mirror of
https://github.com/opencv/opencv.git
synced 2024-11-27 12:40:05 +08:00
350 lines
7.7 KiB
C++
350 lines
7.7 KiB
C++
#include <stdexcept>
|
|
#include <opencv2/imgproc/imgproc.hpp>
|
|
#include <opencv2/highgui/highgui.hpp>
|
|
#include <opencv2/gpu/gpu.hpp>
|
|
#include "performance.h"
|
|
|
|
using namespace std;
|
|
using namespace cv;
|
|
|
|
INIT(matchTemplate)
|
|
{
|
|
Mat src; gen(src, 500, 500, CV_32F, 0, 1);
|
|
Mat templ; gen(templ, 500, 500, CV_32F, 0, 1);
|
|
|
|
gpu::GpuMat d_src(src), d_templ(templ), d_dst;
|
|
|
|
gpu::matchTemplate(d_src, d_templ, d_dst, CV_TM_CCORR);
|
|
}
|
|
|
|
|
|
TEST(matchTemplate)
|
|
{
|
|
Mat src, templ, dst;
|
|
gen(src, 3000, 3000, CV_32F, 0, 1);
|
|
|
|
gpu::GpuMat d_src(src), d_templ, d_dst;
|
|
|
|
for (int templ_size = 5; templ_size < 200; templ_size *= 5)
|
|
{
|
|
SUBTEST << "src " << src.rows << ", templ " << templ_size << ", 32F, CCORR";
|
|
|
|
gen(templ, templ_size, templ_size, CV_32F, 0, 1);
|
|
dst.create(src.rows - templ.rows + 1, src.cols - templ.cols + 1, CV_32F);
|
|
|
|
CPU_ON;
|
|
matchTemplate(src, templ, dst, CV_TM_CCORR);
|
|
CPU_OFF;
|
|
|
|
d_templ = templ;
|
|
d_dst.create(d_src.rows - d_templ.rows + 1, d_src.cols - d_templ.cols + 1, CV_32F);
|
|
|
|
GPU_ON;
|
|
gpu::matchTemplate(d_src, d_templ, d_dst, CV_TM_CCORR);
|
|
GPU_OFF;
|
|
}
|
|
}
|
|
|
|
|
|
TEST(minMaxLoc)
|
|
{
|
|
Mat src;
|
|
gpu::GpuMat d_src;
|
|
|
|
double min_val, max_val;
|
|
Point min_loc, max_loc;
|
|
|
|
for (int size = 2000; size <= 8000; size *= 2)
|
|
{
|
|
SUBTEST << "src " << size << ", 32F, no mask";
|
|
|
|
gen(src, size, size, CV_32F, 0, 1);
|
|
|
|
CPU_ON;
|
|
minMaxLoc(src, &min_val, &max_val, &min_loc, &max_loc);
|
|
CPU_OFF;
|
|
|
|
d_src = src;
|
|
|
|
GPU_ON;
|
|
gpu::minMaxLoc(d_src, &min_val, &max_val, &min_loc, &max_loc);
|
|
GPU_OFF;
|
|
}
|
|
}
|
|
|
|
|
|
TEST(remap)
|
|
{
|
|
Mat src, dst, xmap, ymap;
|
|
gpu::GpuMat d_src, d_dst, d_xmap, d_ymap;
|
|
|
|
for (int size = 1000; size <= 8000; size *= 2)
|
|
{
|
|
SUBTEST << "src " << size << " and 8U, 32F maps";
|
|
|
|
gen(src, size, size, CV_8UC1, 0, 256);
|
|
|
|
xmap.create(size, size, CV_32F);
|
|
ymap.create(size, size, CV_32F);
|
|
for (int i = 0; i < size; ++i)
|
|
{
|
|
float* xmap_row = xmap.ptr<float>(i);
|
|
float* ymap_row = ymap.ptr<float>(i);
|
|
for (int j = 0; j < size; ++j)
|
|
{
|
|
xmap_row[j] = (j - size * 0.5f) * 0.75f + size * 0.5f;
|
|
ymap_row[j] = (i - size * 0.5f) * 0.75f + size * 0.5f;
|
|
}
|
|
}
|
|
|
|
dst.create(xmap.size(), src.type());
|
|
|
|
CPU_ON;
|
|
remap(src, dst, xmap, ymap, INTER_LINEAR);
|
|
CPU_OFF;
|
|
|
|
d_src = src;
|
|
d_xmap = xmap;
|
|
d_ymap = ymap;
|
|
d_dst.create(d_xmap.size(), d_src.type());
|
|
|
|
GPU_ON;
|
|
gpu::remap(d_src, d_dst, d_xmap, d_ymap);
|
|
GPU_OFF;
|
|
}
|
|
}
|
|
|
|
|
|
TEST(dft)
|
|
{
|
|
Mat src, dst;
|
|
gpu::GpuMat d_src, d_dst;
|
|
|
|
for (int size = 1000; size <= 4000; size *= 2)
|
|
{
|
|
SUBTEST << "size " << size << ", 32FC2, complex-to-complex";
|
|
|
|
gen(src, size, size, CV_32FC2, Scalar::all(0), Scalar::all(1));
|
|
dst.create(src.size(), src.type());
|
|
|
|
CPU_ON;
|
|
dft(src, dst);
|
|
CPU_OFF;
|
|
|
|
d_src = src;
|
|
d_dst.create(d_src.size(), d_src.type());
|
|
|
|
GPU_ON;
|
|
gpu::dft(d_src, d_dst, Size(size, size));
|
|
GPU_OFF;
|
|
}
|
|
}
|
|
|
|
|
|
TEST(cornerHarris)
|
|
{
|
|
Mat src, dst;
|
|
gpu::GpuMat d_src, d_dst;
|
|
|
|
for (int size = 2000; size <= 4000; size *= 2)
|
|
{
|
|
SUBTEST << "size " << size << ", 32F";
|
|
|
|
gen(src, size, size, CV_32F, 0, 1);
|
|
dst.create(src.size(), src.type());
|
|
|
|
CPU_ON;
|
|
cornerHarris(src, dst, 5, 7, 0.1, BORDER_REFLECT101);
|
|
CPU_OFF;
|
|
|
|
d_src = src;
|
|
d_dst.create(src.size(), src.type());
|
|
|
|
GPU_ON;
|
|
gpu::cornerHarris(d_src, d_dst, 5, 7, 0.1, BORDER_REFLECT101);
|
|
GPU_OFF;
|
|
}
|
|
}
|
|
|
|
|
|
TEST(integral)
|
|
{
|
|
Mat src, sum;
|
|
gpu::GpuMat d_src, d_sum;
|
|
|
|
for (int size = 1000; size <= 8000; size *= 2)
|
|
{
|
|
SUBTEST << "size " << size << ", 8U";
|
|
|
|
gen(src, size, size, CV_8U, 0, 256);
|
|
sum.create(size + 1, size + 1, CV_32S);
|
|
|
|
CPU_ON;
|
|
integral(src, sum);
|
|
CPU_OFF;
|
|
|
|
d_src = src;
|
|
d_sum.create(size + 1, size + 1, CV_32S);
|
|
|
|
GPU_ON;
|
|
gpu::integral(d_src, d_sum);
|
|
GPU_OFF;
|
|
}
|
|
}
|
|
|
|
|
|
TEST(norm)
|
|
{
|
|
Mat src;
|
|
gpu::GpuMat d_src;
|
|
|
|
for (int size = 1000; size <= 8000; size *= 2)
|
|
{
|
|
SUBTEST << "size " << size << ", 8U";
|
|
|
|
gen(src, size, size, CV_8U, 0, 256);
|
|
|
|
CPU_ON;
|
|
norm(src);
|
|
CPU_OFF;
|
|
|
|
d_src = src;
|
|
|
|
GPU_ON;
|
|
gpu::norm(d_src);
|
|
GPU_OFF;
|
|
}
|
|
}
|
|
|
|
|
|
TEST(meanShift)
|
|
{
|
|
int sp = 10, sr = 10;
|
|
|
|
Mat src, dst;
|
|
gpu::GpuMat d_src, d_dst;
|
|
|
|
for (int size = 400; size <= 800; size *= 2)
|
|
{
|
|
SUBTEST << "size " << size << ", 8UC3 vs 8UC4";
|
|
|
|
gen(src, size, size, CV_8UC3, Scalar::all(0), Scalar::all(256));
|
|
dst.create(src.size(), src.type());
|
|
|
|
CPU_ON;
|
|
pyrMeanShiftFiltering(src, dst, sp, sr);
|
|
CPU_OFF;
|
|
|
|
gen(src, size, size, CV_8UC4, Scalar::all(0), Scalar::all(256));
|
|
|
|
d_src = src;
|
|
d_dst.create(d_src.size(), d_src.type());
|
|
|
|
GPU_ON;
|
|
gpu::meanShiftFiltering(d_src, d_dst, sp, sr);
|
|
GPU_OFF;
|
|
}
|
|
}
|
|
|
|
|
|
TEST(SURF)
|
|
{
|
|
Mat src1 = imread(abspath("bowlingL.png"), CV_LOAD_IMAGE_GRAYSCALE);
|
|
Mat src2 = imread(abspath("bowlingR.png"), CV_LOAD_IMAGE_GRAYSCALE);
|
|
if (src1.empty()) throw runtime_error("can't open bowlingL.png");
|
|
if (src2.empty()) throw runtime_error("can't open bowlingR.png");
|
|
|
|
gpu::GpuMat d_src1(src1);
|
|
gpu::GpuMat d_src2(src2);
|
|
|
|
SURF surf;
|
|
vector<KeyPoint> keypoints1, keypoints2;
|
|
|
|
CPU_ON;
|
|
surf(src1, Mat(), keypoints1);
|
|
surf(src2, Mat(), keypoints2);
|
|
CPU_OFF;
|
|
|
|
gpu::SURF_GPU d_surf;
|
|
gpu::GpuMat d_keypoints1, d_keypoints2;
|
|
gpu::GpuMat d_descriptors1, d_descriptors2;
|
|
|
|
GPU_ON;
|
|
d_surf(d_src1, gpu::GpuMat(), d_keypoints1);
|
|
d_surf(d_src2, gpu::GpuMat(), d_keypoints2);
|
|
GPU_OFF;
|
|
}
|
|
|
|
|
|
TEST(BruteForceMatcher)
|
|
{
|
|
RNG rng(0);
|
|
|
|
// Init CPU matcher
|
|
|
|
int desc_len = 128;
|
|
int num_trains = rng.uniform(1, 5);
|
|
|
|
BruteForceMatcher< L2<float> > matcher;
|
|
|
|
Mat query;
|
|
gen(query, rng.uniform(100, 300), desc_len, CV_32F, 0, 10);
|
|
|
|
vector<Mat> trains(num_trains);
|
|
for (int i = 0; i < num_trains; ++i)
|
|
{
|
|
Mat train;
|
|
gen(train, rng.uniform(100, 300), desc_len, CV_32F, 0, 10);
|
|
trains[i] = train;
|
|
}
|
|
matcher.add(trains);
|
|
|
|
// Init GPU matcher
|
|
|
|
gpu::BruteForceMatcher_GPU< L2<float> > d_matcher;
|
|
|
|
gpu::GpuMat d_query(query);
|
|
|
|
vector<gpu::GpuMat> d_trains(num_trains);
|
|
for (int i = 0; i < num_trains; ++i)
|
|
{
|
|
d_trains[i] = trains[i];
|
|
}
|
|
d_matcher.add(d_trains);
|
|
|
|
// Output
|
|
vector< vector<DMatch> > matches(1);
|
|
vector< vector<DMatch> > d_matches(1);
|
|
|
|
SUBTEST << "match";
|
|
|
|
CPU_ON;
|
|
matcher.match(query, matches[0]);
|
|
CPU_OFF;
|
|
|
|
GPU_ON;
|
|
d_matcher.match(d_query, d_matches[0]);
|
|
GPU_OFF;
|
|
|
|
SUBTEST << "knnMatch";
|
|
int knn = rng.uniform(3, 10);
|
|
|
|
CPU_ON;
|
|
matcher.knnMatch(query, matches, knn);
|
|
CPU_OFF;
|
|
|
|
GPU_ON;
|
|
d_matcher.knnMatch(d_query, d_matches, knn);
|
|
GPU_OFF;
|
|
|
|
SUBTEST << "radiusMatch";
|
|
float max_distance = rng.uniform(25.0f, 65.0f);
|
|
|
|
CPU_ON;
|
|
matcher.radiusMatch(query, matches, max_distance);
|
|
CPU_OFF;
|
|
|
|
GPU_ON;
|
|
d_matcher.radiusMatch(d_query, d_matches, max_distance);
|
|
GPU_OFF;
|
|
} |