mirror of
https://github.com/opencv/opencv.git
synced 2024-12-12 23:49:36 +08:00
dae188d14f
* GMG * FGD
730 lines
25 KiB
C++
730 lines
25 KiB
C++
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
//
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
// If you do not agree to this license, do not download, install,
|
|
// copy or use the software.
|
|
//
|
|
//
|
|
// License Agreement
|
|
// For Open Source Computer Vision Library
|
|
//
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
// are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
// this list of conditions and the following disclaimer.
|
|
//
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
// and/or other materials provided with the distribution.
|
|
//
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
//
|
|
//M*/
|
|
|
|
#include "precomp.hpp"
|
|
|
|
using namespace cv;
|
|
using namespace cv::cuda;
|
|
|
|
#if !defined(HAVE_CUDA) || defined(CUDA_DISABLER) || !defined(HAVE_OPENCV_IMGPROC) || !defined(HAVE_OPENCV_CUDAARITHM) || !defined(HAVE_OPENCV_CUDAIMGPROC)
|
|
|
|
cv::cuda::FGDParams::FGDParams() { throw_no_cuda(); }
|
|
|
|
Ptr<cuda::BackgroundSubtractorFGD> cv::cuda::createBackgroundSubtractorFGD(const FGDParams&) { throw_no_cuda(); return Ptr<cuda::BackgroundSubtractorFGD>(); }
|
|
|
|
#else
|
|
|
|
#include "cuda/fgd.hpp"
|
|
#include "opencv2/imgproc/imgproc_c.h"
|
|
|
|
/////////////////////////////////////////////////////////////////////////
|
|
// FGDParams
|
|
|
|
namespace
|
|
{
|
|
// Default parameters of foreground detection algorithm:
|
|
const int BGFG_FGD_LC = 128;
|
|
const int BGFG_FGD_N1C = 15;
|
|
const int BGFG_FGD_N2C = 25;
|
|
|
|
const int BGFG_FGD_LCC = 64;
|
|
const int BGFG_FGD_N1CC = 25;
|
|
const int BGFG_FGD_N2CC = 40;
|
|
|
|
// Background reference image update parameter:
|
|
const float BGFG_FGD_ALPHA_1 = 0.1f;
|
|
|
|
// stat model update parameter
|
|
// 0.002f ~ 1K frame(~45sec), 0.005 ~ 18sec (if 25fps and absolutely static BG)
|
|
const float BGFG_FGD_ALPHA_2 = 0.005f;
|
|
|
|
// start value for alpha parameter (to fast initiate statistic model)
|
|
const float BGFG_FGD_ALPHA_3 = 0.1f;
|
|
|
|
const float BGFG_FGD_DELTA = 2.0f;
|
|
|
|
const float BGFG_FGD_T = 0.9f;
|
|
|
|
const float BGFG_FGD_MINAREA= 15.0f;
|
|
}
|
|
|
|
cv::cuda::FGDParams::FGDParams()
|
|
{
|
|
Lc = BGFG_FGD_LC;
|
|
N1c = BGFG_FGD_N1C;
|
|
N2c = BGFG_FGD_N2C;
|
|
|
|
Lcc = BGFG_FGD_LCC;
|
|
N1cc = BGFG_FGD_N1CC;
|
|
N2cc = BGFG_FGD_N2CC;
|
|
|
|
delta = BGFG_FGD_DELTA;
|
|
|
|
alpha1 = BGFG_FGD_ALPHA_1;
|
|
alpha2 = BGFG_FGD_ALPHA_2;
|
|
alpha3 = BGFG_FGD_ALPHA_3;
|
|
|
|
T = BGFG_FGD_T;
|
|
minArea = BGFG_FGD_MINAREA;
|
|
|
|
is_obj_without_holes = true;
|
|
perform_morphing = 1;
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////
|
|
// copyChannels
|
|
|
|
namespace
|
|
{
|
|
void copyChannels(const GpuMat& src, GpuMat& dst, int dst_cn = -1)
|
|
{
|
|
const int src_cn = src.channels();
|
|
|
|
if (dst_cn < 0)
|
|
dst_cn = src_cn;
|
|
|
|
cuda::ensureSizeIsEnough(src.size(), CV_MAKE_TYPE(src.depth(), dst_cn), dst);
|
|
|
|
if (src_cn == dst_cn)
|
|
{
|
|
src.copyTo(dst);
|
|
}
|
|
else
|
|
{
|
|
static const int cvt_codes[4][4] =
|
|
{
|
|
{-1, -1, COLOR_GRAY2BGR, COLOR_GRAY2BGRA},
|
|
{-1, -1, -1, -1},
|
|
{COLOR_BGR2GRAY, -1, -1, COLOR_BGR2BGRA},
|
|
{COLOR_BGRA2GRAY, -1, COLOR_BGRA2BGR, -1}
|
|
};
|
|
|
|
const int cvt_code = cvt_codes[src_cn - 1][dst_cn - 1];
|
|
CV_DbgAssert( cvt_code >= 0 );
|
|
|
|
cuda::cvtColor(src, dst, cvt_code, dst_cn);
|
|
}
|
|
}
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////
|
|
// changeDetection
|
|
|
|
namespace
|
|
{
|
|
void calcDiffHistogram(const GpuMat& prevFrame, const GpuMat& curFrame, GpuMat& hist, GpuMat& histBuf)
|
|
{
|
|
typedef void (*func_t)(PtrStepSzb prevFrame, PtrStepSzb curFrame,
|
|
unsigned int* hist0, unsigned int* hist1, unsigned int* hist2,
|
|
unsigned int* partialBuf0, unsigned int* partialBuf1, unsigned int* partialBuf2,
|
|
bool cc20, cudaStream_t stream);
|
|
static const func_t funcs[4][4] =
|
|
{
|
|
{0,0,0,0},
|
|
{0,0,0,0},
|
|
{0,0,fgd::calcDiffHistogram_gpu<uchar3, uchar3>,fgd::calcDiffHistogram_gpu<uchar3, uchar4>},
|
|
{0,0,fgd::calcDiffHistogram_gpu<uchar4, uchar3>,fgd::calcDiffHistogram_gpu<uchar4, uchar4>}
|
|
};
|
|
|
|
hist.create(3, 256, CV_32SC1);
|
|
histBuf.create(3, fgd::PARTIAL_HISTOGRAM_COUNT * fgd::HISTOGRAM_BIN_COUNT, CV_32SC1);
|
|
|
|
funcs[prevFrame.channels() - 1][curFrame.channels() - 1](
|
|
prevFrame, curFrame,
|
|
hist.ptr<unsigned int>(0), hist.ptr<unsigned int>(1), hist.ptr<unsigned int>(2),
|
|
histBuf.ptr<unsigned int>(0), histBuf.ptr<unsigned int>(1), histBuf.ptr<unsigned int>(2),
|
|
deviceSupports(FEATURE_SET_COMPUTE_20), 0);
|
|
}
|
|
|
|
void calcRelativeVariance(unsigned int hist[3 * 256], double relativeVariance[3][fgd::HISTOGRAM_BIN_COUNT])
|
|
{
|
|
std::memset(relativeVariance, 0, 3 * fgd::HISTOGRAM_BIN_COUNT * sizeof(double));
|
|
|
|
for (int thres = fgd::HISTOGRAM_BIN_COUNT - 2; thres >= 0; --thres)
|
|
{
|
|
Vec3d sum(0.0, 0.0, 0.0);
|
|
Vec3d sqsum(0.0, 0.0, 0.0);
|
|
Vec3i count(0, 0, 0);
|
|
|
|
for (int j = thres; j < fgd::HISTOGRAM_BIN_COUNT; ++j)
|
|
{
|
|
sum[0] += static_cast<double>(j) * hist[j];
|
|
sqsum[0] += static_cast<double>(j * j) * hist[j];
|
|
count[0] += hist[j];
|
|
|
|
sum[1] += static_cast<double>(j) * hist[j + 256];
|
|
sqsum[1] += static_cast<double>(j * j) * hist[j + 256];
|
|
count[1] += hist[j + 256];
|
|
|
|
sum[2] += static_cast<double>(j) * hist[j + 512];
|
|
sqsum[2] += static_cast<double>(j * j) * hist[j + 512];
|
|
count[2] += hist[j + 512];
|
|
}
|
|
|
|
count[0] = std::max(count[0], 1);
|
|
count[1] = std::max(count[1], 1);
|
|
count[2] = std::max(count[2], 1);
|
|
|
|
Vec3d my(
|
|
sum[0] / count[0],
|
|
sum[1] / count[1],
|
|
sum[2] / count[2]
|
|
);
|
|
|
|
relativeVariance[0][thres] = std::sqrt(sqsum[0] / count[0] - my[0] * my[0]);
|
|
relativeVariance[1][thres] = std::sqrt(sqsum[1] / count[1] - my[1] * my[1]);
|
|
relativeVariance[2][thres] = std::sqrt(sqsum[2] / count[2] - my[2] * my[2]);
|
|
}
|
|
}
|
|
|
|
void calcDiffThreshMask(const GpuMat& prevFrame, const GpuMat& curFrame, Vec3d bestThres, GpuMat& changeMask)
|
|
{
|
|
typedef void (*func_t)(PtrStepSzb prevFrame, PtrStepSzb curFrame, uchar3 bestThres, PtrStepSzb changeMask, cudaStream_t stream);
|
|
static const func_t funcs[4][4] =
|
|
{
|
|
{0,0,0,0},
|
|
{0,0,0,0},
|
|
{0,0,fgd::calcDiffThreshMask_gpu<uchar3, uchar3>,fgd::calcDiffThreshMask_gpu<uchar3, uchar4>},
|
|
{0,0,fgd::calcDiffThreshMask_gpu<uchar4, uchar3>,fgd::calcDiffThreshMask_gpu<uchar4, uchar4>}
|
|
};
|
|
|
|
changeMask.setTo(Scalar::all(0));
|
|
|
|
funcs[prevFrame.channels() - 1][curFrame.channels() - 1](prevFrame, curFrame,
|
|
make_uchar3((uchar)bestThres[0], (uchar)bestThres[1], (uchar)bestThres[2]),
|
|
changeMask, 0);
|
|
}
|
|
|
|
// performs change detection for Foreground detection algorithm
|
|
void changeDetection(const GpuMat& prevFrame, const GpuMat& curFrame, GpuMat& changeMask, GpuMat& hist, GpuMat& histBuf)
|
|
{
|
|
calcDiffHistogram(prevFrame, curFrame, hist, histBuf);
|
|
|
|
unsigned int histData[3 * 256];
|
|
Mat h_hist(3, 256, CV_32SC1, histData);
|
|
hist.download(h_hist);
|
|
|
|
double relativeVariance[3][fgd::HISTOGRAM_BIN_COUNT];
|
|
calcRelativeVariance(histData, relativeVariance);
|
|
|
|
// Find maximum:
|
|
Vec3d bestThres(10.0, 10.0, 10.0);
|
|
for (int i = 0; i < fgd::HISTOGRAM_BIN_COUNT; ++i)
|
|
{
|
|
bestThres[0] = std::max(bestThres[0], relativeVariance[0][i]);
|
|
bestThres[1] = std::max(bestThres[1], relativeVariance[1][i]);
|
|
bestThres[2] = std::max(bestThres[2], relativeVariance[2][i]);
|
|
}
|
|
|
|
calcDiffThreshMask(prevFrame, curFrame, bestThres, changeMask);
|
|
}
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////
|
|
// bgfgClassification
|
|
|
|
namespace
|
|
{
|
|
int bgfgClassification(const GpuMat& prevFrame, const GpuMat& curFrame,
|
|
const GpuMat& Ftd, const GpuMat& Fbd,
|
|
GpuMat& foreground,
|
|
const FGDParams& params, int out_cn)
|
|
{
|
|
typedef void (*func_t)(PtrStepSzb prevFrame, PtrStepSzb curFrame, PtrStepSzb Ftd, PtrStepSzb Fbd, PtrStepSzb foreground,
|
|
int deltaC, int deltaCC, float alpha2, int N1c, int N1cc, cudaStream_t stream);
|
|
static const func_t funcs[4][4][4] =
|
|
{
|
|
{
|
|
{0,0,0,0}, {0,0,0,0}, {0,0,0,0}, {0,0,0,0}
|
|
},
|
|
{
|
|
{0,0,0,0}, {0,0,0,0}, {0,0,0,0}, {0,0,0,0}
|
|
},
|
|
{
|
|
{0,0,0,0}, {0,0,0,0},
|
|
{0,0,fgd::bgfgClassification_gpu<uchar3, uchar3, uchar3>,fgd::bgfgClassification_gpu<uchar3, uchar3, uchar4>},
|
|
{0,0,fgd::bgfgClassification_gpu<uchar3, uchar4, uchar3>,fgd::bgfgClassification_gpu<uchar3, uchar4, uchar4>}
|
|
},
|
|
{
|
|
{0,0,0,0}, {0,0,0,0},
|
|
{0,0,fgd::bgfgClassification_gpu<uchar4, uchar3, uchar3>,fgd::bgfgClassification_gpu<uchar4, uchar3, uchar4>},
|
|
{0,0,fgd::bgfgClassification_gpu<uchar4, uchar4, uchar3>,fgd::bgfgClassification_gpu<uchar4, uchar4, uchar4>}
|
|
}
|
|
};
|
|
|
|
const int deltaC = cvRound(params.delta * 256 / params.Lc);
|
|
const int deltaCC = cvRound(params.delta * 256 / params.Lcc);
|
|
|
|
funcs[prevFrame.channels() - 1][curFrame.channels() - 1][out_cn - 1](prevFrame, curFrame, Ftd, Fbd, foreground,
|
|
deltaC, deltaCC, params.alpha2,
|
|
params.N1c, params.N1cc, 0);
|
|
|
|
int count = cuda::countNonZero(foreground);
|
|
|
|
cuda::multiply(foreground, Scalar::all(255), foreground);
|
|
|
|
return count;
|
|
}
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////
|
|
// smoothForeground
|
|
|
|
#ifdef HAVE_OPENCV_CUDAFILTERS
|
|
|
|
namespace
|
|
{
|
|
void morphology(const GpuMat& src, GpuMat& dst, GpuMat& filterBrd, int brd, Ptr<cuda::Filter>& filter, Scalar brdVal)
|
|
{
|
|
cuda::copyMakeBorder(src, filterBrd, brd, brd, brd, brd, BORDER_CONSTANT, brdVal);
|
|
filter->apply(filterBrd(Rect(brd, brd, src.cols, src.rows)), dst);
|
|
}
|
|
|
|
void smoothForeground(GpuMat& foreground, GpuMat& filterBrd, GpuMat& buf,
|
|
Ptr<cuda::Filter>& erodeFilter, Ptr<cuda::Filter>& dilateFilter,
|
|
const FGDParams& params)
|
|
{
|
|
const int brd = params.perform_morphing;
|
|
|
|
const Scalar erodeBrdVal = Scalar::all(UCHAR_MAX);
|
|
const Scalar dilateBrdVal = Scalar::all(0);
|
|
|
|
// MORPH_OPEN
|
|
morphology(foreground, buf, filterBrd, brd, erodeFilter, erodeBrdVal);
|
|
morphology(buf, foreground, filterBrd, brd, dilateFilter, dilateBrdVal);
|
|
|
|
// MORPH_CLOSE
|
|
morphology(foreground, buf, filterBrd, brd, dilateFilter, dilateBrdVal);
|
|
morphology(buf, foreground, filterBrd, brd, erodeFilter, erodeBrdVal);
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
/////////////////////////////////////////////////////////////////////////
|
|
// findForegroundRegions
|
|
|
|
namespace
|
|
{
|
|
void seqToContours(CvSeq* _ccontours, CvMemStorage* storage, OutputArrayOfArrays _contours)
|
|
{
|
|
Seq<CvSeq*> all_contours(cvTreeToNodeSeq(_ccontours, sizeof(CvSeq), storage));
|
|
|
|
size_t total = all_contours.size();
|
|
|
|
_contours.create((int) total, 1, 0, -1, true);
|
|
|
|
SeqIterator<CvSeq*> it = all_contours.begin();
|
|
for (size_t i = 0; i < total; ++i, ++it)
|
|
{
|
|
CvSeq* c = *it;
|
|
((CvContour*)c)->color = (int)i;
|
|
_contours.create((int)c->total, 1, CV_32SC2, (int)i, true);
|
|
Mat ci = _contours.getMat((int)i);
|
|
CV_Assert( ci.isContinuous() );
|
|
cvCvtSeqToArray(c, ci.data);
|
|
}
|
|
}
|
|
|
|
int findForegroundRegions(GpuMat& d_foreground, Mat& h_foreground, std::vector< std::vector<Point> >& foreground_regions,
|
|
CvMemStorage* storage, const FGDParams& params)
|
|
{
|
|
int region_count = 0;
|
|
|
|
// Discard under-size foreground regions:
|
|
|
|
d_foreground.download(h_foreground);
|
|
IplImage ipl_foreground = h_foreground;
|
|
CvSeq* first_seq = 0;
|
|
|
|
cvFindContours(&ipl_foreground, storage, &first_seq, sizeof(CvContour), CV_RETR_LIST);
|
|
|
|
for (CvSeq* seq = first_seq; seq; seq = seq->h_next)
|
|
{
|
|
CvContour* cnt = reinterpret_cast<CvContour*>(seq);
|
|
|
|
if (cnt->rect.width * cnt->rect.height < params.minArea || (params.is_obj_without_holes && CV_IS_SEQ_HOLE(seq)))
|
|
{
|
|
// Delete under-size contour:
|
|
CvSeq* prev_seq = seq->h_prev;
|
|
if (prev_seq)
|
|
{
|
|
prev_seq->h_next = seq->h_next;
|
|
|
|
if (seq->h_next)
|
|
seq->h_next->h_prev = prev_seq;
|
|
}
|
|
else
|
|
{
|
|
first_seq = seq->h_next;
|
|
|
|
if (seq->h_next)
|
|
seq->h_next->h_prev = NULL;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
region_count++;
|
|
}
|
|
}
|
|
|
|
seqToContours(first_seq, storage, foreground_regions);
|
|
h_foreground.setTo(0);
|
|
|
|
drawContours(h_foreground, foreground_regions, -1, Scalar::all(255), -1);
|
|
|
|
d_foreground.upload(h_foreground);
|
|
|
|
return region_count;
|
|
}
|
|
}
|
|
|
|
/////////////////////////////////////////////////////////////////////////
|
|
// updateBackgroundModel
|
|
|
|
namespace
|
|
{
|
|
void updateBackgroundModel(const GpuMat& prevFrame, const GpuMat& curFrame, const GpuMat& Ftd, const GpuMat& Fbd,
|
|
const GpuMat& foreground, GpuMat& background,
|
|
const FGDParams& params)
|
|
{
|
|
typedef void (*func_t)(PtrStepSzb prevFrame, PtrStepSzb curFrame, PtrStepSzb Ftd, PtrStepSzb Fbd,
|
|
PtrStepSzb foreground, PtrStepSzb background,
|
|
int deltaC, int deltaCC, float alpha1, float alpha2, float alpha3, int N1c, int N1cc, int N2c, int N2cc, float T, cudaStream_t stream);
|
|
static const func_t funcs[4][4][4] =
|
|
{
|
|
{
|
|
{0,0,0,0}, {0,0,0,0}, {0,0,0,0}, {0,0,0,0}
|
|
},
|
|
{
|
|
{0,0,0,0}, {0,0,0,0}, {0,0,0,0}, {0,0,0,0}
|
|
},
|
|
{
|
|
{0,0,0,0}, {0,0,0,0},
|
|
{0,0,fgd::updateBackgroundModel_gpu<uchar3, uchar3, uchar3>,fgd::updateBackgroundModel_gpu<uchar3, uchar3, uchar4>},
|
|
{0,0,fgd::updateBackgroundModel_gpu<uchar3, uchar4, uchar3>,fgd::updateBackgroundModel_gpu<uchar3, uchar4, uchar4>}
|
|
},
|
|
{
|
|
{0,0,0,0}, {0,0,0,0},
|
|
{0,0,fgd::updateBackgroundModel_gpu<uchar4, uchar3, uchar3>,fgd::updateBackgroundModel_gpu<uchar4, uchar3, uchar4>},
|
|
{0,0,fgd::updateBackgroundModel_gpu<uchar4, uchar4, uchar3>,fgd::updateBackgroundModel_gpu<uchar4, uchar4, uchar4>}
|
|
}
|
|
};
|
|
|
|
const int deltaC = cvRound(params.delta * 256 / params.Lc);
|
|
const int deltaCC = cvRound(params.delta * 256 / params.Lcc);
|
|
|
|
funcs[prevFrame.channels() - 1][curFrame.channels() - 1][background.channels() - 1](
|
|
prevFrame, curFrame, Ftd, Fbd, foreground, background,
|
|
deltaC, deltaCC, params.alpha1, params.alpha2, params.alpha3,
|
|
params.N1c, params.N1cc, params.N2c, params.N2cc, params.T,
|
|
0);
|
|
}
|
|
}
|
|
|
|
|
|
namespace
|
|
{
|
|
class BGPixelStat
|
|
{
|
|
public:
|
|
void create(Size size, const FGDParams& params);
|
|
|
|
void setTrained();
|
|
|
|
operator fgd::BGPixelStat();
|
|
|
|
private:
|
|
GpuMat Pbc_;
|
|
GpuMat Pbcc_;
|
|
GpuMat is_trained_st_model_;
|
|
GpuMat is_trained_dyn_model_;
|
|
|
|
GpuMat ctable_Pv_;
|
|
GpuMat ctable_Pvb_;
|
|
GpuMat ctable_v_;
|
|
|
|
GpuMat cctable_Pv_;
|
|
GpuMat cctable_Pvb_;
|
|
GpuMat cctable_v1_;
|
|
GpuMat cctable_v2_;
|
|
};
|
|
|
|
void BGPixelStat::create(Size size, const FGDParams& params)
|
|
{
|
|
cuda::ensureSizeIsEnough(size, CV_32FC1, Pbc_);
|
|
Pbc_.setTo(Scalar::all(0));
|
|
|
|
cuda::ensureSizeIsEnough(size, CV_32FC1, Pbcc_);
|
|
Pbcc_.setTo(Scalar::all(0));
|
|
|
|
cuda::ensureSizeIsEnough(size, CV_8UC1, is_trained_st_model_);
|
|
is_trained_st_model_.setTo(Scalar::all(0));
|
|
|
|
cuda::ensureSizeIsEnough(size, CV_8UC1, is_trained_dyn_model_);
|
|
is_trained_dyn_model_.setTo(Scalar::all(0));
|
|
|
|
cuda::ensureSizeIsEnough(params.N2c * size.height, size.width, CV_32FC1, ctable_Pv_);
|
|
ctable_Pv_.setTo(Scalar::all(0));
|
|
|
|
cuda::ensureSizeIsEnough(params.N2c * size.height, size.width, CV_32FC1, ctable_Pvb_);
|
|
ctable_Pvb_.setTo(Scalar::all(0));
|
|
|
|
cuda::ensureSizeIsEnough(params.N2c * size.height, size.width, CV_8UC4, ctable_v_);
|
|
ctable_v_.setTo(Scalar::all(0));
|
|
|
|
cuda::ensureSizeIsEnough(params.N2cc * size.height, size.width, CV_32FC1, cctable_Pv_);
|
|
cctable_Pv_.setTo(Scalar::all(0));
|
|
|
|
cuda::ensureSizeIsEnough(params.N2cc * size.height, size.width, CV_32FC1, cctable_Pvb_);
|
|
cctable_Pvb_.setTo(Scalar::all(0));
|
|
|
|
cuda::ensureSizeIsEnough(params.N2cc * size.height, size.width, CV_8UC4, cctable_v1_);
|
|
cctable_v1_.setTo(Scalar::all(0));
|
|
|
|
cuda::ensureSizeIsEnough(params.N2cc * size.height, size.width, CV_8UC4, cctable_v2_);
|
|
cctable_v2_.setTo(Scalar::all(0));
|
|
}
|
|
|
|
void BGPixelStat::setTrained()
|
|
{
|
|
is_trained_st_model_.setTo(Scalar::all(1));
|
|
is_trained_dyn_model_.setTo(Scalar::all(1));
|
|
}
|
|
|
|
BGPixelStat::operator fgd::BGPixelStat()
|
|
{
|
|
fgd::BGPixelStat stat;
|
|
|
|
stat.rows_ = Pbc_.rows;
|
|
|
|
stat.Pbc_data_ = Pbc_.data;
|
|
stat.Pbc_step_ = Pbc_.step;
|
|
|
|
stat.Pbcc_data_ = Pbcc_.data;
|
|
stat.Pbcc_step_ = Pbcc_.step;
|
|
|
|
stat.is_trained_st_model_data_ = is_trained_st_model_.data;
|
|
stat.is_trained_st_model_step_ = is_trained_st_model_.step;
|
|
|
|
stat.is_trained_dyn_model_data_ = is_trained_dyn_model_.data;
|
|
stat.is_trained_dyn_model_step_ = is_trained_dyn_model_.step;
|
|
|
|
stat.ctable_Pv_data_ = ctable_Pv_.data;
|
|
stat.ctable_Pv_step_ = ctable_Pv_.step;
|
|
|
|
stat.ctable_Pvb_data_ = ctable_Pvb_.data;
|
|
stat.ctable_Pvb_step_ = ctable_Pvb_.step;
|
|
|
|
stat.ctable_v_data_ = ctable_v_.data;
|
|
stat.ctable_v_step_ = ctable_v_.step;
|
|
|
|
stat.cctable_Pv_data_ = cctable_Pv_.data;
|
|
stat.cctable_Pv_step_ = cctable_Pv_.step;
|
|
|
|
stat.cctable_Pvb_data_ = cctable_Pvb_.data;
|
|
stat.cctable_Pvb_step_ = cctable_Pvb_.step;
|
|
|
|
stat.cctable_v1_data_ = cctable_v1_.data;
|
|
stat.cctable_v1_step_ = cctable_v1_.step;
|
|
|
|
stat.cctable_v2_data_ = cctable_v2_.data;
|
|
stat.cctable_v2_step_ = cctable_v2_.step;
|
|
|
|
return stat;
|
|
}
|
|
|
|
class FGDImpl : public cuda::BackgroundSubtractorFGD
|
|
{
|
|
public:
|
|
explicit FGDImpl(const FGDParams& params);
|
|
~FGDImpl();
|
|
|
|
void apply(InputArray image, OutputArray fgmask, double learningRate=-1);
|
|
|
|
void getBackgroundImage(OutputArray backgroundImage) const;
|
|
|
|
void getForegroundRegions(OutputArrayOfArrays foreground_regions);
|
|
|
|
private:
|
|
void initialize(const GpuMat& firstFrame);
|
|
|
|
FGDParams params_;
|
|
Size frameSize_;
|
|
|
|
GpuMat background_;
|
|
GpuMat foreground_;
|
|
std::vector< std::vector<Point> > foreground_regions_;
|
|
|
|
Mat h_foreground_;
|
|
|
|
GpuMat prevFrame_;
|
|
GpuMat Ftd_;
|
|
GpuMat Fbd_;
|
|
BGPixelStat stat_;
|
|
|
|
GpuMat hist_;
|
|
GpuMat histBuf_;
|
|
|
|
GpuMat buf_;
|
|
GpuMat filterBrd_;
|
|
|
|
#ifdef HAVE_OPENCV_CUDAFILTERS
|
|
Ptr<cuda::Filter> dilateFilter_;
|
|
Ptr<cuda::Filter> erodeFilter_;
|
|
#endif
|
|
|
|
CvMemStorage* storage_;
|
|
};
|
|
|
|
FGDImpl::FGDImpl(const FGDParams& params) : params_(params), frameSize_(0, 0)
|
|
{
|
|
storage_ = cvCreateMemStorage();
|
|
CV_Assert( storage_ != 0 );
|
|
}
|
|
|
|
FGDImpl::~FGDImpl()
|
|
{
|
|
cvReleaseMemStorage(&storage_);
|
|
}
|
|
|
|
void FGDImpl::apply(InputArray _frame, OutputArray fgmask, double)
|
|
{
|
|
GpuMat curFrame = _frame.getGpuMat();
|
|
|
|
if (curFrame.size() != frameSize_)
|
|
{
|
|
initialize(curFrame);
|
|
return;
|
|
}
|
|
|
|
CV_Assert( curFrame.type() == CV_8UC3 || curFrame.type() == CV_8UC4 );
|
|
CV_Assert( curFrame.size() == prevFrame_.size() );
|
|
|
|
cvClearMemStorage(storage_);
|
|
foreground_regions_.clear();
|
|
foreground_.setTo(Scalar::all(0));
|
|
|
|
changeDetection(prevFrame_, curFrame, Ftd_, hist_, histBuf_);
|
|
changeDetection(background_, curFrame, Fbd_, hist_, histBuf_);
|
|
|
|
int FG_pixels_count = bgfgClassification(prevFrame_, curFrame, Ftd_, Fbd_, foreground_, params_, 4);
|
|
|
|
#ifdef HAVE_OPENCV_CUDAFILTERS
|
|
if (params_.perform_morphing > 0)
|
|
smoothForeground(foreground_, filterBrd_, buf_, erodeFilter_, dilateFilter_, params_);
|
|
#endif
|
|
|
|
if (params_.minArea > 0 || params_.is_obj_without_holes)
|
|
findForegroundRegions(foreground_, h_foreground_, foreground_regions_, storage_, params_);
|
|
|
|
// Check ALL BG update condition:
|
|
const double BGFG_FGD_BG_UPDATE_TRESH = 0.5;
|
|
if (static_cast<double>(FG_pixels_count) / Ftd_.size().area() > BGFG_FGD_BG_UPDATE_TRESH)
|
|
stat_.setTrained();
|
|
|
|
updateBackgroundModel(prevFrame_, curFrame, Ftd_, Fbd_, foreground_, background_, params_);
|
|
|
|
copyChannels(curFrame, prevFrame_, 4);
|
|
|
|
foreground_.copyTo(fgmask);
|
|
}
|
|
|
|
void FGDImpl::getBackgroundImage(OutputArray backgroundImage) const
|
|
{
|
|
cuda::cvtColor(background_, backgroundImage, COLOR_BGRA2BGR);
|
|
}
|
|
|
|
void FGDImpl::getForegroundRegions(OutputArrayOfArrays dst)
|
|
{
|
|
size_t total = foreground_regions_.size();
|
|
|
|
dst.create((int) total, 1, 0, -1, true);
|
|
|
|
for (size_t i = 0; i < total; ++i)
|
|
{
|
|
std::vector<Point>& c = foreground_regions_[i];
|
|
|
|
dst.create((int) c.size(), 1, CV_32SC2, (int) i, true);
|
|
Mat ci = dst.getMat((int) i);
|
|
|
|
Mat(ci.size(), ci.type(), &c[0]).copyTo(ci);
|
|
}
|
|
}
|
|
|
|
void FGDImpl::initialize(const GpuMat& firstFrame)
|
|
{
|
|
CV_Assert( firstFrame.type() == CV_8UC3 || firstFrame.type() == CV_8UC4 );
|
|
|
|
frameSize_ = firstFrame.size();
|
|
|
|
cuda::ensureSizeIsEnough(firstFrame.size(), CV_8UC1, foreground_);
|
|
|
|
copyChannels(firstFrame, background_, 4);
|
|
copyChannels(firstFrame, prevFrame_, 4);
|
|
|
|
cuda::ensureSizeIsEnough(firstFrame.size(), CV_8UC1, Ftd_);
|
|
cuda::ensureSizeIsEnough(firstFrame.size(), CV_8UC1, Fbd_);
|
|
|
|
stat_.create(firstFrame.size(), params_);
|
|
fgd::setBGPixelStat(stat_);
|
|
|
|
#ifdef HAVE_OPENCV_CUDAFILTERS
|
|
if (params_.perform_morphing > 0)
|
|
{
|
|
Mat kernel = getStructuringElement(MORPH_RECT, Size(1 + params_.perform_morphing * 2, 1 + params_.perform_morphing * 2));
|
|
Point anchor(params_.perform_morphing, params_.perform_morphing);
|
|
|
|
dilateFilter_ = cuda::createMorphologyFilter(MORPH_DILATE, CV_8UC1, kernel, anchor);
|
|
erodeFilter_ = cuda::createMorphologyFilter(MORPH_ERODE, CV_8UC1, kernel, anchor);
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
Ptr<cuda::BackgroundSubtractorFGD> cv::cuda::createBackgroundSubtractorFGD(const FGDParams& params)
|
|
{
|
|
return makePtr<FGDImpl>(params);
|
|
}
|
|
|
|
#endif // HAVE_CUDA
|