mirror of
https://github.com/opencv/opencv.git
synced 2025-01-10 22:28:13 +08:00
191 lines
6.1 KiB
C++
191 lines
6.1 KiB
C++
// This file is part of OpenCV project.
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
// Copyright (C) 2016, Intel Corporation, all rights reserved.
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
/*
|
|
Implementation of Scale layer.
|
|
*/
|
|
|
|
#include "../precomp.hpp"
|
|
#include "layers_common.hpp"
|
|
#include "op_halide.hpp"
|
|
#include <opencv2/dnn/shape_utils.hpp>
|
|
|
|
namespace cv
|
|
{
|
|
namespace dnn
|
|
{
|
|
|
|
class ScaleLayerImpl : public ScaleLayer
|
|
{
|
|
public:
|
|
ScaleLayerImpl(const LayerParams& params)
|
|
{
|
|
setParamsFrom(params);
|
|
hasBias = params.get<bool>("bias_term", false);
|
|
axis = params.get<int>("axis", 1);
|
|
}
|
|
|
|
bool getMemoryShapes(const std::vector<MatShape> &inputs,
|
|
const int requiredOutputs,
|
|
std::vector<MatShape> &outputs,
|
|
std::vector<MatShape> &internals) const
|
|
{
|
|
CV_Assert(inputs.size() == 2 && blobs.empty() || blobs.size() == 1 + hasBias);
|
|
outputs.assign(1, inputs[0]);
|
|
return true;
|
|
}
|
|
|
|
virtual bool supportBackend(int backendId)
|
|
{
|
|
return backendId == DNN_BACKEND_DEFAULT ||
|
|
backendId == DNN_BACKEND_HALIDE && haveHalide();
|
|
}
|
|
|
|
void forward(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr, OutputArrayOfArrays internals_arr)
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
|
|
|
Layer::forward_fallback(inputs_arr, outputs_arr, internals_arr);
|
|
}
|
|
|
|
void forward(std::vector<Mat*> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals)
|
|
{
|
|
CV_TRACE_FUNCTION();
|
|
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
|
|
CV_Assert(outputs.size() == 1, !blobs.empty() || inputs.size() == 2);
|
|
|
|
Mat &inpBlob = *inputs[0];
|
|
Mat &outBlob = outputs[0];
|
|
Mat &weights = blobs.empty() ? *inputs[1] : blobs[0];
|
|
Mat bias = hasBias ? blobs.back() : Mat();
|
|
MatShape inpShape = shape(inpBlob);
|
|
const int numWeights = weights.total();
|
|
|
|
int endAxis;
|
|
for (endAxis = axis + 1; endAxis <= inpBlob.dims; ++endAxis)
|
|
{
|
|
if (total(inpShape, axis, endAxis) == numWeights)
|
|
break;
|
|
}
|
|
CV_Assert(total(inpShape, axis, endAxis) == numWeights,
|
|
!hasBias || numWeights == bias.total(),
|
|
inpBlob.type() == CV_32F && outBlob.type() == CV_32F);
|
|
|
|
int numSlices = total(inpShape, 0, axis);
|
|
float* inpData = (float*)inpBlob.data;
|
|
float* outData = (float*)outBlob.data;
|
|
|
|
if (endAxis != inpBlob.dims)
|
|
{
|
|
float* weightsData = (float*)weights.data;
|
|
float* biasesData = hasBias ? (float*)bias.data : 0;
|
|
int spatialSize = total(inpShape, endAxis); // spatialSize != 1
|
|
for (int i = 0; i < numSlices; ++i)
|
|
{
|
|
for (int j = 0; j < numWeights; ++j)
|
|
{
|
|
float w = weightsData[j];
|
|
float b = hasBias ? biasesData[j] : 0;
|
|
Mat inpSlice(1, spatialSize, CV_32F, inpData);
|
|
Mat outSlice(1, spatialSize, CV_32F, outData);
|
|
inpSlice.convertTo(outSlice, CV_32F, w, b);
|
|
inpData += spatialSize;
|
|
outData += spatialSize;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (int i = 0; i < numSlices; ++i)
|
|
{
|
|
Mat inpSlice(weights.dims, weights.size, CV_32F, inpData);
|
|
Mat outSlice(weights.dims, weights.size, CV_32F, outData);
|
|
multiply(inpSlice, weights, outSlice);
|
|
if (hasBias)
|
|
add(outSlice, bias, outSlice);
|
|
|
|
inpData += numWeights;
|
|
outData += numWeights;
|
|
}
|
|
}
|
|
}
|
|
|
|
virtual Ptr<BackendNode> tryAttach(const Ptr<BackendNode>& node)
|
|
{
|
|
switch (node->backendId)
|
|
{
|
|
case DNN_BACKEND_HALIDE:
|
|
{
|
|
#ifdef HAVE_HALIDE
|
|
auto base = node.dynamicCast<HalideBackendNode>();
|
|
Halide::Func& input = base->funcs.back();
|
|
Halide::Var x("x"), y("y"), c("c"), n("n");
|
|
Halide::Func top = attachHalide(input(x, y, c, n));
|
|
return Ptr<BackendNode>(new HalideBackendNode(base, top));
|
|
#endif // HAVE_HALIDE
|
|
break;
|
|
}
|
|
}
|
|
return Ptr<BackendNode>();
|
|
}
|
|
|
|
virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &inputs)
|
|
{
|
|
#ifdef HAVE_HALIDE
|
|
Halide::Buffer<float> input = halideBuffer(inputs[0]);
|
|
Halide::Var x("x"), y("y"), c("c"), n("n");
|
|
Halide::Func top = attachHalide(input(x, y, c, n));
|
|
return Ptr<BackendNode>(new HalideBackendNode(top));
|
|
#endif // HAVE_HALIDE
|
|
return Ptr<BackendNode>();
|
|
}
|
|
|
|
#ifdef HAVE_HALIDE
|
|
// attachHalide can work both with Halide::Buffer and Halide::Func. In the
|
|
// second case it will be a fusion.
|
|
Halide::Func attachHalide(const Halide::Expr& input)
|
|
{
|
|
Halide::Func top = (name.empty() ? Halide::Func() : Halide::Func(name));
|
|
Halide::Var x("x"), y("y"), c("c"), n("n");
|
|
|
|
const int numChannels = blobs[0].total();
|
|
|
|
auto weights = wrapToHalideBuffer(blobs[0], {numChannels});
|
|
Halide::Expr topExpr = input * weights(c);
|
|
if (hasBias)
|
|
{
|
|
auto bias = wrapToHalideBuffer(blobs[1], {numChannels});
|
|
topExpr += bias(c);
|
|
}
|
|
top(x, y, c, n) = topExpr;
|
|
return top;
|
|
}
|
|
#endif // HAVE_HALIDE
|
|
|
|
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
|
|
const std::vector<MatShape> &outputs) const
|
|
{
|
|
(void)outputs; // suppress unused variable warning
|
|
long flops = 0;
|
|
for(int i = 0; i < inputs.size(); i++)
|
|
{
|
|
flops += 2*total(inputs[i]);
|
|
}
|
|
return flops;
|
|
}
|
|
};
|
|
|
|
|
|
Ptr<ScaleLayer> ScaleLayer::create(const LayerParams& params)
|
|
{
|
|
return Ptr<ScaleLayer>(new ScaleLayerImpl(params));
|
|
}
|
|
|
|
} // namespace dnn
|
|
} // namespace cv
|