seaweedfs/weed/shell/command_ec_encode.go

350 lines
11 KiB
Go

package shell
import (
"context"
"flag"
"fmt"
"io"
"math/rand"
"sync"
"time"
"github.com/seaweedfs/seaweedfs/weed/glog"
"github.com/seaweedfs/seaweedfs/weed/pb"
"google.golang.org/grpc"
"github.com/seaweedfs/seaweedfs/weed/operation"
"github.com/seaweedfs/seaweedfs/weed/pb/master_pb"
"github.com/seaweedfs/seaweedfs/weed/pb/volume_server_pb"
"github.com/seaweedfs/seaweedfs/weed/storage/erasure_coding"
"github.com/seaweedfs/seaweedfs/weed/storage/needle"
"github.com/seaweedfs/seaweedfs/weed/wdclient"
)
func init() {
Commands = append(Commands, &commandEcEncode{})
}
type commandEcEncode struct {
}
func (c *commandEcEncode) Name() string {
return "ec.encode"
}
func (c *commandEcEncode) Help() string {
return `apply erasure coding to a volume
ec.encode [-collection=""] [-fullPercent=95 -quietFor=1h]
ec.encode [-collection=""] [-volumeId=<volume_id>]
This command will:
1. freeze one volume
2. apply erasure coding to the volume
3. move the encoded shards to multiple volume servers
The erasure coding is 10.4. So ideally you have more than 14 volume servers, and you can afford
to lose 4 volume servers.
If the number of volumes are not high, the worst case is that you only have 4 volume servers,
and the shards are spread as 4,4,3,3, respectively. You can afford to lose one volume server.
If you only have less than 4 volume servers, with erasure coding, at least you can afford to
have 4 corrupted shard files.
`
}
func (c *commandEcEncode) HasTag(CommandTag) bool {
return false
}
func (c *commandEcEncode) Do(args []string, commandEnv *CommandEnv, writer io.Writer) (err error) {
encodeCommand := flag.NewFlagSet(c.Name(), flag.ContinueOnError)
volumeId := encodeCommand.Int("volumeId", 0, "the volume id")
collection := encodeCommand.String("collection", "", "the collection name")
fullPercentage := encodeCommand.Float64("fullPercent", 95, "the volume reaches the percentage of max volume size")
quietPeriod := encodeCommand.Duration("quietFor", time.Hour, "select volumes without no writes for this period")
parallelCopy := encodeCommand.Bool("parallelCopy", true, "copy shards in parallel")
forceChanges := encodeCommand.Bool("force", false, "force the encoding even if the cluster has less than recommended 4 nodes")
if err = encodeCommand.Parse(args); err != nil {
return nil
}
if err = commandEnv.confirmIsLocked(args); err != nil {
return
}
// collect topology information
topologyInfo, _, err := collectTopologyInfo(commandEnv, 0)
if err != nil {
return err
}
if !*forceChanges {
var nodeCount int
eachDataNode(topologyInfo, func(dc DataCenterId, rack RackId, dn *master_pb.DataNodeInfo) {
nodeCount++
})
if nodeCount < erasure_coding.ParityShardsCount {
glog.V(0).Infof("skip erasure coding with %d nodes, less than recommended %d nodes", nodeCount, erasure_coding.ParityShardsCount)
return nil
}
}
vid := needle.VolumeId(*volumeId)
// volumeId is provided
if vid != 0 {
return doEcEncode(commandEnv, *collection, vid, *parallelCopy)
}
// apply to all volumes in the collection
volumeIds, err := collectVolumeIdsForEcEncode(commandEnv, *collection, *fullPercentage, *quietPeriod)
if err != nil {
return err
}
fmt.Printf("ec encode volumes: %v\n", volumeIds)
for _, vid := range volumeIds {
if err = doEcEncode(commandEnv, *collection, vid, *parallelCopy); err != nil {
return err
}
}
return nil
}
func doEcEncode(commandEnv *CommandEnv, collection string, vid needle.VolumeId, parallelCopy bool) (err error) {
if !commandEnv.isLocked() {
return fmt.Errorf("lock is lost")
}
// find volume location
locations, found := commandEnv.MasterClient.GetLocationsClone(uint32(vid))
if !found {
return fmt.Errorf("volume %d not found", vid)
}
// fmt.Printf("found ec %d shards on %v\n", vid, locations)
// mark the volume as readonly
err = markVolumeReplicasWritable(commandEnv.option.GrpcDialOption, vid, locations, false, false)
if err != nil {
return fmt.Errorf("mark volume %d as readonly on %s: %v", vid, locations[0].Url, err)
}
// generate ec shards
err = generateEcShards(commandEnv.option.GrpcDialOption, vid, collection, locations[0].ServerAddress())
if err != nil {
return fmt.Errorf("generate ec shards for volume %d on %s: %v", vid, locations[0].Url, err)
}
// balance the ec shards to current cluster
err = spreadEcShards(commandEnv, vid, collection, locations, parallelCopy)
if err != nil {
return fmt.Errorf("spread ec shards for volume %d from %s: %v", vid, locations[0].Url, err)
}
return nil
}
func generateEcShards(grpcDialOption grpc.DialOption, volumeId needle.VolumeId, collection string, sourceVolumeServer pb.ServerAddress) error {
fmt.Printf("generateEcShards %s %d on %s ...\n", collection, volumeId, sourceVolumeServer)
err := operation.WithVolumeServerClient(false, sourceVolumeServer, grpcDialOption, func(volumeServerClient volume_server_pb.VolumeServerClient) error {
_, genErr := volumeServerClient.VolumeEcShardsGenerate(context.Background(), &volume_server_pb.VolumeEcShardsGenerateRequest{
VolumeId: uint32(volumeId),
Collection: collection,
})
return genErr
})
return err
}
func spreadEcShards(commandEnv *CommandEnv, volumeId needle.VolumeId, collection string, existingLocations []wdclient.Location, parallelCopy bool) (err error) {
allEcNodes, totalFreeEcSlots, err := collectEcNodes(commandEnv, "")
if err != nil {
return err
}
if totalFreeEcSlots < erasure_coding.TotalShardsCount {
return fmt.Errorf("not enough free ec shard slots. only %d left", totalFreeEcSlots)
}
allocatedDataNodes := allEcNodes
if len(allocatedDataNodes) > erasure_coding.TotalShardsCount {
allocatedDataNodes = allocatedDataNodes[:erasure_coding.TotalShardsCount]
}
// calculate how many shards to allocate for these servers
allocatedEcIds := balancedEcDistribution(allocatedDataNodes)
// ask the data nodes to copy from the source volume server
copiedShardIds, err := parallelCopyEcShardsFromSource(commandEnv.option.GrpcDialOption, allocatedDataNodes, allocatedEcIds, volumeId, collection, existingLocations[0], parallelCopy)
if err != nil {
return err
}
// unmount the to be deleted shards
err = unmountEcShards(commandEnv.option.GrpcDialOption, volumeId, existingLocations[0].ServerAddress(), copiedShardIds)
if err != nil {
return err
}
// ask the source volume server to clean up copied ec shards
err = sourceServerDeleteEcShards(commandEnv.option.GrpcDialOption, collection, volumeId, existingLocations[0].ServerAddress(), copiedShardIds)
if err != nil {
return fmt.Errorf("source delete copied ecShards %s %d.%v: %v", existingLocations[0].Url, volumeId, copiedShardIds, err)
}
// ask the source volume server to delete the original volume
for _, location := range existingLocations {
fmt.Printf("delete volume %d from %s\n", volumeId, location.Url)
err = deleteVolume(commandEnv.option.GrpcDialOption, volumeId, location.ServerAddress(), false)
if err != nil {
return fmt.Errorf("deleteVolume %s volume %d: %v", location.Url, volumeId, err)
}
}
return err
}
func parallelCopyEcShardsFromSource(grpcDialOption grpc.DialOption, targetServers []*EcNode, allocatedEcIds [][]uint32, volumeId needle.VolumeId, collection string, existingLocation wdclient.Location, parallelCopy bool) (actuallyCopied []uint32, err error) {
fmt.Printf("parallelCopyEcShardsFromSource %d %s\n", volumeId, existingLocation.Url)
var wg sync.WaitGroup
shardIdChan := make(chan []uint32, len(targetServers))
copyFunc := func(server *EcNode, allocatedEcShardIds []uint32) {
defer wg.Done()
copiedShardIds, copyErr := oneServerCopyAndMountEcShardsFromSource(grpcDialOption, server,
allocatedEcShardIds, volumeId, collection, existingLocation.ServerAddress())
if copyErr != nil {
err = copyErr
} else {
shardIdChan <- copiedShardIds
server.addEcVolumeShards(volumeId, collection, copiedShardIds)
}
}
cleanupFunc := func(server *EcNode, allocatedEcShardIds []uint32) {
if err := unmountEcShards(grpcDialOption, volumeId, pb.NewServerAddressFromDataNode(server.info), allocatedEcShardIds); err != nil {
fmt.Printf("unmount aborted shards %d.%v on %s: %v\n", volumeId, allocatedEcShardIds, server.info.Id, err)
}
if err := sourceServerDeleteEcShards(grpcDialOption, collection, volumeId, pb.NewServerAddressFromDataNode(server.info), allocatedEcShardIds); err != nil {
fmt.Printf("remove aborted shards %d.%v on target server %s: %v\n", volumeId, allocatedEcShardIds, server.info.Id, err)
}
if err := sourceServerDeleteEcShards(grpcDialOption, collection, volumeId, existingLocation.ServerAddress(), allocatedEcShardIds); err != nil {
fmt.Printf("remove aborted shards %d.%v on existing server %s: %v\n", volumeId, allocatedEcShardIds, existingLocation.ServerAddress(), err)
}
}
// maybe parallelize
for i, server := range targetServers {
if len(allocatedEcIds[i]) <= 0 {
continue
}
wg.Add(1)
if parallelCopy {
go copyFunc(server, allocatedEcIds[i])
} else {
copyFunc(server, allocatedEcIds[i])
}
}
wg.Wait()
close(shardIdChan)
if err != nil {
for i, server := range targetServers {
if len(allocatedEcIds[i]) <= 0 {
continue
}
cleanupFunc(server, allocatedEcIds[i])
}
return nil, err
}
for shardIds := range shardIdChan {
actuallyCopied = append(actuallyCopied, shardIds...)
}
return
}
func balancedEcDistribution(servers []*EcNode) (allocated [][]uint32) {
allocated = make([][]uint32, len(servers))
allocatedShardIdIndex := uint32(0)
serverIndex := rand.Intn(len(servers))
for allocatedShardIdIndex < erasure_coding.TotalShardsCount {
if servers[serverIndex].freeEcSlot > 0 {
allocated[serverIndex] = append(allocated[serverIndex], allocatedShardIdIndex)
allocatedShardIdIndex++
}
serverIndex++
if serverIndex >= len(servers) {
serverIndex = 0
}
}
return allocated
}
func collectVolumeIdsForEcEncode(commandEnv *CommandEnv, selectedCollection string, fullPercentage float64, quietPeriod time.Duration) (vids []needle.VolumeId, err error) {
// collect topology information
topologyInfo, volumeSizeLimitMb, err := collectTopologyInfo(commandEnv, 0)
if err != nil {
return
}
quietSeconds := int64(quietPeriod / time.Second)
nowUnixSeconds := time.Now().Unix()
fmt.Printf("collect volumes quiet for: %d seconds and %.1f%% full\n", quietSeconds, fullPercentage)
vidMap := make(map[uint32]bool)
eachDataNode(topologyInfo, func(dc DataCenterId, rack RackId, dn *master_pb.DataNodeInfo) {
for _, diskInfo := range dn.DiskInfos {
for _, v := range diskInfo.VolumeInfos {
// ignore remote volumes
if v.RemoteStorageName != "" && v.RemoteStorageKey != "" {
continue
}
if v.Collection == selectedCollection && v.ModifiedAtSecond+quietSeconds < nowUnixSeconds {
if float64(v.Size) > fullPercentage/100*float64(volumeSizeLimitMb)*1024*1024 {
if good, found := vidMap[v.Id]; found {
if good {
if diskInfo.FreeVolumeCount < 2 {
glog.V(0).Infof("skip %s %d on %s, no free disk", v.Collection, v.Id, dn.Id)
vidMap[v.Id] = false
}
}
} else {
if diskInfo.FreeVolumeCount < 2 {
glog.V(0).Infof("skip %s %d on %s, no free disk", v.Collection, v.Id, dn.Id)
vidMap[v.Id] = false
} else {
vidMap[v.Id] = true
}
}
}
}
}
}
})
for vid, good := range vidMap {
if good {
vids = append(vids, needle.VolumeId(vid))
}
}
return
}