opencv/modules/imgproc/src/shapedescr.cpp
2017-10-27 13:00:34 +00:00

1359 lines
45 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
namespace cv
{
const float EPS = 1.0e-4f;
static void findCircle3pts(Point2f *pts, Point2f &center, float &radius)
{
// two edges of the triangle v1, v2
Point2f v1 = pts[1] - pts[0];
Point2f v2 = pts[2] - pts[0];
// center is intersection of midperpendicular lines of the two edges v1, v2
// a1*x + b1*y = c1 where a1 = v1.x, b1 = v1.y
// a2*x + b2*y = c2 where a2 = v2.x, b2 = v2.y
Point2f midPoint1 = (pts[0] + pts[1]) / 2.0f;
float c1 = midPoint1.x * v1.x + midPoint1.y * v1.y;
Point2f midPoint2 = (pts[0] + pts[2]) / 2.0f;
float c2 = midPoint2.x * v2.x + midPoint2.y * v2.y;
float det = v1.x * v2.y - v1.y * v2.x;
float cx = (c1 * v2.y - c2 * v1.y) / det;
float cy = (v1.x * c2 - v2.x * c1) / det;
center.x = (float)cx;
center.y = (float)cy;
cx -= pts[0].x;
cy -= pts[0].y;
radius = (float)(std::sqrt(cx *cx + cy * cy)) + EPS;
}
template<typename PT>
static void findThirdPoint(const PT *pts, int i, int j, Point2f &center, float &radius)
{
center.x = (float)(pts[j].x + pts[i].x) / 2.0f;
center.y = (float)(pts[j].y + pts[i].y) / 2.0f;
float dx = (float)(pts[j].x - pts[i].x);
float dy = (float)(pts[j].y - pts[i].y);
radius = (float)norm(Point2f(dx, dy)) / 2.0f + EPS;
for (int k = 0; k < j; ++k)
{
dx = center.x - (float)pts[k].x;
dy = center.y - (float)pts[k].y;
if (norm(Point2f(dx, dy)) < radius)
{
continue;
}
else
{
Point2f ptsf[3];
ptsf[0] = (Point2f)pts[i];
ptsf[1] = (Point2f)pts[j];
ptsf[2] = (Point2f)pts[k];
findCircle3pts(ptsf, center, radius);
}
}
}
template<typename PT>
void findSecondPoint(const PT *pts, int i, Point2f &center, float &radius)
{
center.x = (float)(pts[0].x + pts[i].x) / 2.0f;
center.y = (float)(pts[0].y + pts[i].y) / 2.0f;
float dx = (float)(pts[0].x - pts[i].x);
float dy = (float)(pts[0].y - pts[i].y);
radius = (float)norm(Point2f(dx, dy)) / 2.0f + EPS;
for (int j = 1; j < i; ++j)
{
dx = center.x - (float)pts[j].x;
dy = center.y - (float)pts[j].y;
if (norm(Point2f(dx, dy)) < radius)
{
continue;
}
else
{
findThirdPoint(pts, i, j, center, radius);
}
}
}
template<typename PT>
static void findMinEnclosingCircle(const PT *pts, int count, Point2f &center, float &radius)
{
center.x = (float)(pts[0].x + pts[1].x) / 2.0f;
center.y = (float)(pts[0].y + pts[1].y) / 2.0f;
float dx = (float)(pts[0].x - pts[1].x);
float dy = (float)(pts[0].y - pts[1].y);
radius = (float)norm(Point2f(dx, dy)) / 2.0f + EPS;
for (int i = 2; i < count; ++i)
{
dx = (float)pts[i].x - center.x;
dy = (float)pts[i].y - center.y;
float d = (float)norm(Point2f(dx, dy));
if (d < radius)
{
continue;
}
else
{
findSecondPoint(pts, i, center, radius);
}
}
}
} // namespace cv
// see Welzl, Emo. Smallest enclosing disks (balls and ellipsoids). Springer Berlin Heidelberg, 1991.
void cv::minEnclosingCircle( InputArray _points, Point2f& _center, float& _radius )
{
CV_INSTRUMENT_REGION()
Mat points = _points.getMat();
int count = points.checkVector(2);
int depth = points.depth();
CV_Assert(count >= 0 && (depth == CV_32F || depth == CV_32S));
_center.x = _center.y = 0.f;
_radius = 0.f;
if( count == 0 )
return;
bool is_float = depth == CV_32F;
const Point* ptsi = points.ptr<Point>();
const Point2f* ptsf = points.ptr<Point2f>();
switch (count)
{
case 1:
{
_center = (is_float) ? ptsf[0] : Point2f((float)ptsi[0].x, (float)ptsi[0].y);
_radius = EPS;
break;
}
case 2:
{
Point2f p1 = (is_float) ? ptsf[0] : Point2f((float)ptsi[0].x, (float)ptsi[0].y);
Point2f p2 = (is_float) ? ptsf[1] : Point2f((float)ptsi[1].x, (float)ptsi[1].y);
_center.x = (p1.x + p2.x) / 2.0f;
_center.y = (p1.y + p2.y) / 2.0f;
_radius = (float)(norm(p1 - p2) / 2.0) + EPS;
break;
}
default:
{
Point2f center;
float radius = 0.f;
if (is_float)
{
findMinEnclosingCircle<Point2f>(ptsf, count, center, radius);
#if 0
for (size_t m = 0; m < count; ++m)
{
float d = (float)norm(ptsf[m] - center);
if (d > radius)
{
printf("error!\n");
}
}
#endif
}
else
{
findMinEnclosingCircle<Point>(ptsi, count, center, radius);
#if 0
for (size_t m = 0; m < count; ++m)
{
double dx = ptsi[m].x - center.x;
double dy = ptsi[m].y - center.y;
double d = std::sqrt(dx * dx + dy * dy);
if (d > radius)
{
printf("error!\n");
}
}
#endif
}
_center = center;
_radius = radius;
break;
}
}
}
// calculates length of a curve (e.g. contour perimeter)
double cv::arcLength( InputArray _curve, bool is_closed )
{
CV_INSTRUMENT_REGION()
Mat curve = _curve.getMat();
int count = curve.checkVector(2);
int depth = curve.depth();
CV_Assert( count >= 0 && (depth == CV_32F || depth == CV_32S));
double perimeter = 0;
int i;
if( count <= 1 )
return 0.;
bool is_float = depth == CV_32F;
int last = is_closed ? count-1 : 0;
const Point* pti = curve.ptr<Point>();
const Point2f* ptf = curve.ptr<Point2f>();
Point2f prev = is_float ? ptf[last] : Point2f((float)pti[last].x,(float)pti[last].y);
for( i = 0; i < count; i++ )
{
Point2f p = is_float ? ptf[i] : Point2f((float)pti[i].x,(float)pti[i].y);
float dx = p.x - prev.x, dy = p.y - prev.y;
perimeter += std::sqrt(dx*dx + dy*dy);
prev = p;
}
return perimeter;
}
// area of a whole sequence
double cv::contourArea( InputArray _contour, bool oriented )
{
CV_INSTRUMENT_REGION()
Mat contour = _contour.getMat();
int npoints = contour.checkVector(2);
int depth = contour.depth();
CV_Assert(npoints >= 0 && (depth == CV_32F || depth == CV_32S));
if( npoints == 0 )
return 0.;
double a00 = 0;
bool is_float = depth == CV_32F;
const Point* ptsi = contour.ptr<Point>();
const Point2f* ptsf = contour.ptr<Point2f>();
Point2f prev = is_float ? ptsf[npoints-1] : Point2f((float)ptsi[npoints-1].x, (float)ptsi[npoints-1].y);
for( int i = 0; i < npoints; i++ )
{
Point2f p = is_float ? ptsf[i] : Point2f((float)ptsi[i].x, (float)ptsi[i].y);
a00 += (double)prev.x * p.y - (double)prev.y * p.x;
prev = p;
}
a00 *= 0.5;
if( !oriented )
a00 = fabs(a00);
return a00;
}
cv::RotatedRect cv::fitEllipse( InputArray _points )
{
CV_INSTRUMENT_REGION()
Mat points = _points.getMat();
int i, n = points.checkVector(2);
int depth = points.depth();
CV_Assert( n >= 0 && (depth == CV_32F || depth == CV_32S));
RotatedRect box;
if( n < 5 )
CV_Error( CV_StsBadSize, "There should be at least 5 points to fit the ellipse" );
// New fitellipse algorithm, contributed by Dr. Daniel Weiss
Point2f c(0,0);
double gfp[5] = {0}, rp[5] = {0}, t;
const double min_eps = 1e-8;
bool is_float = depth == CV_32F;
const Point* ptsi = points.ptr<Point>();
const Point2f* ptsf = points.ptr<Point2f>();
AutoBuffer<double> _Ad(n*5), _bd(n);
double *Ad = _Ad, *bd = _bd;
// first fit for parameters A - E
Mat A( n, 5, CV_64F, Ad );
Mat b( n, 1, CV_64F, bd );
Mat x( 5, 1, CV_64F, gfp );
for( i = 0; i < n; i++ )
{
Point2f p = is_float ? ptsf[i] : Point2f((float)ptsi[i].x, (float)ptsi[i].y);
c += p;
}
c.x /= n;
c.y /= n;
for( i = 0; i < n; i++ )
{
Point2f p = is_float ? ptsf[i] : Point2f((float)ptsi[i].x, (float)ptsi[i].y);
p -= c;
bd[i] = 10000.0; // 1.0?
Ad[i*5] = -(double)p.x * p.x; // A - C signs inverted as proposed by APP
Ad[i*5 + 1] = -(double)p.y * p.y;
Ad[i*5 + 2] = -(double)p.x * p.y;
Ad[i*5 + 3] = p.x;
Ad[i*5 + 4] = p.y;
}
solve(A, b, x, DECOMP_SVD);
// now use general-form parameters A - E to find the ellipse center:
// differentiate general form wrt x/y to get two equations for cx and cy
A = Mat( 2, 2, CV_64F, Ad );
b = Mat( 2, 1, CV_64F, bd );
x = Mat( 2, 1, CV_64F, rp );
Ad[0] = 2 * gfp[0];
Ad[1] = Ad[2] = gfp[2];
Ad[3] = 2 * gfp[1];
bd[0] = gfp[3];
bd[1] = gfp[4];
solve( A, b, x, DECOMP_SVD );
// re-fit for parameters A - C with those center coordinates
A = Mat( n, 3, CV_64F, Ad );
b = Mat( n, 1, CV_64F, bd );
x = Mat( 3, 1, CV_64F, gfp );
for( i = 0; i < n; i++ )
{
Point2f p = is_float ? ptsf[i] : Point2f((float)ptsi[i].x, (float)ptsi[i].y);
p -= c;
bd[i] = 1.0;
Ad[i * 3] = (p.x - rp[0]) * (p.x - rp[0]);
Ad[i * 3 + 1] = (p.y - rp[1]) * (p.y - rp[1]);
Ad[i * 3 + 2] = (p.x - rp[0]) * (p.y - rp[1]);
}
solve(A, b, x, DECOMP_SVD);
// store angle and radii
rp[4] = -0.5 * atan2(gfp[2], gfp[1] - gfp[0]); // convert from APP angle usage
if( fabs(gfp[2]) > min_eps )
t = gfp[2]/sin(-2.0 * rp[4]);
else // ellipse is rotated by an integer multiple of pi/2
t = gfp[1] - gfp[0];
rp[2] = fabs(gfp[0] + gfp[1] - t);
if( rp[2] > min_eps )
rp[2] = std::sqrt(2.0 / rp[2]);
rp[3] = fabs(gfp[0] + gfp[1] + t);
if( rp[3] > min_eps )
rp[3] = std::sqrt(2.0 / rp[3]);
box.center.x = (float)rp[0] + c.x;
box.center.y = (float)rp[1] + c.y;
box.size.width = (float)(rp[2]*2);
box.size.height = (float)(rp[3]*2);
if( box.size.width > box.size.height )
{
float tmp;
CV_SWAP( box.size.width, box.size.height, tmp );
box.angle = (float)(90 + rp[4]*180/CV_PI);
}
if( box.angle < -180 )
box.angle += 360;
if( box.angle > 360 )
box.angle -= 360;
return box;
}
cv::RotatedRect cv::fitEllipseAMS( InputArray _points )
{
Mat points = _points.getMat();
int i, n = points.checkVector(2);
int depth = points.depth();
CV_Assert( n >= 0 && (depth == CV_32F || depth == CV_32S));
RotatedRect box;
if( n < 5 )
CV_Error( CV_StsBadSize, "There should be at least 5 points to fit the ellipse" );
Point2f c(0,0);
bool is_float = depth == CV_32F;
const Point* ptsi = points.ptr<Point>();
const Point2f* ptsf = points.ptr<Point2f>();
Mat A( n, 6, CV_64F);
Matx<double, 6, 6> DM;
Matx<double, 5, 5> M;
Matx<double, 5, 1> pVec;
Matx<double, 6, 1> coeffs;
double x0, y0, a, b, theta;
for( i = 0; i < n; i++ )
{
Point2f p = is_float ? ptsf[i] : Point2f((float)ptsi[i].x, (float)ptsi[i].y);
c += p;
}
c.x /= (float)n;
c.y /= (float)n;
for( i = 0; i < n; i++ )
{
Point2f p = is_float ? ptsf[i] : Point2f((float)ptsi[i].x, (float)ptsi[i].y);
p -= c;
A.at<double>(i,0) = (double)(p.x)*(p.x);
A.at<double>(i,1) = (double)(p.x)*(p.y);
A.at<double>(i,2) = (double)(p.y)*(p.y);
A.at<double>(i,3) = (double)p.x;
A.at<double>(i,4) = (double)p.y;
A.at<double>(i,5) = 1.0;
}
cv::mulTransposed( A, DM, true, noArray(), 1.0, -1 );
DM *= (1.0/n);
double dnm = ( DM(2,5)*(DM(0,5) + DM(2,5)) - (DM(1,5)*DM(1,5)) );
double ddm = (4.*(DM(0,5) + DM(2,5))*( (DM(0,5)*DM(2,5)) - (DM(1,5)*DM(1,5))));
double ddmm = (2.*(DM(0,5) + DM(2,5))*( (DM(0,5)*DM(2,5)) - (DM(1,5)*DM(1,5))));
M(0,0)=((-DM(0,0) + DM(0,2) + DM(0,5)*DM(0,5))*(DM(1,5)*DM(1,5)) + (-2*DM(0,1)*DM(1,5) + DM(0,5)*(DM(0,0) \
- (DM(0,5)*DM(0,5)) + (DM(1,5)*DM(1,5))))*DM(2,5) + (DM(0,0) - (DM(0,5)*DM(0,5)))*(DM(2,5)*DM(2,5))) / ddm;
M(0,1)=((DM(1,5)*DM(1,5))*(-DM(0,1) + DM(1,2) + DM(0,5)*DM(1,5)) + (DM(0,1)*DM(0,5) - ((DM(0,5)*DM(0,5)) + 2*DM(1,1))*DM(1,5) + \
(DM(1,5)*DM(1,5)*DM(1,5)))*DM(2,5) + (DM(0,1) - DM(0,5)*DM(1,5))*(DM(2,5)*DM(2,5))) / ddm;
M(0,2)=(-2*DM(1,2)*DM(1,5)*DM(2,5) - DM(0,5)*(DM(2,5)*DM(2,5))*(DM(0,5) + DM(2,5)) + DM(0,2)*dnm + \
(DM(1,5)*DM(1,5))*(DM(2,2) + DM(2,5)*(DM(0,5) + DM(2,5))))/ddm;
M(0,3)=(DM(1,5)*(DM(1,5)*DM(2,3) - 2*DM(1,3)*DM(2,5)) + DM(0,3)*dnm) / ddm;
M(0,4)=(DM(1,5)*(DM(1,5)*DM(2,4) - 2*DM(1,4)*DM(2,5)) + DM(0,4)*dnm) / ddm;
M(1,0)=(-(DM(0,2)*DM(0,5)*DM(1,5)) + (2*DM(0,1)*DM(0,5) - DM(0,0)*DM(1,5))*DM(2,5))/ddmm;
M(1,1)=(-(DM(0,1)*DM(1,5)*DM(2,5)) + DM(0,5)*(-(DM(1,2)*DM(1,5)) + 2*DM(1,1)*DM(2,5)))/ddmm;
M(1,2)=(-(DM(0,2)*DM(1,5)*DM(2,5)) + DM(0,5)*(-(DM(1,5)*DM(2,2)) + 2*DM(1,2)*DM(2,5)))/ddmm;
M(1,3)=(-(DM(0,3)*DM(1,5)*DM(2,5)) + DM(0,5)*(-(DM(1,5)*DM(2,3)) + 2*DM(1,3)*DM(2,5)))/ddmm;
M(1,4)=(-(DM(0,4)*DM(1,5)*DM(2,5)) + DM(0,5)*(-(DM(1,5)*DM(2,4)) + 2*DM(1,4)*DM(2,5)))/ddmm;
M(2,0)=(-2*DM(0,1)*DM(0,5)*DM(1,5) + (DM(0,0) + (DM(0,5)*DM(0,5)))*(DM(1,5)*DM(1,5)) + DM(0,5)*(-(DM(0,5)*DM(0,5)) \
+ (DM(1,5)*DM(1,5)))*DM(2,5) - (DM(0,5)*DM(0,5))*(DM(2,5)*DM(2,5)) + DM(0,2)*(-(DM(1,5)*DM(1,5)) + DM(0,5)*(DM(0,5) + DM(2,5)))) / ddm;
M(2,1)=((DM(0,5)*DM(0,5))*(DM(1,2) - DM(1,5)*DM(2,5)) + (DM(1,5)*DM(1,5))*(DM(0,1) - DM(1,2) + DM(1,5)*DM(2,5)) \
+ DM(0,5)*(DM(1,2)*DM(2,5) + DM(1,5)*(-2*DM(1,1) + (DM(1,5)*DM(1,5)) - (DM(2,5)*DM(2,5))))) / ddm;
M(2,2)=((DM(0,5)*DM(0,5))*(DM(2,2) - (DM(2,5)*DM(2,5))) + (DM(1,5)*DM(1,5))*(DM(0,2) - DM(2,2) + (DM(2,5)*DM(2,5))) + \
DM(0,5)*(-2*DM(1,2)*DM(1,5) + DM(2,5)*((DM(1,5)*DM(1,5)) + DM(2,2) - (DM(2,5)*DM(2,5))))) / ddm;
M(2,3)=((DM(1,5)*DM(1,5))*(DM(0,3) - DM(2,3)) + (DM(0,5)*DM(0,5))*DM(2,3) + DM(0,5)*(-2*DM(1,3)*DM(1,5) + DM(2,3)*DM(2,5))) / ddm;
M(2,4)=((DM(1,5)*DM(1,5))*(DM(0,4) - DM(2,4)) + (DM(0,5)*DM(0,5))*DM(2,4) + DM(0,5)*(-2*DM(1,4)*DM(1,5) + DM(2,4)*DM(2,5))) / ddm;
M(3,0)=DM(0,3);
M(3,1)=DM(1,3);
M(3,2)=DM(2,3);
M(3,3)=DM(3,3);
M(3,4)=DM(3,4);
M(4,0)=DM(0,4);
M(4,1)=DM(1,4);
M(4,2)=DM(2,4);
M(4,3)=DM(3,4);
M(4,4)=DM(4,4);
if (fabs(cv::determinant(M)) > 1.0e-10) {
Mat eVal, eVec;
eigenNonSymmetric(M, eVal, eVec);
// Select the eigen vector {a,b,c,d,e} which has the lowest eigenvalue
int minpos = 0;
double normi, normEVali, normMinpos, normEValMinpos;
normMinpos = sqrt(eVec.at<double>(minpos,0)*eVec.at<double>(minpos,0) + eVec.at<double>(minpos,1)*eVec.at<double>(minpos,1) + \
eVec.at<double>(minpos,2)*eVec.at<double>(minpos,2) + eVec.at<double>(minpos,3)*eVec.at<double>(minpos,3) + \
eVec.at<double>(minpos,4)*eVec.at<double>(minpos,4) );
normEValMinpos = eVal.at<double>(minpos,0) * normMinpos;
for (i=1; i<5; i++) {
normi = sqrt(eVec.at<double>(i,0)*eVec.at<double>(i,0) + eVec.at<double>(i,1)*eVec.at<double>(i,1) + \
eVec.at<double>(i,2)*eVec.at<double>(i,2) + eVec.at<double>(i,3)*eVec.at<double>(i,3) + \
eVec.at<double>(i,4)*eVec.at<double>(i,4) );
normEVali = eVal.at<double>(i,0) * normi;
if (normEVali < normEValMinpos) {
minpos = i;
normMinpos=normi;
normEValMinpos=normEVali;
}
};
pVec(0) =eVec.at<double>(minpos,0) / normMinpos;
pVec(1) =eVec.at<double>(minpos,1) / normMinpos;
pVec(2) =eVec.at<double>(minpos,2) / normMinpos;
pVec(3) =eVec.at<double>(minpos,3) / normMinpos;
pVec(4) =eVec.at<double>(minpos,4) / normMinpos;
coeffs(0) =pVec(0) ;
coeffs(1) =pVec(1) ;
coeffs(2) =pVec(2) ;
coeffs(3) =pVec(3) ;
coeffs(4) =pVec(4) ;
coeffs(5) =-pVec(0) *DM(0,5)-pVec(1) *DM(1,5)-coeffs(2) *DM(2,5);
// Check that an elliptical solution has been found. AMS sometimes produces Parabolic solutions.
bool is_ellipse = (coeffs(0) < 0 && \
coeffs(2) < (coeffs(1) *coeffs(1) )/(4.*coeffs(0) ) && \
coeffs(5) > (-(coeffs(2) *(coeffs(3) *coeffs(3) )) + coeffs(1) *coeffs(3) *coeffs(4) - coeffs(0) *(coeffs(4) *coeffs(4) )) / \
((coeffs(1) *coeffs(1) ) - 4*coeffs(0) *coeffs(2) )) || \
(coeffs(0) > 0 && \
coeffs(2) > (coeffs(1) *coeffs(1) )/(4.*coeffs(0) ) && \
coeffs(5) < (-(coeffs(2) *(coeffs(3) *coeffs(3) )) + coeffs(1) *coeffs(3) *coeffs(4) - coeffs(0) *(coeffs(4) *coeffs(4) )) / \
( (coeffs(1) *coeffs(1) ) - 4*coeffs(0) *coeffs(2) ));
if (is_ellipse) {
double u1 = pVec(2) *pVec(3) *pVec(3) - pVec(1) *pVec(3) *pVec(4) + pVec(0) *pVec(4) *pVec(4) + pVec(1) *pVec(1) *coeffs(5) ;
double u2 = pVec(0) *pVec(2) *coeffs(5) ;
double l1 = sqrt(pVec(1) *pVec(1) + (pVec(0) - pVec(2) )*(pVec(0) - pVec(2) ));
double l2 = pVec(0) + pVec(2) ;
double l3 = pVec(1) *pVec(1) - 4.0*pVec(0) *pVec(2) ;
double p1 = 2.0*pVec(2) *pVec(3) - pVec(1) *pVec(4) ;
double p2 = 2.0*pVec(0) *pVec(4) -(pVec(1) *pVec(3) );
x0 = p1/l3 + c.x;
y0 = p2/l3 + c.y;
a = std::sqrt(2.)*sqrt((u1 - 4.0*u2)/((l1 - l2)*l3));
b = std::sqrt(2.)*sqrt(-1.0*((u1 - 4.0*u2)/((l1 + l2)*l3)));
if (pVec(1) == 0) {
if (pVec(0) < pVec(2) ) {
theta = 0;
} else {
theta = CV_PI/2.;
}
} else {
theta = CV_PI/2. + 0.5*std::atan2(pVec(1) , (pVec(0) - pVec(2) ));
}
box.center.x = (float)x0; // +c.x;
box.center.y = (float)y0; // +c.y;
box.size.width = (float)(2.0*a);
box.size.height = (float)(2.0*b);
if( box.size.width > box.size.height )
{
float tmp;
CV_SWAP( box.size.width, box.size.height, tmp );
box.angle = (float)(90 + theta*180/CV_PI);
} else {
box.angle = (float)(fmod(theta*180/CV_PI,180.0));
};
} else {
box = cv::fitEllipseDirect( points );
}
} else {
box = cv::fitEllipse( points );
}
return box;
}
cv::RotatedRect cv::fitEllipseDirect( InputArray _points )
{
Mat points = _points.getMat();
int i, n = points.checkVector(2);
int depth = points.depth();
CV_Assert( n >= 0 && (depth == CV_32F || depth == CV_32S));
RotatedRect box;
if( n < 5 )
CV_Error( CV_StsBadSize, "There should be at least 5 points to fit the ellipse" );
Point2f c(0,0);
bool is_float = (depth == CV_32F);
const Point* ptsi = points.ptr<Point>();
const Point2f* ptsf = points.ptr<Point2f>();
Mat A( n, 6, CV_64F);
Matx<double, 6, 6> DM;
Matx33d M, TM, Q;
Matx<double, 3, 1> pVec;
double x0, y0, a, b, theta, Ts;
for( i = 0; i < n; i++ )
{
Point2f p = is_float ? ptsf[i] : Point2f((float)ptsi[i].x, (float)ptsi[i].y);
c += p;
}
c.x /= (float)n;
c.y /= (float)n;
for( i = 0; i < n; i++ )
{
Point2f p = is_float ? ptsf[i] : Point2f((float)ptsi[i].x, (float)ptsi[i].y);
p -= c;
A.at<double>(i,0) = (double)(p.x)*(p.x);
A.at<double>(i,1) = (double)(p.x)*(p.y);
A.at<double>(i,2) = (double)(p.y)*(p.y);
A.at<double>(i,3) = (double)p.x;
A.at<double>(i,4) = (double)p.y;
A.at<double>(i,5) = 1.0;
}
cv::mulTransposed( A, DM, true, noArray(), 1.0, -1 );
DM *= (1.0/n);
TM(0,0) = DM(0,5)*DM(3,5)*DM(4,4) - DM(0,5)*DM(3,4)*DM(4,5) - DM(0,4)*DM(3,5)*DM(5,4) + \
DM(0,3)*DM(4,5)*DM(5,4) + DM(0,4)*DM(3,4)*DM(5,5) - DM(0,3)*DM(4,4)*DM(5,5);
TM(0,1) = DM(1,5)*DM(3,5)*DM(4,4) - DM(1,5)*DM(3,4)*DM(4,5) - DM(1,4)*DM(3,5)*DM(5,4) + \
DM(1,3)*DM(4,5)*DM(5,4) + DM(1,4)*DM(3,4)*DM(5,5) - DM(1,3)*DM(4,4)*DM(5,5);
TM(0,2) = DM(2,5)*DM(3,5)*DM(4,4) - DM(2,5)*DM(3,4)*DM(4,5) - DM(2,4)*DM(3,5)*DM(5,4) + \
DM(2,3)*DM(4,5)*DM(5,4) + DM(2,4)*DM(3,4)*DM(5,5) - DM(2,3)*DM(4,4)*DM(5,5);
TM(1,0) = DM(0,5)*DM(3,3)*DM(4,5) - DM(0,5)*DM(3,5)*DM(4,3) + DM(0,4)*DM(3,5)*DM(5,3) - \
DM(0,3)*DM(4,5)*DM(5,3) - DM(0,4)*DM(3,3)*DM(5,5) + DM(0,3)*DM(4,3)*DM(5,5);
TM(1,1) = DM(1,5)*DM(3,3)*DM(4,5) - DM(1,5)*DM(3,5)*DM(4,3) + DM(1,4)*DM(3,5)*DM(5,3) - \
DM(1,3)*DM(4,5)*DM(5,3) - DM(1,4)*DM(3,3)*DM(5,5) + DM(1,3)*DM(4,3)*DM(5,5);
TM(1,2) = DM(2,5)*DM(3,3)*DM(4,5) - DM(2,5)*DM(3,5)*DM(4,3) + DM(2,4)*DM(3,5)*DM(5,3) - \
DM(2,3)*DM(4,5)*DM(5,3) - DM(2,4)*DM(3,3)*DM(5,5) + DM(2,3)*DM(4,3)*DM(5,5);
TM(2,0) = DM(0,5)*DM(3,4)*DM(4,3) - DM(0,5)*DM(3,3)*DM(4,4) - DM(0,4)*DM(3,4)*DM(5,3) + \
DM(0,3)*DM(4,4)*DM(5,3) + DM(0,4)*DM(3,3)*DM(5,4) - DM(0,3)*DM(4,3)*DM(5,4);
TM(2,1) = DM(1,5)*DM(3,4)*DM(4,3) - DM(1,5)*DM(3,3)*DM(4,4) - DM(1,4)*DM(3,4)*DM(5,3) + \
DM(1,3)*DM(4,4)*DM(5,3) + DM(1,4)*DM(3,3)*DM(5,4) - DM(1,3)*DM(4,3)*DM(5,4);
TM(2,2) = DM(2,5)*DM(3,4)*DM(4,3) - DM(2,5)*DM(3,3)*DM(4,4) - DM(2,4)*DM(3,4)*DM(5,3) + \
DM(2,3)*DM(4,4)*DM(5,3) + DM(2,4)*DM(3,3)*DM(5,4) - DM(2,3)*DM(4,3)*DM(5,4);
Ts=(-(DM(3,5)*DM(4,4)*DM(5,3)) + DM(3,4)*DM(4,5)*DM(5,3) + DM(3,5)*DM(4,3)*DM(5,4) - \
DM(3,3)*DM(4,5)*DM(5,4) - DM(3,4)*DM(4,3)*DM(5,5) + DM(3,3)*DM(4,4)*DM(5,5));
M(0,0) = (DM(2,0) + (DM(2,3)*TM(0,0) + DM(2,4)*TM(1,0) + DM(2,5)*TM(2,0))/Ts)/2.;
M(0,1) = (DM(2,1) + (DM(2,3)*TM(0,1) + DM(2,4)*TM(1,1) + DM(2,5)*TM(2,1))/Ts)/2.;
M(0,2) = (DM(2,2) + (DM(2,3)*TM(0,2) + DM(2,4)*TM(1,2) + DM(2,5)*TM(2,2))/Ts)/2.;
M(1,0) = -DM(1,0) - (DM(1,3)*TM(0,0) + DM(1,4)*TM(1,0) + DM(1,5)*TM(2,0))/Ts;
M(1,1) = -DM(1,1) - (DM(1,3)*TM(0,1) + DM(1,4)*TM(1,1) + DM(1,5)*TM(2,1))/Ts;
M(1,2) = -DM(1,2) - (DM(1,3)*TM(0,2) + DM(1,4)*TM(1,2) + DM(1,5)*TM(2,2))/Ts;
M(2,0) = (DM(0,0) + (DM(0,3)*TM(0,0) + DM(0,4)*TM(1,0) + DM(0,5)*TM(2,0))/Ts)/2.;
M(2,1) = (DM(0,1) + (DM(0,3)*TM(0,1) + DM(0,4)*TM(1,1) + DM(0,5)*TM(2,1))/Ts)/2.;
M(2,2) = (DM(0,2) + (DM(0,3)*TM(0,2) + DM(0,4)*TM(1,2) + DM(0,5)*TM(2,2))/Ts)/2.;
if (fabs(cv::determinant(M)) > 1.0e-10) {
Mat eVal, eVec;
eigenNonSymmetric(M, eVal, eVec);
// Select the eigen vector {a,b,c} which satisfies 4ac-b^2 > 0
double cond[3];
cond[0]=(4.0 * eVec.at<double>(0,0) * eVec.at<double>(0,2) - eVec.at<double>(0,1) * eVec.at<double>(0,1));
cond[1]=(4.0 * eVec.at<double>(1,0) * eVec.at<double>(1,2) - eVec.at<double>(1,1) * eVec.at<double>(1,1));
cond[2]=(4.0 * eVec.at<double>(2,0) * eVec.at<double>(2,2) - eVec.at<double>(2,1) * eVec.at<double>(2,1));
if (cond[0]<cond[1]) {
i = (cond[1]<cond[2]) ? 2 : 1;
} else {
i = (cond[0]<cond[2]) ? 2 : 0;
}
double norm = std::sqrt(eVec.at<double>(i,0)*eVec.at<double>(i,0) + eVec.at<double>(i,1)*eVec.at<double>(i,1) + eVec.at<double>(i,2)*eVec.at<double>(i,2));
if (((eVec.at<double>(i,0)<0.0 ? -1 : 1) * (eVec.at<double>(i,1)<0.0 ? -1 : 1) * (eVec.at<double>(i,2)<0.0 ? -1 : 1)) <= 0.0) {
norm=-1.0*norm;
}
pVec(0) =eVec.at<double>(i,0)/norm; pVec(1) =eVec.at<double>(i,1)/norm;pVec(2) =eVec.at<double>(i,2)/norm;
// Q = (TM . pVec)/Ts;
Q(0,0) = (TM(0,0)*pVec(0) +TM(0,1)*pVec(1) +TM(0,2)*pVec(2) )/Ts;
Q(0,1) = (TM(1,0)*pVec(0) +TM(1,1)*pVec(1) +TM(1,2)*pVec(2) )/Ts;
Q(0,2) = (TM(2,0)*pVec(0) +TM(2,1)*pVec(1) +TM(2,2)*pVec(2) )/Ts;
// We compute the ellipse properties in the shifted coordinates as doing so improves the numerical accuracy.
double u1 = pVec(2)*Q(0,0)*Q(0,0) - pVec(1)*Q(0,0)*Q(0,1) + pVec(0)*Q(0,1)*Q(0,1) + pVec(1)*pVec(1)*Q(0,2);
double u2 = pVec(0)*pVec(2)*Q(0,2);
double l1 = sqrt(pVec(1)*pVec(1) + (pVec(0) - pVec(2))*(pVec(0) - pVec(2)));
double l2 = pVec(0) + pVec(2) ;
double l3 = pVec(1)*pVec(1) - 4*pVec(0)*pVec(2) ;
double p1 = 2*pVec(2)*Q(0,0) - pVec(1)*Q(0,1);
double p2 = 2*pVec(0)*Q(0,1) - pVec(1)*Q(0,0);
x0 = p1/l3 + c.x;
y0 = p2/l3 + c.y;
a = sqrt(2.)*sqrt((u1 - 4.0*u2)/((l1 - l2)*l3));
b = sqrt(2.)*sqrt(-1.0*((u1 - 4.0*u2)/((l1 + l2)*l3)));
if (pVec(1) == 0) {
if (pVec(0) < pVec(2) ) {
theta = 0;
} else {
theta = CV_PI/2.;
}
} else {
theta = CV_PI/2. + 0.5*std::atan2(pVec(1) , (pVec(0) - pVec(2) ));
}
box.center.x = (float)x0;
box.center.y = (float)y0;
box.size.width = (float)(2.0*a);
box.size.height = (float)(2.0*b);
if( box.size.width > box.size.height )
{
float tmp;
CV_SWAP( box.size.width, box.size.height, tmp );
box.angle = (float)(fmod((90 + theta*180/CV_PI),180.0)) ;
} else {
box.angle = (float)(fmod(theta*180/CV_PI,180.0));
};
} else {
box = cv::fitEllipse( points );
}
return box;
}
namespace cv
{
// Calculates bounding rectagnle of a point set or retrieves already calculated
static Rect pointSetBoundingRect( const Mat& points )
{
int npoints = points.checkVector(2);
int depth = points.depth();
CV_Assert(npoints >= 0 && (depth == CV_32F || depth == CV_32S));
int xmin = 0, ymin = 0, xmax = -1, ymax = -1, i;
bool is_float = depth == CV_32F;
if( npoints == 0 )
return Rect();
const Point* pts = points.ptr<Point>();
Point pt = pts[0];
#if CV_SSE4_2
if(cv::checkHardwareSupport(CV_CPU_SSE4_2))
{
if( !is_float )
{
__m128i minval, maxval;
minval = maxval = _mm_loadl_epi64((const __m128i*)(&pt)); //min[0]=pt.x, min[1]=pt.y
for( i = 1; i < npoints; i++ )
{
__m128i ptXY = _mm_loadl_epi64((const __m128i*)&pts[i]);
minval = _mm_min_epi32(ptXY, minval);
maxval = _mm_max_epi32(ptXY, maxval);
}
xmin = _mm_cvtsi128_si32(minval);
ymin = _mm_cvtsi128_si32(_mm_srli_si128(minval, 4));
xmax = _mm_cvtsi128_si32(maxval);
ymax = _mm_cvtsi128_si32(_mm_srli_si128(maxval, 4));
}
else
{
__m128 minvalf, maxvalf, z = _mm_setzero_ps(), ptXY = _mm_setzero_ps();
minvalf = maxvalf = _mm_loadl_pi(z, (const __m64*)(&pt));
for( i = 1; i < npoints; i++ )
{
ptXY = _mm_loadl_pi(ptXY, (const __m64*)&pts[i]);
minvalf = _mm_min_ps(minvalf, ptXY);
maxvalf = _mm_max_ps(maxvalf, ptXY);
}
float xyminf[2], xymaxf[2];
_mm_storel_pi((__m64*)xyminf, minvalf);
_mm_storel_pi((__m64*)xymaxf, maxvalf);
xmin = cvFloor(xyminf[0]);
ymin = cvFloor(xyminf[1]);
xmax = cvFloor(xymaxf[0]);
ymax = cvFloor(xymaxf[1]);
}
}
else
#endif
{
if( !is_float )
{
xmin = xmax = pt.x;
ymin = ymax = pt.y;
for( i = 1; i < npoints; i++ )
{
pt = pts[i];
if( xmin > pt.x )
xmin = pt.x;
if( xmax < pt.x )
xmax = pt.x;
if( ymin > pt.y )
ymin = pt.y;
if( ymax < pt.y )
ymax = pt.y;
}
}
else
{
Cv32suf v;
// init values
xmin = xmax = CV_TOGGLE_FLT(pt.x);
ymin = ymax = CV_TOGGLE_FLT(pt.y);
for( i = 1; i < npoints; i++ )
{
pt = pts[i];
pt.x = CV_TOGGLE_FLT(pt.x);
pt.y = CV_TOGGLE_FLT(pt.y);
if( xmin > pt.x )
xmin = pt.x;
if( xmax < pt.x )
xmax = pt.x;
if( ymin > pt.y )
ymin = pt.y;
if( ymax < pt.y )
ymax = pt.y;
}
v.i = CV_TOGGLE_FLT(xmin); xmin = cvFloor(v.f);
v.i = CV_TOGGLE_FLT(ymin); ymin = cvFloor(v.f);
// because right and bottom sides of the bounding rectangle are not inclusive
// (note +1 in width and height calculation below), cvFloor is used here instead of cvCeil
v.i = CV_TOGGLE_FLT(xmax); xmax = cvFloor(v.f);
v.i = CV_TOGGLE_FLT(ymax); ymax = cvFloor(v.f);
}
}
return Rect(xmin, ymin, xmax - xmin + 1, ymax - ymin + 1);
}
static Rect maskBoundingRect( const Mat& img )
{
CV_Assert( img.depth() <= CV_8S && img.channels() == 1 );
Size size = img.size();
int xmin = size.width, ymin = -1, xmax = -1, ymax = -1, i, j, k;
for( i = 0; i < size.height; i++ )
{
const uchar* _ptr = img.ptr(i);
const uchar* ptr = (const uchar*)alignPtr(_ptr, 4);
int have_nz = 0, k_min, offset = (int)(ptr - _ptr);
j = 0;
offset = MIN(offset, size.width);
for( ; j < offset; j++ )
if( _ptr[j] )
{
have_nz = 1;
break;
}
if( j < offset )
{
if( j < xmin )
xmin = j;
if( j > xmax )
xmax = j;
}
if( offset < size.width )
{
xmin -= offset;
xmax -= offset;
size.width -= offset;
j = 0;
for( ; j <= xmin - 4; j += 4 )
if( *((int*)(ptr+j)) )
break;
for( ; j < xmin; j++ )
if( ptr[j] )
{
xmin = j;
if( j > xmax )
xmax = j;
have_nz = 1;
break;
}
k_min = MAX(j-1, xmax);
k = size.width - 1;
for( ; k > k_min && (k&3) != 3; k-- )
if( ptr[k] )
break;
if( k > k_min && (k&3) == 3 )
{
for( ; k > k_min+3; k -= 4 )
if( *((int*)(ptr+k-3)) )
break;
}
for( ; k > k_min; k-- )
if( ptr[k] )
{
xmax = k;
have_nz = 1;
break;
}
if( !have_nz )
{
j &= ~3;
for( ; j <= k - 3; j += 4 )
if( *((int*)(ptr+j)) )
break;
for( ; j <= k; j++ )
if( ptr[j] )
{
have_nz = 1;
break;
}
}
xmin += offset;
xmax += offset;
size.width += offset;
}
if( have_nz )
{
if( ymin < 0 )
ymin = i;
ymax = i;
}
}
if( xmin >= size.width )
xmin = ymin = 0;
return Rect(xmin, ymin, xmax - xmin + 1, ymax - ymin + 1);
}
}
cv::Rect cv::boundingRect(InputArray array)
{
CV_INSTRUMENT_REGION()
Mat m = array.getMat();
return m.depth() <= CV_8U ? maskBoundingRect(m) : pointSetBoundingRect(m);
}
////////////////////////////////////////////// C API ///////////////////////////////////////////
CV_IMPL int
cvMinEnclosingCircle( const void* array, CvPoint2D32f * _center, float *_radius )
{
cv::AutoBuffer<double> abuf;
cv::Mat points = cv::cvarrToMat(array, false, false, 0, &abuf);
cv::Point2f center;
float radius;
cv::minEnclosingCircle(points, center, radius);
if(_center)
*_center = center;
if(_radius)
*_radius = radius;
return 1;
}
static void
icvMemCopy( double **buf1, double **buf2, double **buf3, int *b_max )
{
CV_Assert( (*buf1 != NULL || *buf2 != NULL) && *buf3 != NULL );
int bb = *b_max;
if( *buf2 == NULL )
{
*b_max = 2 * (*b_max);
*buf2 = (double *)cvAlloc( (*b_max) * sizeof( double ));
memcpy( *buf2, *buf3, bb * sizeof( double ));
*buf3 = *buf2;
cvFree( buf1 );
*buf1 = NULL;
}
else
{
*b_max = 2 * (*b_max);
*buf1 = (double *) cvAlloc( (*b_max) * sizeof( double ));
memcpy( *buf1, *buf3, bb * sizeof( double ));
*buf3 = *buf1;
cvFree( buf2 );
*buf2 = NULL;
}
}
/* area of a contour sector */
static double icvContourSecArea( CvSeq * contour, CvSlice slice )
{
CvPoint pt; /* pointer to points */
CvPoint pt_s, pt_e; /* first and last points */
CvSeqReader reader; /* points reader of contour */
int p_max = 2, p_ind;
int lpt, flag, i;
double a00; /* unnormalized moments m00 */
double xi, yi, xi_1, yi_1, x0, y0, dxy, sk, sk1, t;
double x_s, y_s, nx, ny, dx, dy, du, dv;
double eps = 1.e-5;
double *p_are1, *p_are2, *p_are;
double area = 0;
CV_Assert( contour != NULL && CV_IS_SEQ_POINT_SET( contour ));
lpt = cvSliceLength( slice, contour );
/*if( n2 >= n1 )
lpt = n2 - n1 + 1;
else
lpt = contour->total - n1 + n2 + 1;*/
if( contour->total <= 0 || lpt <= 2 )
return 0.;
a00 = x0 = y0 = xi_1 = yi_1 = 0;
sk1 = 0;
flag = 0;
dxy = 0;
p_are1 = (double *) cvAlloc( p_max * sizeof( double ));
p_are = p_are1;
p_are2 = NULL;
cvStartReadSeq( contour, &reader, 0 );
cvSetSeqReaderPos( &reader, slice.start_index );
CV_READ_SEQ_ELEM( pt_s, reader );
p_ind = 0;
cvSetSeqReaderPos( &reader, slice.end_index );
CV_READ_SEQ_ELEM( pt_e, reader );
/* normal coefficients */
nx = pt_s.y - pt_e.y;
ny = pt_e.x - pt_s.x;
cvSetSeqReaderPos( &reader, slice.start_index );
while( lpt-- > 0 )
{
CV_READ_SEQ_ELEM( pt, reader );
if( flag == 0 )
{
xi_1 = (double) pt.x;
yi_1 = (double) pt.y;
x0 = xi_1;
y0 = yi_1;
sk1 = 0;
flag = 1;
}
else
{
xi = (double) pt.x;
yi = (double) pt.y;
/**************** edges intersection examination **************************/
sk = nx * (xi - pt_s.x) + ny * (yi - pt_s.y);
if( (fabs( sk ) < eps && lpt > 0) || sk * sk1 < -eps )
{
if( fabs( sk ) < eps )
{
dxy = xi_1 * yi - xi * yi_1;
a00 = a00 + dxy;
dxy = xi * y0 - x0 * yi;
a00 = a00 + dxy;
if( p_ind >= p_max )
icvMemCopy( &p_are1, &p_are2, &p_are, &p_max );
p_are[p_ind] = a00 / 2.;
p_ind++;
a00 = 0;
sk1 = 0;
x0 = xi;
y0 = yi;
dxy = 0;
}
else
{
/* define intersection point */
dv = yi - yi_1;
du = xi - xi_1;
dx = ny;
dy = -nx;
if( fabs( du ) > eps )
t = ((yi_1 - pt_s.y) * du + dv * (pt_s.x - xi_1)) /
(du * dy - dx * dv);
else
t = (xi_1 - pt_s.x) / dx;
if( t > eps && t < 1 - eps )
{
x_s = pt_s.x + t * dx;
y_s = pt_s.y + t * dy;
dxy = xi_1 * y_s - x_s * yi_1;
a00 += dxy;
dxy = x_s * y0 - x0 * y_s;
a00 += dxy;
if( p_ind >= p_max )
icvMemCopy( &p_are1, &p_are2, &p_are, &p_max );
p_are[p_ind] = a00 / 2.;
p_ind++;
a00 = 0;
sk1 = 0;
x0 = x_s;
y0 = y_s;
dxy = x_s * yi - xi * y_s;
}
}
}
else
dxy = xi_1 * yi - xi * yi_1;
a00 += dxy;
xi_1 = xi;
yi_1 = yi;
sk1 = sk;
}
}
xi = x0;
yi = y0;
dxy = xi_1 * yi - xi * yi_1;
a00 += dxy;
if( p_ind >= p_max )
icvMemCopy( &p_are1, &p_are2, &p_are, &p_max );
p_are[p_ind] = a00 / 2.;
p_ind++;
// common area calculation
area = 0;
for( i = 0; i < p_ind; i++ )
area += fabs( p_are[i] );
if( p_are1 != NULL )
cvFree( &p_are1 );
else if( p_are2 != NULL )
cvFree( &p_are2 );
return area;
}
/* external contour area function */
CV_IMPL double
cvContourArea( const void *array, CvSlice slice, int oriented )
{
double area = 0;
CvContour contour_header;
CvSeq* contour = 0;
CvSeqBlock block;
if( CV_IS_SEQ( array ))
{
contour = (CvSeq*)array;
if( !CV_IS_SEQ_POLYLINE( contour ))
CV_Error( CV_StsBadArg, "Unsupported sequence type" );
}
else
{
contour = cvPointSeqFromMat( CV_SEQ_KIND_CURVE, array, &contour_header, &block );
}
if( cvSliceLength( slice, contour ) == contour->total )
{
cv::AutoBuffer<double> abuf;
cv::Mat points = cv::cvarrToMat(contour, false, false, 0, &abuf);
return cv::contourArea( points, oriented !=0 );
}
if( CV_SEQ_ELTYPE( contour ) != CV_32SC2 )
CV_Error( CV_StsUnsupportedFormat,
"Only curves with integer coordinates are supported in case of contour slice" );
area = icvContourSecArea( contour, slice );
return oriented ? area : fabs(area);
}
/* calculates length of a curve (e.g. contour perimeter) */
CV_IMPL double
cvArcLength( const void *array, CvSlice slice, int is_closed )
{
double perimeter = 0;
int i, j = 0, count;
const int N = 16;
float buf[N];
CvMat buffer = cvMat( 1, N, CV_32F, buf );
CvSeqReader reader;
CvContour contour_header;
CvSeq* contour = 0;
CvSeqBlock block;
if( CV_IS_SEQ( array ))
{
contour = (CvSeq*)array;
if( !CV_IS_SEQ_POLYLINE( contour ))
CV_Error( CV_StsBadArg, "Unsupported sequence type" );
if( is_closed < 0 )
is_closed = CV_IS_SEQ_CLOSED( contour );
}
else
{
is_closed = is_closed > 0;
contour = cvPointSeqFromMat(
CV_SEQ_KIND_CURVE | (is_closed ? CV_SEQ_FLAG_CLOSED : 0),
array, &contour_header, &block );
}
if( contour->total > 1 )
{
int is_float = CV_SEQ_ELTYPE( contour ) == CV_32FC2;
cvStartReadSeq( contour, &reader, 0 );
cvSetSeqReaderPos( &reader, slice.start_index );
count = cvSliceLength( slice, contour );
count -= !is_closed && count == contour->total;
// scroll the reader by 1 point
reader.prev_elem = reader.ptr;
CV_NEXT_SEQ_ELEM( sizeof(CvPoint), reader );
for( i = 0; i < count; i++ )
{
float dx, dy;
if( !is_float )
{
CvPoint* pt = (CvPoint*)reader.ptr;
CvPoint* prev_pt = (CvPoint*)reader.prev_elem;
dx = (float)pt->x - (float)prev_pt->x;
dy = (float)pt->y - (float)prev_pt->y;
}
else
{
CvPoint2D32f* pt = (CvPoint2D32f*)reader.ptr;
CvPoint2D32f* prev_pt = (CvPoint2D32f*)reader.prev_elem;
dx = pt->x - prev_pt->x;
dy = pt->y - prev_pt->y;
}
reader.prev_elem = reader.ptr;
CV_NEXT_SEQ_ELEM( contour->elem_size, reader );
// Bugfix by Axel at rubico.com 2010-03-22, affects closed slices only
// wraparound not handled by CV_NEXT_SEQ_ELEM
if( is_closed && i == count - 2 )
cvSetSeqReaderPos( &reader, slice.start_index );
buffer.data.fl[j] = dx * dx + dy * dy;
if( ++j == N || i == count - 1 )
{
buffer.cols = j;
cvPow( &buffer, &buffer, 0.5 );
for( ; j > 0; j-- )
perimeter += buffer.data.fl[j-1];
}
}
}
return perimeter;
}
CV_IMPL CvBox2D
cvFitEllipse2( const CvArr* array )
{
cv::AutoBuffer<double> abuf;
cv::Mat points = cv::cvarrToMat(array, false, false, 0, &abuf);
return cv::fitEllipse(points);
}
/* Calculates bounding rectagnle of a point set or retrieves already calculated */
CV_IMPL CvRect
cvBoundingRect( CvArr* array, int update )
{
CvRect rect;
CvContour contour_header;
CvSeq* ptseq = 0;
CvSeqBlock block;
CvMat stub, *mat = 0;
int calculate = update;
if( CV_IS_SEQ( array ))
{
ptseq = (CvSeq*)array;
if( !CV_IS_SEQ_POINT_SET( ptseq ))
CV_Error( CV_StsBadArg, "Unsupported sequence type" );
if( ptseq->header_size < (int)sizeof(CvContour))
{
update = 0;
calculate = 1;
}
}
else
{
mat = cvGetMat( array, &stub );
if( CV_MAT_TYPE(mat->type) == CV_32SC2 ||
CV_MAT_TYPE(mat->type) == CV_32FC2 )
{
ptseq = cvPointSeqFromMat(CV_SEQ_KIND_GENERIC, mat, &contour_header, &block);
mat = 0;
}
else if( CV_MAT_TYPE(mat->type) != CV_8UC1 &&
CV_MAT_TYPE(mat->type) != CV_8SC1 )
CV_Error( CV_StsUnsupportedFormat,
"The image/matrix format is not supported by the function" );
update = 0;
calculate = 1;
}
if( !calculate )
return ((CvContour*)ptseq)->rect;
if( mat )
{
rect = cv::maskBoundingRect(cv::cvarrToMat(mat));
}
else if( ptseq->total )
{
cv::AutoBuffer<double> abuf;
rect = cv::pointSetBoundingRect(cv::cvarrToMat(ptseq, false, false, 0, &abuf));
}
if( update )
((CvContour*)ptseq)->rect = rect;
return rect;
}
/* End of file. */