(flow);
|
|
|
|
farn->setFlags(farn->getFlags() | cv::OPTFLOW_USE_INITIAL_FLOW);
|
|
farn->calc(loadMat(frame0), loadMat(frame1), d_flow);
|
|
}
|
|
|
|
cv::calcOpticalFlowFarneback(
|
|
frame0, frame1, flow, farn->getPyrScale(), farn->getNumLevels(), farn->getWinSize(),
|
|
farn->getNumIters(), farn->getPolyN(), farn->getPolySigma(), farn->getFlags());
|
|
|
|
EXPECT_MAT_SIMILAR(flow, d_flow, 0.1);
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(CUDA_OptFlow, FarnebackOpticalFlow, testing::Combine(
|
|
ALL_DEVICES,
|
|
testing::Values(PyrScale(0.3), PyrScale(0.5), PyrScale(0.8)),
|
|
testing::Values(PolyN(5), PolyN(7)),
|
|
testing::Values(FarnebackOptFlowFlags(0), FarnebackOptFlowFlags(cv::OPTFLOW_FARNEBACK_GAUSSIAN)),
|
|
testing::Values(UseInitFlow(false), UseInitFlow(true))));
|
|
|
|
//////////////////////////////////////////////////////
|
|
// OpticalFlowDual_TVL1
|
|
|
|
namespace
|
|
{
|
|
IMPLEMENT_PARAM_CLASS(Gamma, double)
|
|
}
|
|
|
|
PARAM_TEST_CASE(OpticalFlowDual_TVL1, cv::cuda::DeviceInfo, Gamma)
|
|
{
|
|
cv::cuda::DeviceInfo devInfo;
|
|
double gamma;
|
|
|
|
virtual void SetUp()
|
|
{
|
|
devInfo = GET_PARAM(0);
|
|
gamma = GET_PARAM(1);
|
|
|
|
cv::cuda::setDevice(devInfo.deviceID());
|
|
}
|
|
};
|
|
|
|
CUDA_TEST_P(OpticalFlowDual_TVL1, Accuracy)
|
|
{
|
|
cv::Mat frame0 = readImage("opticalflow/rubberwhale1.png", cv::IMREAD_GRAYSCALE);
|
|
ASSERT_FALSE(frame0.empty());
|
|
|
|
cv::Mat frame1 = readImage("opticalflow/rubberwhale2.png", cv::IMREAD_GRAYSCALE);
|
|
ASSERT_FALSE(frame1.empty());
|
|
|
|
cv::Ptr<cv::cuda::OpticalFlowDual_TVL1> d_alg =
|
|
cv::cuda::OpticalFlowDual_TVL1::create();
|
|
d_alg->setNumIterations(10);
|
|
d_alg->setGamma(gamma);
|
|
|
|
cv::cuda::GpuMat d_flow;
|
|
d_alg->calc(loadMat(frame0), loadMat(frame1), d_flow);
|
|
|
|
cv::Ptr<cv::DualTVL1OpticalFlow> alg = cv::createOptFlow_DualTVL1();
|
|
alg->setMedianFiltering(1);
|
|
alg->setInnerIterations(1);
|
|
alg->setOuterIterations(d_alg->getNumIterations());
|
|
alg->setGamma(gamma);
|
|
|
|
cv::Mat flow;
|
|
alg->calc(frame0, frame1, flow);
|
|
|
|
EXPECT_MAT_SIMILAR(flow, d_flow, 4e-3);
|
|
}
|
|
|
|
INSTANTIATE_TEST_CASE_P(CUDA_OptFlow, OpticalFlowDual_TVL1, testing::Combine(
|
|
ALL_DEVICES,
|
|
testing::Values(Gamma(0.0), Gamma(1.0))));
|
|
|
|
|
|
}} // namespace
|
|
#endif // HAVE_CUDA
|