opencv/apps/haartraining/cvsamples.cpp

954 lines
28 KiB
C++

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
/*
* cvsamples.cpp
*
* support functions for training and test samples creation.
*/
#include "cvhaartraining.h"
#include "_cvhaartraining.h"
/* if ipl.h file is included then iplWarpPerspectiveQ function
is used for image transformation during samples creation;
otherwise internal cvWarpPerspective function is used */
//#include <ipl.h>
#include "cv.h"
#include "highgui.h"
/* Calculates coefficients of perspective transformation
* which maps <quad> into rectangle ((0,0), (w,0), (w,h), (h,0)):
*
* c00*xi + c01*yi + c02
* ui = ---------------------
* c20*xi + c21*yi + c22
*
* c10*xi + c11*yi + c12
* vi = ---------------------
* c20*xi + c21*yi + c22
*
* Coefficients are calculated by solving linear system:
* / x0 y0 1 0 0 0 -x0*u0 -y0*u0 \ /c00\ /u0\
* | x1 y1 1 0 0 0 -x1*u1 -y1*u1 | |c01| |u1|
* | x2 y2 1 0 0 0 -x2*u2 -y2*u2 | |c02| |u2|
* | x3 y3 1 0 0 0 -x3*u3 -y3*u3 |.|c10|=|u3|,
* | 0 0 0 x0 y0 1 -x0*v0 -y0*v0 | |c11| |v0|
* | 0 0 0 x1 y1 1 -x1*v1 -y1*v1 | |c12| |v1|
* | 0 0 0 x2 y2 1 -x2*v2 -y2*v2 | |c20| |v2|
* \ 0 0 0 x3 y3 1 -x3*v3 -y3*v3 / \c21/ \v3/
*
* where:
* (xi, yi) = (quad[i][0], quad[i][1])
* cij - coeffs[i][j], coeffs[2][2] = 1
* (ui, vi) - rectangle vertices
*/
static void cvGetPerspectiveTransform( CvSize src_size, double quad[4][2],
double coeffs[3][3] )
{
//CV_FUNCNAME( "cvWarpPerspective" );
__BEGIN__;
double a[8][8];
double b[8];
CvMat A = cvMat( 8, 8, CV_64FC1, a );
CvMat B = cvMat( 8, 1, CV_64FC1, b );
CvMat X = cvMat( 8, 1, CV_64FC1, coeffs );
int i;
for( i = 0; i < 4; ++i )
{
a[i][0] = quad[i][0]; a[i][1] = quad[i][1]; a[i][2] = 1;
a[i][3] = a[i][4] = a[i][5] = a[i][6] = a[i][7] = 0;
b[i] = 0;
}
for( i = 4; i < 8; ++i )
{
a[i][3] = quad[i-4][0]; a[i][4] = quad[i-4][1]; a[i][5] = 1;
a[i][0] = a[i][1] = a[i][2] = a[i][6] = a[i][7] = 0;
b[i] = 0;
}
int u = src_size.width - 1;
int v = src_size.height - 1;
a[1][6] = -quad[1][0] * u; a[1][7] = -quad[1][1] * u;
a[2][6] = -quad[2][0] * u; a[2][7] = -quad[2][1] * u;
b[1] = b[2] = u;
a[6][6] = -quad[2][0] * v; a[6][7] = -quad[2][1] * v;
a[7][6] = -quad[3][0] * v; a[7][7] = -quad[3][1] * v;
b[6] = b[7] = v;
cvSolve( &A, &B, &X );
coeffs[2][2] = 1;
__END__;
}
/* Warps source into destination by a perspective transform */
static void cvWarpPerspective( CvArr* src, CvArr* dst, double quad[4][2] )
{
CV_FUNCNAME( "cvWarpPerspective" );
__BEGIN__;
#ifdef __IPL_H__
IplImage src_stub, dst_stub;
IplImage* src_img;
IplImage* dst_img;
CV_CALL( src_img = cvGetImage( src, &src_stub ) );
CV_CALL( dst_img = cvGetImage( dst, &dst_stub ) );
iplWarpPerspectiveQ( src_img, dst_img, quad, IPL_WARP_R_TO_Q,
IPL_INTER_CUBIC | IPL_SMOOTH_EDGE );
#else
int fill_value = 0;
double c[3][3]; /* transformation coefficients */
double q[4][2]; /* rearranged quad */
int left = 0;
int right = 0;
int next_right = 0;
int next_left = 0;
double y_min = 0;
double y_max = 0;
double k_left, b_left, k_right, b_right;
uchar* src_data;
int src_step;
CvSize src_size;
uchar* dst_data;
int dst_step;
CvSize dst_size;
double d = 0;
int direction = 0;
int i;
if( !src || (!CV_IS_IMAGE( src ) && !CV_IS_MAT( src )) ||
cvGetElemType( src ) != CV_8UC1 ||
cvGetDims( src ) != 2 )
{
CV_ERROR( CV_StsBadArg,
"Source must be two-dimensional array of CV_8UC1 type." );
}
if( !dst || (!CV_IS_IMAGE( dst ) && !CV_IS_MAT( dst )) ||
cvGetElemType( dst ) != CV_8UC1 ||
cvGetDims( dst ) != 2 )
{
CV_ERROR( CV_StsBadArg,
"Destination must be two-dimensional array of CV_8UC1 type." );
}
CV_CALL( cvGetRawData( src, &src_data, &src_step, &src_size ) );
CV_CALL( cvGetRawData( dst, &dst_data, &dst_step, &dst_size ) );
CV_CALL( cvGetPerspectiveTransform( src_size, quad, c ) );
/* if direction > 0 then vertices in quad follow in a CW direction,
otherwise they follow in a CCW direction */
direction = 0;
for( i = 0; i < 4; ++i )
{
int ni = i + 1; if( ni == 4 ) ni = 0;
int pi = i - 1; if( pi == -1 ) pi = 3;
d = (quad[i][0] - quad[pi][0])*(quad[ni][1] - quad[i][1]) -
(quad[i][1] - quad[pi][1])*(quad[ni][0] - quad[i][0]);
int cur_direction = CV_SIGN(d);
if( direction == 0 )
{
direction = cur_direction;
}
else if( direction * cur_direction < 0 )
{
direction = 0;
break;
}
}
if( direction == 0 )
{
CV_ERROR( CV_StsBadArg, "Quadrangle is nonconvex or degenerated." );
}
/* <left> is the index of the topmost quad vertice
if there are two such vertices <left> is the leftmost one */
left = 0;
for( i = 1; i < 4; ++i )
{
if( (quad[i][1] < quad[left][1]) ||
((quad[i][1] == quad[left][1]) && (quad[i][0] < quad[left][0])) )
{
left = i;
}
}
/* rearrange <quad> vertices in such way that they follow in a CW
direction and the first vertice is the topmost one and put them
into <q> */
if( direction > 0 )
{
for( i = left; i < 4; ++i )
{
q[i-left][0] = quad[i][0];
q[i-left][1] = quad[i][1];
}
for( i = 0; i < left; ++i )
{
q[4-left+i][0] = quad[i][0];
q[4-left+i][1] = quad[i][1];
}
}
else
{
for( i = left; i >= 0; --i )
{
q[left-i][0] = quad[i][0];
q[left-i][1] = quad[i][1];
}
for( i = 3; i > left; --i )
{
q[4+left-i][0] = quad[i][0];
q[4+left-i][1] = quad[i][1];
}
}
left = right = 0;
/* if there are two topmost points, <right> is the index of the rightmost one
otherwise <right> */
if( q[left][1] == q[left+1][1] )
{
right = 1;
}
/* <next_left> follows <left> in a CCW direction */
next_left = 3;
/* <next_right> follows <right> in a CW direction */
next_right = right + 1;
/* subtraction of 1 prevents skipping of the first row */
y_min = q[left][1] - 1;
/* left edge equation: y = k_left * x + b_left */
k_left = (q[left][0] - q[next_left][0]) /
(q[left][1] - q[next_left][1]);
b_left = (q[left][1] * q[next_left][0] -
q[left][0] * q[next_left][1]) /
(q[left][1] - q[next_left][1]);
/* right edge equation: y = k_right * x + b_right */
k_right = (q[right][0] - q[next_right][0]) /
(q[right][1] - q[next_right][1]);
b_right = (q[right][1] * q[next_right][0] -
q[right][0] * q[next_right][1]) /
(q[right][1] - q[next_right][1]);
for(;;)
{
int x, y;
y_max = MIN( q[next_left][1], q[next_right][1] );
int iy_min = MAX( cvRound(y_min), 0 ) + 1;
int iy_max = MIN( cvRound(y_max), dst_size.height - 1 );
double x_min = k_left * iy_min + b_left;
double x_max = k_right * iy_min + b_right;
/* walk through the destination quadrangle row by row */
for( y = iy_min; y <= iy_max; ++y )
{
int ix_min = MAX( cvRound( x_min ), 0 );
int ix_max = MIN( cvRound( x_max ), dst_size.width - 1 );
for( x = ix_min; x <= ix_max; ++x )
{
/* calculate coordinates of the corresponding source array point */
double div = (c[2][0] * x + c[2][1] * y + c[2][2]);
double src_x = (c[0][0] * x + c[0][1] * y + c[0][2]) / div;
double src_y = (c[1][0] * x + c[1][1] * y + c[1][2]) / div;
int isrc_x = cvFloor( src_x );
int isrc_y = cvFloor( src_y );
double delta_x = src_x - isrc_x;
double delta_y = src_y - isrc_y;
uchar* s = src_data + isrc_y * src_step + isrc_x;
int i00, i10, i01, i11;
i00 = i10 = i01 = i11 = (int) fill_value;
/* linear interpolation using 2x2 neighborhood */
if( isrc_x >= 0 && isrc_x <= src_size.width &&
isrc_y >= 0 && isrc_y <= src_size.height )
{
i00 = s[0];
}
if( isrc_x >= -1 && isrc_x < src_size.width &&
isrc_y >= 0 && isrc_y <= src_size.height )
{
i10 = s[1];
}
if( isrc_x >= 0 && isrc_x <= src_size.width &&
isrc_y >= -1 && isrc_y < src_size.height )
{
i01 = s[src_step];
}
if( isrc_x >= -1 && isrc_x < src_size.width &&
isrc_y >= -1 && isrc_y < src_size.height )
{
i11 = s[src_step+1];
}
double i0 = i00 + (i10 - i00)*delta_x;
double i1 = i01 + (i11 - i01)*delta_x;
((uchar*)(dst_data + y * dst_step))[x] = (uchar) (i0 + (i1 - i0)*delta_y);
}
x_min += k_left;
x_max += k_right;
}
if( (next_left == next_right) ||
(next_left+1 == next_right && q[next_left][1] == q[next_right][1]) )
{
break;
}
if( y_max == q[next_left][1] )
{
left = next_left;
next_left = left - 1;
k_left = (q[left][0] - q[next_left][0]) /
(q[left][1] - q[next_left][1]);
b_left = (q[left][1] * q[next_left][0] -
q[left][0] * q[next_left][1]) /
(q[left][1] - q[next_left][1]);
}
if( y_max == q[next_right][1] )
{
right = next_right;
next_right = right + 1;
k_right = (q[right][0] - q[next_right][0]) /
(q[right][1] - q[next_right][1]);
b_right = (q[right][1] * q[next_right][0] -
q[right][0] * q[next_right][1]) /
(q[right][1] - q[next_right][1]);
}
y_min = y_max;
}
#endif /* #ifndef __IPL_H__ */
__END__;
}
static
void icvRandomQuad( int width, int height, double quad[4][2],
double maxxangle,
double maxyangle,
double maxzangle )
{
double distfactor = 3.0;
double distfactor2 = 1.0;
double halfw, halfh;
int i;
double rotVectData[3];
double vectData[3];
double rotMatData[9];
CvMat rotVect;
CvMat rotMat;
CvMat vect;
double d;
rotVect = cvMat( 3, 1, CV_64FC1, &rotVectData[0] );
rotMat = cvMat( 3, 3, CV_64FC1, &rotMatData[0] );
vect = cvMat( 3, 1, CV_64FC1, &vectData[0] );
rotVectData[0] = maxxangle * (2.0 * rand() / RAND_MAX - 1.0);
rotVectData[1] = ( maxyangle - fabs( rotVectData[0] ) )
* (2.0 * rand() / RAND_MAX - 1.0);
rotVectData[2] = maxzangle * (2.0 * rand() / RAND_MAX - 1.0);
d = (distfactor + distfactor2 * (2.0 * rand() / RAND_MAX - 1.0)) * width;
/*
rotVectData[0] = maxxangle;
rotVectData[1] = maxyangle;
rotVectData[2] = maxzangle;
d = distfactor * width;
*/
cvRodrigues2( &rotVect, &rotMat );
halfw = 0.5 * width;
halfh = 0.5 * height;
quad[0][0] = -halfw;
quad[0][1] = -halfh;
quad[1][0] = halfw;
quad[1][1] = -halfh;
quad[2][0] = halfw;
quad[2][1] = halfh;
quad[3][0] = -halfw;
quad[3][1] = halfh;
for( i = 0; i < 4; i++ )
{
rotVectData[0] = quad[i][0];
rotVectData[1] = quad[i][1];
rotVectData[2] = 0.0;
cvMatMulAdd( &rotMat, &rotVect, 0, &vect );
quad[i][0] = vectData[0] * d / (d + vectData[2]) + halfw;
quad[i][1] = vectData[1] * d / (d + vectData[2]) + halfh;
/*
quad[i][0] += halfw;
quad[i][1] += halfh;
*/
}
}
int icvStartSampleDistortion( const char* imgfilename, int bgcolor, int bgthreshold,
CvSampleDistortionData* data )
{
memset( data, 0, sizeof( *data ) );
data->src = cvLoadImage( imgfilename, 0 );
if( data->src != NULL && data->src->nChannels == 1
&& data->src->depth == IPL_DEPTH_8U )
{
int r, c;
uchar* pmask;
uchar* psrc;
uchar* perode;
uchar* pdilate;
uchar dd, de;
data->dx = data->src->width / 2;
data->dy = data->src->height / 2;
data->bgcolor = bgcolor;
data->mask = cvCloneImage( data->src );
data->erode = cvCloneImage( data->src );
data->dilate = cvCloneImage( data->src );
/* make mask image */
for( r = 0; r < data->mask->height; r++ )
{
for( c = 0; c < data->mask->width; c++ )
{
pmask = ( (uchar*) (data->mask->imageData + r * data->mask->widthStep)
+ c );
if( bgcolor - bgthreshold <= (int) (*pmask) &&
(int) (*pmask) <= bgcolor + bgthreshold )
{
*pmask = (uchar) 0;
}
else
{
*pmask = (uchar) 255;
}
}
}
/* extend borders of source image */
cvErode( data->src, data->erode, 0, 1 );
cvDilate( data->src, data->dilate, 0, 1 );
for( r = 0; r < data->mask->height; r++ )
{
for( c = 0; c < data->mask->width; c++ )
{
pmask = ( (uchar*) (data->mask->imageData + r * data->mask->widthStep)
+ c );
if( (*pmask) == 0 )
{
psrc = ( (uchar*) (data->src->imageData + r * data->src->widthStep)
+ c );
perode =
( (uchar*) (data->erode->imageData + r * data->erode->widthStep)
+ c );
pdilate =
( (uchar*)(data->dilate->imageData + r * data->dilate->widthStep)
+ c );
de = (uchar)(bgcolor - (*perode));
dd = (uchar)((*pdilate) - bgcolor);
if( de >= dd && de > bgthreshold )
{
(*psrc) = (*perode);
}
if( dd > de && dd > bgthreshold )
{
(*psrc) = (*pdilate);
}
}
}
}
data->img = cvCreateImage( cvSize( data->src->width + 2 * data->dx,
data->src->height + 2 * data->dy ),
IPL_DEPTH_8U, 1 );
data->maskimg = cvCloneImage( data->img );
return 1;
}
return 0;
}
void icvPlaceDistortedSample( CvArr* background,
int inverse, int maxintensitydev,
double maxxangle, double maxyangle, double maxzangle,
int inscribe, double maxshiftf, double maxscalef,
CvSampleDistortionData* data )
{
double quad[4][2];
int r, c;
uchar* pimg;
uchar* pbg;
uchar* palpha;
uchar chartmp;
int forecolordev;
float scale;
IplImage* img;
IplImage* maskimg;
CvMat stub;
CvMat* bgimg;
CvRect cr;
CvRect roi;
double xshift, yshift, randscale;
icvRandomQuad( data->src->width, data->src->height, quad,
maxxangle, maxyangle, maxzangle );
quad[0][0] += (double) data->dx;
quad[0][1] += (double) data->dy;
quad[1][0] += (double) data->dx;
quad[1][1] += (double) data->dy;
quad[2][0] += (double) data->dx;
quad[2][1] += (double) data->dy;
quad[3][0] += (double) data->dx;
quad[3][1] += (double) data->dy;
cvSet( data->img, cvScalar( data->bgcolor ) );
cvSet( data->maskimg, cvScalar( 0.0 ) );
cvWarpPerspective( data->src, data->img, quad );
cvWarpPerspective( data->mask, data->maskimg, quad );
cvSmooth( data->maskimg, data->maskimg, CV_GAUSSIAN, 3, 3 );
bgimg = cvGetMat( background, &stub );
cr.x = data->dx;
cr.y = data->dy;
cr.width = data->src->width;
cr.height = data->src->height;
if( inscribe )
{
/* quad's circumscribing rectangle */
cr.x = (int) MIN( quad[0][0], quad[3][0] );
cr.y = (int) MIN( quad[0][1], quad[1][1] );
cr.width = (int) (MAX( quad[1][0], quad[2][0] ) + 0.5F ) - cr.x;
cr.height = (int) (MAX( quad[2][1], quad[3][1] ) + 0.5F ) - cr.y;
}
xshift = maxshiftf * rand() / RAND_MAX;
yshift = maxshiftf * rand() / RAND_MAX;
cr.x -= (int) ( xshift * cr.width );
cr.y -= (int) ( yshift * cr.height );
cr.width = (int) ((1.0 + maxshiftf) * cr.width );
cr.height = (int) ((1.0 + maxshiftf) * cr.height);
randscale = maxscalef * rand() / RAND_MAX;
cr.x -= (int) ( 0.5 * randscale * cr.width );
cr.y -= (int) ( 0.5 * randscale * cr.height );
cr.width = (int) ((1.0 + randscale) * cr.width );
cr.height = (int) ((1.0 + randscale) * cr.height);
scale = MAX( ((float) cr.width) / bgimg->cols, ((float) cr.height) / bgimg->rows );
roi.x = (int) (-0.5F * (scale * bgimg->cols - cr.width) + cr.x);
roi.y = (int) (-0.5F * (scale * bgimg->rows - cr.height) + cr.y);
roi.width = (int) (scale * bgimg->cols);
roi.height = (int) (scale * bgimg->rows);
img = cvCreateImage( cvSize( bgimg->cols, bgimg->rows ), IPL_DEPTH_8U, 1 );
maskimg = cvCreateImage( cvSize( bgimg->cols, bgimg->rows ), IPL_DEPTH_8U, 1 );
cvSetImageROI( data->img, roi );
cvResize( data->img, img );
cvResetImageROI( data->img );
cvSetImageROI( data->maskimg, roi );
cvResize( data->maskimg, maskimg );
cvResetImageROI( data->maskimg );
forecolordev = (int) (maxintensitydev * (2.0 * rand() / RAND_MAX - 1.0));
for( r = 0; r < img->height; r++ )
{
for( c = 0; c < img->width; c++ )
{
pimg = (uchar*) img->imageData + r * img->widthStep + c;
pbg = (uchar*) bgimg->data.ptr + r * bgimg->step + c;
palpha = (uchar*) maskimg->imageData + r * maskimg->widthStep + c;
chartmp = (uchar) MAX( 0, MIN( 255, forecolordev + (*pimg) ) );
if( inverse )
{
chartmp ^= 0xFF;
}
*pbg = (uchar) (( chartmp*(*palpha )+(255 - (*palpha) )*(*pbg) ) / 255);
}
}
cvReleaseImage( &img );
cvReleaseImage( &maskimg );
}
void icvEndSampleDistortion( CvSampleDistortionData* data )
{
if( data->src )
{
cvReleaseImage( &data->src );
}
if( data->mask )
{
cvReleaseImage( &data->mask );
}
if( data->erode )
{
cvReleaseImage( &data->erode );
}
if( data->dilate )
{
cvReleaseImage( &data->dilate );
}
if( data->img )
{
cvReleaseImage( &data->img );
}
if( data->maskimg )
{
cvReleaseImage( &data->maskimg );
}
}
void icvWriteVecHeader( FILE* file, int count, int width, int height )
{
int vecsize;
short tmp;
/* number of samples */
fwrite( &count, sizeof( count ), 1, file );
/* vector size */
vecsize = width * height;
fwrite( &vecsize, sizeof( vecsize ), 1, file );
/* min/max values */
tmp = 0;
fwrite( &tmp, sizeof( tmp ), 1, file );
fwrite( &tmp, sizeof( tmp ), 1, file );
}
void icvWriteVecSample( FILE* file, CvArr* sample )
{
CvMat* mat, stub;
int r, c;
short tmp;
uchar chartmp;
mat = cvGetMat( sample, &stub );
chartmp = 0;
fwrite( &chartmp, sizeof( chartmp ), 1, file );
for( r = 0; r < mat->rows; r++ )
{
for( c = 0; c < mat->cols; c++ )
{
tmp = (short) (CV_MAT_ELEM( *mat, uchar, r, c ));
fwrite( &tmp, sizeof( tmp ), 1, file );
}
}
}
int cvCreateTrainingSamplesFromInfo( const char* infoname, const char* vecfilename,
int num,
int showsamples,
int winwidth, int winheight )
{
char fullname[PATH_MAX];
char* filename;
FILE* info;
FILE* vec;
IplImage* src=0;
IplImage* sample;
int line;
int error;
int i;
int x, y, width, height;
int total;
assert( infoname != NULL );
assert( vecfilename != NULL );
total = 0;
if( !icvMkDir( vecfilename ) )
{
#if CV_VERBOSE
fprintf( stderr, "Unable to create directory hierarchy: %s\n", vecfilename );
#endif /* CV_VERBOSE */
return total;
}
info = fopen( infoname, "r" );
if( info == NULL )
{
#if CV_VERBOSE
fprintf( stderr, "Unable to open file: %s\n", infoname );
#endif /* CV_VERBOSE */
return total;
}
vec = fopen( vecfilename, "wb" );
if( vec == NULL )
{
#if CV_VERBOSE
fprintf( stderr, "Unable to open file: %s\n", vecfilename );
#endif /* CV_VERBOSE */
fclose( info );
return total;
}
sample = cvCreateImage( cvSize( winwidth, winheight ), IPL_DEPTH_8U, 1 );
icvWriteVecHeader( vec, num, sample->width, sample->height );
if( showsamples )
{
cvNamedWindow( "Sample", CV_WINDOW_AUTOSIZE );
}
strcpy( fullname, infoname );
filename = strrchr( fullname, '\\' );
if( filename == NULL )
{
filename = strrchr( fullname, '/' );
}
if( filename == NULL )
{
filename = fullname;
}
else
{
filename++;
}
for( line = 1, error = 0, total = 0; total < num ;line++ )
{
int count;
error = ( fscanf( info, "%s %d", filename, &count ) != 2 );
if( !error )
{
src = cvLoadImage( fullname, 0 );
error = ( src == NULL );
if( error )
{
#if CV_VERBOSE
fprintf( stderr, "Unable to open image: %s\n", fullname );
#endif /* CV_VERBOSE */
}
}
for( i = 0; (i < count) && (total < num); i++, total++ )
{
error = ( fscanf( info, "%d %d %d %d", &x, &y, &width, &height ) != 4 );
if( error ) break;
cvSetImageROI( src, cvRect( x, y, width, height ) );
cvResize( src, sample, width >= sample->width &&
height >= sample->height ? CV_INTER_AREA : CV_INTER_LINEAR );
if( showsamples )
{
cvShowImage( "Sample", sample );
if( cvWaitKey( 0 ) == 27 )
{
showsamples = 0;
}
}
icvWriteVecSample( vec, sample );
}
if( src )
{
cvReleaseImage( &src );
}
if( error )
{
#if CV_VERBOSE
fprintf( stderr, "%s(%d) : parse error", infoname, line );
#endif /* CV_VERBOSE */
break;
}
}
if( sample )
{
cvReleaseImage( &sample );
}
fclose( vec );
fclose( info );
return total;
}
void cvShowVecSamples( const char* filename, int winwidth, int winheight,
double scale )
{
CvVecFile file;
short tmp;
int i;
CvMat* sample;
tmp = 0;
file.input = fopen( filename, "rb" );
if( file.input != NULL )
{
size_t elements_read1 = fread( &file.count, sizeof( file.count ), 1, file.input );
size_t elements_read2 = fread( &file.vecsize, sizeof( file.vecsize ), 1, file.input );
size_t elements_read3 = fread( &tmp, sizeof( tmp ), 1, file.input );
size_t elements_read4 = fread( &tmp, sizeof( tmp ), 1, file.input );
CV_Assert(elements_read1 == 1 && elements_read2 == 1 && elements_read3 == 1 && elements_read4 == 1);
if( file.vecsize != winwidth * winheight )
{
int guessed_w = 0;
int guessed_h = 0;
fprintf( stderr, "Warning: specified sample width=%d and height=%d "
"does not correspond to .vec file vector size=%d.\n",
winwidth, winheight, file.vecsize );
if( file.vecsize > 0 )
{
guessed_w = cvFloor( sqrt( (float) file.vecsize ) );
if( guessed_w > 0 )
{
guessed_h = file.vecsize / guessed_w;
}
}
if( guessed_w <= 0 || guessed_h <= 0 || guessed_w * guessed_h != file.vecsize)
{
fprintf( stderr, "Error: failed to guess sample width and height\n" );
fclose( file.input );
return;
}
else
{
winwidth = guessed_w;
winheight = guessed_h;
fprintf( stderr, "Guessed width=%d, guessed height=%d\n",
winwidth, winheight );
}
}
if( !feof( file.input ) && scale > 0 )
{
CvMat* scaled_sample = 0;
file.last = 0;
file.vector = (short*) cvAlloc( sizeof( *file.vector ) * file.vecsize );
sample = scaled_sample = cvCreateMat( winheight, winwidth, CV_8UC1 );
if( scale != 1.0 )
{
scaled_sample = cvCreateMat( MAX( 1, cvCeil( scale * winheight ) ),
MAX( 1, cvCeil( scale * winwidth ) ),
CV_8UC1 );
}
cvNamedWindow( "Sample", CV_WINDOW_AUTOSIZE );
for( i = 0; i < file.count; i++ )
{
icvGetHaarTraininDataFromVecCallback( sample, &file );
if( scale != 1.0 ) cvResize( sample, scaled_sample, CV_INTER_LINEAR);
cvShowImage( "Sample", scaled_sample );
if( cvWaitKey( 0 ) == 27 ) break;
}
if( scaled_sample && scaled_sample != sample ) cvReleaseMat( &scaled_sample );
cvReleaseMat( &sample );
cvFree( &file.vector );
}
fclose( file.input );
}
}
/* End of file. */