seaweedfs/weed/shell/command_ec_encode.go
Lisandro Pin 8c82c037b9
Unify the re-balancing logic for ec.encode with ec.balance. (#6339)
Among others, this enables recent changes related to topology aware
re-balancing at EC encoding time.
2024-12-10 13:30:13 -08:00

365 lines
12 KiB
Go

package shell
import (
"context"
"flag"
"fmt"
"io"
"math/rand"
"sync"
"time"
"github.com/seaweedfs/seaweedfs/weed/glog"
"github.com/seaweedfs/seaweedfs/weed/pb"
"google.golang.org/grpc"
"github.com/seaweedfs/seaweedfs/weed/operation"
"github.com/seaweedfs/seaweedfs/weed/pb/master_pb"
"github.com/seaweedfs/seaweedfs/weed/pb/volume_server_pb"
"github.com/seaweedfs/seaweedfs/weed/storage/erasure_coding"
"github.com/seaweedfs/seaweedfs/weed/storage/needle"
"github.com/seaweedfs/seaweedfs/weed/wdclient"
)
func init() {
Commands = append(Commands, &commandEcEncode{})
}
type commandEcEncode struct {
}
func (c *commandEcEncode) Name() string {
return "ec.encode"
}
func (c *commandEcEncode) Help() string {
return `apply erasure coding to a volume
ec.encode [-collection=""] [-fullPercent=95 -quietFor=1h]
ec.encode [-collection=""] [-volumeId=<volume_id>]
This command will:
1. freeze one volume
2. apply erasure coding to the volume
3. (optionally) re-balance encoded shards across multiple volume servers
The erasure coding is 10.4. So ideally you have more than 14 volume servers, and you can afford
to lose 4 volume servers.
If the number of volumes are not high, the worst case is that you only have 4 volume servers,
and the shards are spread as 4,4,3,3, respectively. You can afford to lose one volume server.
If you only have less than 4 volume servers, with erasure coding, at least you can afford to
have 4 corrupted shard files.
Re-balancing algorithm:
` + ecBalanceAlgorithmDescription
}
func (c *commandEcEncode) HasTag(CommandTag) bool {
return false
}
func (c *commandEcEncode) Do(args []string, commandEnv *CommandEnv, writer io.Writer) (err error) {
encodeCommand := flag.NewFlagSet(c.Name(), flag.ContinueOnError)
volumeId := encodeCommand.Int("volumeId", 0, "the volume id")
collection := encodeCommand.String("collection", "", "the collection name")
fullPercentage := encodeCommand.Float64("fullPercent", 95, "the volume reaches the percentage of max volume size")
quietPeriod := encodeCommand.Duration("quietFor", time.Hour, "select volumes without no writes for this period")
// TODO: Add concurrency support to EcBalance and reenable this switch?
//parallelCopy := encodeCommand.Bool("parallelCopy", true, "copy shards in parallel")
forceChanges := encodeCommand.Bool("force", false, "force the encoding even if the cluster has less than recommended 4 nodes")
shardReplicaPlacement := encodeCommand.String("shardReplicaPlacement", "", "replica placement for EC shards, or master default if empty")
applyBalancing := encodeCommand.Bool("rebalance", false, "re-balance EC shards after creation")
if err = encodeCommand.Parse(args); err != nil {
return nil
}
if err = commandEnv.confirmIsLocked(args); err != nil {
return
}
rp, err := parseReplicaPlacementArg(commandEnv, *shardReplicaPlacement)
if err != nil {
return err
}
// collect topology information
topologyInfo, _, err := collectTopologyInfo(commandEnv, 0)
if err != nil {
return err
}
if !*forceChanges {
var nodeCount int
eachDataNode(topologyInfo, func(dc DataCenterId, rack RackId, dn *master_pb.DataNodeInfo) {
nodeCount++
})
if nodeCount < erasure_coding.ParityShardsCount {
glog.V(0).Infof("skip erasure coding with %d nodes, less than recommended %d nodes", nodeCount, erasure_coding.ParityShardsCount)
return nil
}
}
var volumeIds []needle.VolumeId
if vid := needle.VolumeId(*volumeId); vid != 0 {
// volumeId is provided
volumeIds = append(volumeIds, vid)
} else {
// apply to all volumes in the collection
volumeIds, err = collectVolumeIdsForEcEncode(commandEnv, *collection, *fullPercentage, *quietPeriod)
if err != nil {
return err
}
}
var collections []string
if *collection != "" {
collections = []string{*collection}
} else {
// TODO: should we limit this to collections associated with the provided volume ID?
collections, err = ListCollectionNames(commandEnv, false, true)
if err != nil {
return err
}
}
// encode all requested volumes...
for _, vid := range volumeIds {
if err = doEcEncode(commandEnv, *collection, vid); err != nil {
return fmt.Errorf("ec encode for volume %d: %v", vid, err)
}
}
// ...then re-balance ec shards.
if err := EcBalance(commandEnv, collections, "", rp, *applyBalancing); err != nil {
return fmt.Errorf("re-balance ec shards for collection(s) %v: %v", collections, err)
}
return nil
}
func doEcEncode(commandEnv *CommandEnv, collection string, vid needle.VolumeId) error {
if !commandEnv.isLocked() {
return fmt.Errorf("lock is lost")
}
// find volume location
locations, found := commandEnv.MasterClient.GetLocationsClone(uint32(vid))
if !found {
return fmt.Errorf("volume %d not found", vid)
}
// fmt.Printf("found ec %d shards on %v\n", vid, locations)
// mark the volume as readonly
if err := markVolumeReplicasWritable(commandEnv.option.GrpcDialOption, vid, locations, false, false); err != nil {
return fmt.Errorf("mark volume %d as readonly on %s: %v", vid, locations[0].Url, err)
}
// generate ec shards
if err := generateEcShards(commandEnv.option.GrpcDialOption, vid, collection, locations[0].ServerAddress()); err != nil {
return fmt.Errorf("generate ec shards for volume %d on %s: %v", vid, locations[0].Url, err)
}
return nil
}
func generateEcShards(grpcDialOption grpc.DialOption, volumeId needle.VolumeId, collection string, sourceVolumeServer pb.ServerAddress) error {
fmt.Printf("generateEcShards %s %d on %s ...\n", collection, volumeId, sourceVolumeServer)
err := operation.WithVolumeServerClient(false, sourceVolumeServer, grpcDialOption, func(volumeServerClient volume_server_pb.VolumeServerClient) error {
_, genErr := volumeServerClient.VolumeEcShardsGenerate(context.Background(), &volume_server_pb.VolumeEcShardsGenerateRequest{
VolumeId: uint32(volumeId),
Collection: collection,
})
return genErr
})
return err
}
// TODO: delete this (now unused) shard spread logic.
func spreadEcShards(commandEnv *CommandEnv, volumeId needle.VolumeId, collection string, existingLocations []wdclient.Location, parallelCopy bool) (err error) {
allEcNodes, totalFreeEcSlots, err := collectEcNodes(commandEnv)
if err != nil {
return err
}
if totalFreeEcSlots < erasure_coding.TotalShardsCount {
return fmt.Errorf("not enough free ec shard slots. only %d left", totalFreeEcSlots)
}
allocatedDataNodes := allEcNodes
if len(allocatedDataNodes) > erasure_coding.TotalShardsCount {
allocatedDataNodes = allocatedDataNodes[:erasure_coding.TotalShardsCount]
}
// calculate how many shards to allocate for these servers
allocatedEcIds := balancedEcDistribution(allocatedDataNodes)
// ask the data nodes to copy from the source volume server
copiedShardIds, err := parallelCopyEcShardsFromSource(commandEnv.option.GrpcDialOption, allocatedDataNodes, allocatedEcIds, volumeId, collection, existingLocations[0], parallelCopy)
if err != nil {
return err
}
// unmount the to be deleted shards
err = unmountEcShards(commandEnv.option.GrpcDialOption, volumeId, existingLocations[0].ServerAddress(), copiedShardIds)
if err != nil {
return err
}
// ask the source volume server to clean up copied ec shards
err = sourceServerDeleteEcShards(commandEnv.option.GrpcDialOption, collection, volumeId, existingLocations[0].ServerAddress(), copiedShardIds)
if err != nil {
return fmt.Errorf("source delete copied ecShards %s %d.%v: %v", existingLocations[0].Url, volumeId, copiedShardIds, err)
}
// ask the source volume server to delete the original volume
for _, location := range existingLocations {
fmt.Printf("delete volume %d from %s\n", volumeId, location.Url)
err = deleteVolume(commandEnv.option.GrpcDialOption, volumeId, location.ServerAddress(), false)
if err != nil {
return fmt.Errorf("deleteVolume %s volume %d: %v", location.Url, volumeId, err)
}
}
return err
}
func parallelCopyEcShardsFromSource(grpcDialOption grpc.DialOption, targetServers []*EcNode, allocatedEcIds [][]uint32, volumeId needle.VolumeId, collection string, existingLocation wdclient.Location, parallelCopy bool) (actuallyCopied []uint32, err error) {
fmt.Printf("parallelCopyEcShardsFromSource %d %s\n", volumeId, existingLocation.Url)
var wg sync.WaitGroup
shardIdChan := make(chan []uint32, len(targetServers))
copyFunc := func(server *EcNode, allocatedEcShardIds []uint32) {
defer wg.Done()
copiedShardIds, copyErr := oneServerCopyAndMountEcShardsFromSource(grpcDialOption, server,
allocatedEcShardIds, volumeId, collection, existingLocation.ServerAddress())
if copyErr != nil {
err = copyErr
} else {
shardIdChan <- copiedShardIds
server.addEcVolumeShards(volumeId, collection, copiedShardIds)
}
}
cleanupFunc := func(server *EcNode, allocatedEcShardIds []uint32) {
if err := unmountEcShards(grpcDialOption, volumeId, pb.NewServerAddressFromDataNode(server.info), allocatedEcShardIds); err != nil {
fmt.Printf("unmount aborted shards %d.%v on %s: %v\n", volumeId, allocatedEcShardIds, server.info.Id, err)
}
if err := sourceServerDeleteEcShards(grpcDialOption, collection, volumeId, pb.NewServerAddressFromDataNode(server.info), allocatedEcShardIds); err != nil {
fmt.Printf("remove aborted shards %d.%v on target server %s: %v\n", volumeId, allocatedEcShardIds, server.info.Id, err)
}
if err := sourceServerDeleteEcShards(grpcDialOption, collection, volumeId, existingLocation.ServerAddress(), allocatedEcShardIds); err != nil {
fmt.Printf("remove aborted shards %d.%v on existing server %s: %v\n", volumeId, allocatedEcShardIds, existingLocation.ServerAddress(), err)
}
}
// maybe parallelize
for i, server := range targetServers {
if len(allocatedEcIds[i]) <= 0 {
continue
}
wg.Add(1)
if parallelCopy {
go copyFunc(server, allocatedEcIds[i])
} else {
copyFunc(server, allocatedEcIds[i])
}
}
wg.Wait()
close(shardIdChan)
if err != nil {
for i, server := range targetServers {
if len(allocatedEcIds[i]) <= 0 {
continue
}
cleanupFunc(server, allocatedEcIds[i])
}
return nil, err
}
for shardIds := range shardIdChan {
actuallyCopied = append(actuallyCopied, shardIds...)
}
return
}
func balancedEcDistribution(servers []*EcNode) (allocated [][]uint32) {
allocated = make([][]uint32, len(servers))
allocatedShardIdIndex := uint32(0)
serverIndex := rand.Intn(len(servers))
for allocatedShardIdIndex < erasure_coding.TotalShardsCount {
if servers[serverIndex].freeEcSlot > 0 {
allocated[serverIndex] = append(allocated[serverIndex], allocatedShardIdIndex)
allocatedShardIdIndex++
}
serverIndex++
if serverIndex >= len(servers) {
serverIndex = 0
}
}
return allocated
}
func collectVolumeIdsForEcEncode(commandEnv *CommandEnv, selectedCollection string, fullPercentage float64, quietPeriod time.Duration) (vids []needle.VolumeId, err error) {
// collect topology information
topologyInfo, volumeSizeLimitMb, err := collectTopologyInfo(commandEnv, 0)
if err != nil {
return
}
quietSeconds := int64(quietPeriod / time.Second)
nowUnixSeconds := time.Now().Unix()
fmt.Printf("collect volumes quiet for: %d seconds and %.1f%% full\n", quietSeconds, fullPercentage)
vidMap := make(map[uint32]bool)
eachDataNode(topologyInfo, func(dc DataCenterId, rack RackId, dn *master_pb.DataNodeInfo) {
for _, diskInfo := range dn.DiskInfos {
for _, v := range diskInfo.VolumeInfos {
// ignore remote volumes
if v.RemoteStorageName != "" && v.RemoteStorageKey != "" {
continue
}
if v.Collection == selectedCollection && v.ModifiedAtSecond+quietSeconds < nowUnixSeconds {
if float64(v.Size) > fullPercentage/100*float64(volumeSizeLimitMb)*1024*1024 {
if good, found := vidMap[v.Id]; found {
if good {
if diskInfo.FreeVolumeCount < 2 {
glog.V(0).Infof("skip %s %d on %s, no free disk", v.Collection, v.Id, dn.Id)
vidMap[v.Id] = false
}
}
} else {
if diskInfo.FreeVolumeCount < 2 {
glog.V(0).Infof("skip %s %d on %s, no free disk", v.Collection, v.Id, dn.Id)
vidMap[v.Id] = false
} else {
vidMap[v.Id] = true
}
}
}
}
}
}
})
for vid, good := range vidMap {
if good {
vids = append(vids, needle.VolumeId(vid))
}
}
return
}