tesseract/opencl/openclwrapper.cpp

2740 lines
96 KiB
C++
Raw Permalink Normal View History

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifdef _WIN32
#include <io.h>
#else
#include <sys/types.h>
#include <unistd.h>
#endif
#include <float.h>
#include "openclwrapper.h"
#include "oclkernels.h"
// for micro-benchmark
#include "otsuthr.h"
#include "thresholder.h"
2014-08-18 15:37:21 +08:00
#if ON_APPLE
#include <mach/mach_time.h>
#include <stdio.h>
2014-08-18 15:37:21 +08:00
#endif
#define CALLOC LEPT_CALLOC
#define FREE LEPT_FREE
#ifdef USE_OPENCL
2014-08-18 15:37:21 +08:00
#include "opencl_device_selection.h"
GPUEnv OpenclDevice::gpuEnv;
bool OpenclDevice::deviceIsSelected = false;
ds_device OpenclDevice::selectedDevice;
int OpenclDevice::isInited = 0;
static l_int32 MORPH_BC = ASYMMETRIC_MORPH_BC;
static const l_uint32 lmask32[] = {
0x80000000, 0xc0000000, 0xe0000000, 0xf0000000, 0xf8000000, 0xfc000000,
0xfe000000, 0xff000000, 0xff800000, 0xffc00000, 0xffe00000, 0xfff00000,
0xfff80000, 0xfffc0000, 0xfffe0000, 0xffff0000, 0xffff8000, 0xffffc000,
0xffffe000, 0xfffff000, 0xfffff800, 0xfffffc00, 0xfffffe00, 0xffffff00,
0xffffff80, 0xffffffc0, 0xffffffe0, 0xfffffff0, 0xfffffff8, 0xfffffffc,
0xfffffffe, 0xffffffff};
static const l_uint32 rmask32[] = {
0x00000001, 0x00000003, 0x00000007, 0x0000000f, 0x0000001f, 0x0000003f,
0x0000007f, 0x000000ff, 0x000001ff, 0x000003ff, 0x000007ff, 0x00000fff,
0x00001fff, 0x00003fff, 0x00007fff, 0x0000ffff, 0x0001ffff, 0x0003ffff,
0x0007ffff, 0x000fffff, 0x001fffff, 0x003fffff, 0x007fffff, 0x00ffffff,
0x01ffffff, 0x03ffffff, 0x07ffffff, 0x0fffffff, 0x1fffffff, 0x3fffffff,
0x7fffffff, 0xffffffff};
static cl_mem pixsCLBuffer, pixdCLBuffer, pixdCLIntermediate; //Morph operations buffers
static cl_mem pixThBuffer; //output from thresholdtopix calculation
static cl_int clStatus;
static KernelEnv rEnv;
#define DS_TAG_VERSION "<version>"
#define DS_TAG_VERSION_END "</version>"
#define DS_TAG_DEVICE "<device>"
#define DS_TAG_DEVICE_END "</device>"
#define DS_TAG_SCORE "<score>"
#define DS_TAG_SCORE_END "</score>"
#define DS_TAG_DEVICE_TYPE "<type>"
#define DS_TAG_DEVICE_TYPE_END "</type>"
#define DS_TAG_DEVICE_NAME "<name>"
#define DS_TAG_DEVICE_NAME_END "</name>"
#define DS_TAG_DEVICE_DRIVER_VERSION "<driver>"
#define DS_TAG_DEVICE_DRIVER_VERSION_END "</driver>"
#define DS_DEVICE_NATIVE_CPU_STRING "native_cpu"
#define DS_DEVICE_NAME_LENGTH 256
typedef enum { DS_EVALUATE_ALL, DS_EVALUATE_NEW_ONLY } ds_evaluation_type;
typedef struct {
unsigned int numDevices;
ds_device *devices;
const char *version;
} ds_profile;
typedef enum {
DS_SUCCESS = 0,
DS_INVALID_PROFILE = 1000,
DS_MEMORY_ERROR,
DS_INVALID_PERF_EVALUATOR_TYPE,
DS_INVALID_PERF_EVALUATOR,
DS_PERF_EVALUATOR_ERROR,
DS_FILE_ERROR,
DS_UNKNOWN_DEVICE_TYPE,
DS_PROFILE_FILE_ERROR,
DS_SCORE_SERIALIZER_ERROR,
DS_SCORE_DESERIALIZER_ERROR
} ds_status;
// Pointer to a function that calculates the score of a device (ex:
// device->score) update the data size of score. The encoding and the format
// of the score data is implementation defined. The function should return
// DS_SUCCESS if there's no error to be reported.
typedef ds_status (*ds_perf_evaluator)(ds_device *device, void *data);
// deallocate memory used by score
typedef ds_status (*ds_score_release)(void *score);
static ds_status releaseDSProfile(ds_profile *profile, ds_score_release sr) {
ds_status status = DS_SUCCESS;
if (profile != NULL) {
if (profile->devices != NULL && sr != NULL) {
unsigned int i;
for (i = 0; i < profile->numDevices; i++) {
free(profile->devices[i].oclDeviceName);
free(profile->devices[i].oclDriverVersion);
status = sr(profile->devices[i].score);
if (status != DS_SUCCESS) break;
}
free(profile->devices);
}
free(profile);
}
return status;
}
static ds_status initDSProfile(ds_profile **p, const char *version) {
int numDevices;
cl_uint numPlatforms;
cl_platform_id *platforms = NULL;
cl_device_id *devices = NULL;
ds_status status = DS_SUCCESS;
unsigned int next;
unsigned int i;
if (p == NULL) return DS_INVALID_PROFILE;
ds_profile *profile = (ds_profile *)malloc(sizeof(ds_profile));
if (profile == NULL) return DS_MEMORY_ERROR;
memset(profile, 0, sizeof(ds_profile));
clGetPlatformIDs(0, NULL, &numPlatforms);
if (numPlatforms > 0) {
platforms = (cl_platform_id *)malloc(numPlatforms * sizeof(cl_platform_id));
if (platforms == NULL) {
status = DS_MEMORY_ERROR;
goto cleanup;
}
clGetPlatformIDs(numPlatforms, platforms, NULL);
}
numDevices = 0;
for (i = 0; i < (unsigned int)numPlatforms; i++) {
cl_uint num;
clGetDeviceIDs(platforms[i], CL_DEVICE_TYPE_ALL, 0, NULL, &num);
numDevices += num;
}
if (numDevices > 0) {
devices = (cl_device_id *)malloc(numDevices * sizeof(cl_device_id));
if (devices == NULL) {
status = DS_MEMORY_ERROR;
goto cleanup;
}
}
profile->numDevices =
numDevices + 1; // +1 to numDevices to include the native CPU
profile->devices =
(ds_device *)malloc(profile->numDevices * sizeof(ds_device));
if (profile->devices == NULL) {
profile->numDevices = 0;
status = DS_MEMORY_ERROR;
goto cleanup;
}
memset(profile->devices, 0, profile->numDevices * sizeof(ds_device));
next = 0;
for (i = 0; i < (unsigned int)numPlatforms; i++) {
cl_uint num;
unsigned j;
clGetDeviceIDs(platforms[i], CL_DEVICE_TYPE_ALL, numDevices, devices, &num);
for (j = 0; j < num; j++, next++) {
char buffer[DS_DEVICE_NAME_LENGTH];
size_t length;
profile->devices[next].type = DS_DEVICE_OPENCL_DEVICE;
profile->devices[next].oclDeviceID = devices[j];
clGetDeviceInfo(profile->devices[next].oclDeviceID, CL_DEVICE_NAME,
DS_DEVICE_NAME_LENGTH, &buffer, NULL);
length = strlen(buffer);
profile->devices[next].oclDeviceName = (char *)malloc(length + 1);
memcpy(profile->devices[next].oclDeviceName, buffer, length + 1);
clGetDeviceInfo(profile->devices[next].oclDeviceID, CL_DRIVER_VERSION,
DS_DEVICE_NAME_LENGTH, &buffer, NULL);
length = strlen(buffer);
profile->devices[next].oclDriverVersion = (char *)malloc(length + 1);
memcpy(profile->devices[next].oclDriverVersion, buffer, length + 1);
}
}
profile->devices[next].type = DS_DEVICE_NATIVE_CPU;
profile->version = version;
cleanup:
free(platforms);
free(devices);
if (status == DS_SUCCESS) {
*p = profile;
} else {
if (profile) {
free(profile->devices);
free(profile);
}
}
return status;
}
static ds_status profileDevices(ds_profile *profile,
const ds_evaluation_type type,
ds_perf_evaluator evaluator,
void *evaluatorData, unsigned int *numUpdates) {
ds_status status = DS_SUCCESS;
unsigned int i;
unsigned int updates = 0;
if (profile == NULL) {
return DS_INVALID_PROFILE;
}
if (evaluator == NULL) {
return DS_INVALID_PERF_EVALUATOR;
}
for (i = 0; i < profile->numDevices; i++) {
ds_status evaluatorStatus;
switch (type) {
case DS_EVALUATE_NEW_ONLY:
if (profile->devices[i].score != NULL) break;
// else fall through
case DS_EVALUATE_ALL:
evaluatorStatus = evaluator(profile->devices + i, evaluatorData);
if (evaluatorStatus != DS_SUCCESS) {
status = evaluatorStatus;
return status;
}
updates++;
break;
default:
return DS_INVALID_PERF_EVALUATOR_TYPE;
break;
};
}
if (numUpdates) *numUpdates = updates;
return status;
}
static const char *findString(const char *contentStart, const char *contentEnd,
const char *string) {
size_t stringLength;
const char *currentPosition;
const char *found = NULL;
stringLength = strlen(string);
currentPosition = contentStart;
for (currentPosition = contentStart; currentPosition < contentEnd;
currentPosition++) {
if (*currentPosition == string[0]) {
if (currentPosition + stringLength < contentEnd) {
if (strncmp(currentPosition, string, stringLength) == 0) {
found = currentPosition;
break;
}
}
}
}
return found;
}
static ds_status readProFile(const char *fileName, char **content,
size_t *contentSize) {
size_t size = 0;
*contentSize = 0;
*content = NULL;
FILE *input = fopen(fileName, "rb");
if (input == NULL) {
return DS_FILE_ERROR;
}
fseek(input, 0L, SEEK_END);
size = ftell(input);
rewind(input);
char *binary = (char *)malloc(size);
if (binary == NULL) {
fclose(input);
return DS_FILE_ERROR;
}
fread(binary, sizeof(char), size, input);
fclose(input);
*contentSize = size;
*content = binary;
return DS_SUCCESS;
}
typedef ds_status (*ds_score_deserializer)(ds_device *device,
const unsigned char *serializedScore,
unsigned int serializedScoreSize);
static ds_status readProfileFromFile(ds_profile *profile,
ds_score_deserializer deserializer,
const char *file) {
ds_status status = DS_SUCCESS;
char *contentStart = NULL;
const char *contentEnd = NULL;
size_t contentSize;
if (profile == NULL) return DS_INVALID_PROFILE;
status = readProFile(file, &contentStart, &contentSize);
if (status == DS_SUCCESS) {
const char *currentPosition;
const char *dataStart;
const char *dataEnd;
contentEnd = contentStart + contentSize;
currentPosition = contentStart;
// parse the version string
dataStart = findString(currentPosition, contentEnd, DS_TAG_VERSION);
if (dataStart == NULL) {
status = DS_PROFILE_FILE_ERROR;
goto cleanup;
}
dataStart += strlen(DS_TAG_VERSION);
dataEnd = findString(dataStart, contentEnd, DS_TAG_VERSION_END);
if (dataEnd == NULL) {
status = DS_PROFILE_FILE_ERROR;
goto cleanup;
}
size_t versionStringLength = strlen(profile->version);
if (versionStringLength + dataStart != dataEnd ||
strncmp(profile->version, dataStart, versionStringLength) != 0) {
// version mismatch
status = DS_PROFILE_FILE_ERROR;
goto cleanup;
}
currentPosition = dataEnd + strlen(DS_TAG_VERSION_END);
// parse the device information
while (1) {
unsigned int i;
const char *deviceTypeStart;
const char *deviceTypeEnd;
ds_device_type deviceType;
const char *deviceNameStart;
const char *deviceNameEnd;
const char *deviceScoreStart;
const char *deviceScoreEnd;
const char *deviceDriverStart;
const char *deviceDriverEnd;
dataStart = findString(currentPosition, contentEnd, DS_TAG_DEVICE);
if (dataStart == NULL) {
// nothing useful remain, quit...
break;
}
dataStart += strlen(DS_TAG_DEVICE);
dataEnd = findString(dataStart, contentEnd, DS_TAG_DEVICE_END);
if (dataEnd == NULL) {
status = DS_PROFILE_FILE_ERROR;
goto cleanup;
}
// parse the device type
deviceTypeStart = findString(dataStart, contentEnd, DS_TAG_DEVICE_TYPE);
if (deviceTypeStart == NULL) {
status = DS_PROFILE_FILE_ERROR;
goto cleanup;
}
deviceTypeStart += strlen(DS_TAG_DEVICE_TYPE);
deviceTypeEnd =
findString(deviceTypeStart, contentEnd, DS_TAG_DEVICE_TYPE_END);
if (deviceTypeEnd == NULL) {
status = DS_PROFILE_FILE_ERROR;
goto cleanup;
}
memcpy(&deviceType, deviceTypeStart, sizeof(ds_device_type));
// parse the device name
if (deviceType == DS_DEVICE_OPENCL_DEVICE) {
deviceNameStart = findString(dataStart, contentEnd, DS_TAG_DEVICE_NAME);
if (deviceNameStart == NULL) {
status = DS_PROFILE_FILE_ERROR;
goto cleanup;
}
deviceNameStart += strlen(DS_TAG_DEVICE_NAME);
deviceNameEnd =
findString(deviceNameStart, contentEnd, DS_TAG_DEVICE_NAME_END);
if (deviceNameEnd == NULL) {
status = DS_PROFILE_FILE_ERROR;
goto cleanup;
}
deviceDriverStart =
findString(dataStart, contentEnd, DS_TAG_DEVICE_DRIVER_VERSION);
if (deviceDriverStart == NULL) {
status = DS_PROFILE_FILE_ERROR;
goto cleanup;
}
deviceDriverStart += strlen(DS_TAG_DEVICE_DRIVER_VERSION);
deviceDriverEnd = findString(deviceDriverStart, contentEnd,
DS_TAG_DEVICE_DRIVER_VERSION_END);
if (deviceDriverEnd == NULL) {
status = DS_PROFILE_FILE_ERROR;
goto cleanup;
}
// check if this device is on the system
for (i = 0; i < profile->numDevices; i++) {
if (profile->devices[i].type == DS_DEVICE_OPENCL_DEVICE) {
size_t actualDeviceNameLength;
size_t driverVersionLength;
actualDeviceNameLength = strlen(profile->devices[i].oclDeviceName);
driverVersionLength = strlen(profile->devices[i].oclDriverVersion);
if (deviceNameStart + actualDeviceNameLength == deviceNameEnd &&
deviceDriverStart + driverVersionLength == deviceDriverEnd &&
strncmp(profile->devices[i].oclDeviceName, deviceNameStart,
actualDeviceNameLength) == 0 &&
strncmp(profile->devices[i].oclDriverVersion, deviceDriverStart,
driverVersionLength) == 0) {
deviceScoreStart =
findString(dataStart, contentEnd, DS_TAG_SCORE);
if (deviceNameStart == NULL) {
status = DS_PROFILE_FILE_ERROR;
goto cleanup;
}
deviceScoreStart += strlen(DS_TAG_SCORE);
deviceScoreEnd =
findString(deviceScoreStart, contentEnd, DS_TAG_SCORE_END);
status = deserializer(profile->devices + i,
(const unsigned char *)deviceScoreStart,
deviceScoreEnd - deviceScoreStart);
if (status != DS_SUCCESS) {
goto cleanup;
}
}
}
}
} else if (deviceType == DS_DEVICE_NATIVE_CPU) {
for (i = 0; i < profile->numDevices; i++) {
if (profile->devices[i].type == DS_DEVICE_NATIVE_CPU) {
deviceScoreStart = findString(dataStart, contentEnd, DS_TAG_SCORE);
if (deviceScoreStart == NULL) {
status = DS_PROFILE_FILE_ERROR;
goto cleanup;
}
deviceScoreStart += strlen(DS_TAG_SCORE);
deviceScoreEnd =
findString(deviceScoreStart, contentEnd, DS_TAG_SCORE_END);
status = deserializer(profile->devices + i,
(const unsigned char *)deviceScoreStart,
deviceScoreEnd - deviceScoreStart);
if (status != DS_SUCCESS) {
goto cleanup;
}
}
}
}
// skip over the current one to find the next device
currentPosition = dataEnd + strlen(DS_TAG_DEVICE_END);
}
}
cleanup:
free(contentStart);
return status;
}
typedef ds_status (*ds_score_serializer)(ds_device *device,
void **serializedScore,
unsigned int *serializedScoreSize);
static ds_status writeProfileToFile(ds_profile *profile,
ds_score_serializer serializer,
const char *file) {
ds_status status = DS_SUCCESS;
if (profile == NULL) return DS_INVALID_PROFILE;
FILE *profileFile = fopen(file, "wb");
if (profileFile == NULL) {
status = DS_FILE_ERROR;
} else {
unsigned int i;
// write version string
fwrite(DS_TAG_VERSION, sizeof(char), strlen(DS_TAG_VERSION), profileFile);
fwrite(profile->version, sizeof(char), strlen(profile->version),
profileFile);
fwrite(DS_TAG_VERSION_END, sizeof(char), strlen(DS_TAG_VERSION_END),
profileFile);
fwrite("\n", sizeof(char), 1, profileFile);
for (i = 0; i < profile->numDevices && status == DS_SUCCESS; i++) {
void *serializedScore;
unsigned int serializedScoreSize;
fwrite(DS_TAG_DEVICE, sizeof(char), strlen(DS_TAG_DEVICE), profileFile);
fwrite(DS_TAG_DEVICE_TYPE, sizeof(char), strlen(DS_TAG_DEVICE_TYPE),
profileFile);
fwrite(&profile->devices[i].type, sizeof(ds_device_type), 1, profileFile);
fwrite(DS_TAG_DEVICE_TYPE_END, sizeof(char),
strlen(DS_TAG_DEVICE_TYPE_END), profileFile);
switch (profile->devices[i].type) {
case DS_DEVICE_NATIVE_CPU: {
// There's no need to emit a device name for the native CPU device.
/*
fwrite(DS_TAG_DEVICE_NAME, sizeof(char), strlen(DS_TAG_DEVICE_NAME),
profileFile);
fwrite(DS_DEVICE_NATIVE_CPU_STRING,sizeof(char),
strlen(DS_DEVICE_NATIVE_CPU_STRING), profileFile);
fwrite(DS_TAG_DEVICE_NAME_END, sizeof(char),
strlen(DS_TAG_DEVICE_NAME_END), profileFile);
*/
} break;
case DS_DEVICE_OPENCL_DEVICE: {
fwrite(DS_TAG_DEVICE_NAME, sizeof(char), strlen(DS_TAG_DEVICE_NAME),
profileFile);
fwrite(profile->devices[i].oclDeviceName, sizeof(char),
strlen(profile->devices[i].oclDeviceName), profileFile);
fwrite(DS_TAG_DEVICE_NAME_END, sizeof(char),
strlen(DS_TAG_DEVICE_NAME_END), profileFile);
fwrite(DS_TAG_DEVICE_DRIVER_VERSION, sizeof(char),
strlen(DS_TAG_DEVICE_DRIVER_VERSION), profileFile);
fwrite(profile->devices[i].oclDriverVersion, sizeof(char),
strlen(profile->devices[i].oclDriverVersion), profileFile);
fwrite(DS_TAG_DEVICE_DRIVER_VERSION_END, sizeof(char),
strlen(DS_TAG_DEVICE_DRIVER_VERSION_END), profileFile);
} break;
default:
status = DS_UNKNOWN_DEVICE_TYPE;
break;
};
fwrite(DS_TAG_SCORE, sizeof(char), strlen(DS_TAG_SCORE), profileFile);
status = serializer(profile->devices + i, &serializedScore,
&serializedScoreSize);
if (status == DS_SUCCESS && serializedScore != NULL &&
serializedScoreSize > 0) {
fwrite(serializedScore, sizeof(char), serializedScoreSize, profileFile);
free(serializedScore);
}
fwrite(DS_TAG_SCORE_END, sizeof(char), strlen(DS_TAG_SCORE_END),
profileFile);
fwrite(DS_TAG_DEVICE_END, sizeof(char), strlen(DS_TAG_DEVICE_END),
profileFile);
fwrite("\n", sizeof(char), 1, profileFile);
}
fclose(profileFile);
}
return status;
}
// substitute invalid characters in device name with _
static void legalizeFileName( char *fileName) {
//printf("fileName: %s\n", fileName);
const char *invalidChars =
"/\?:*\"><| "; // space is valid but can cause headaches
// for each invalid char
for (unsigned i = 0; i < strlen(invalidChars); i++) {
char invalidStr[4];
invalidStr[0] = invalidChars[i];
invalidStr[1] = '\0';
//printf("eliminating %s\n", invalidStr);
//char *pos = strstr(fileName, invalidStr);
// initial ./ is valid for present directory
//if (*pos == '.') pos++;
//if (*pos == '/') pos++;
for (char *pos = strstr(fileName, invalidStr); pos != NULL;
pos = strstr(pos + 1, invalidStr)) {
// printf("\tfound: %s, ", pos);
pos[0] = '_';
// printf("fileName: %s\n", fileName);
}
}
}
static void populateGPUEnvFromDevice( GPUEnv *gpuInfo, cl_device_id device ) {
//printf("[DS] populateGPUEnvFromDevice\n");
size_t size;
gpuInfo->mnIsUserCreated = 1;
// device
gpuInfo->mpDevID = device;
gpuInfo->mpArryDevsID = new cl_device_id[1];
gpuInfo->mpArryDevsID[0] = gpuInfo->mpDevID;
clStatus =
clGetDeviceInfo(gpuInfo->mpDevID, CL_DEVICE_TYPE,
sizeof(cl_device_type), &gpuInfo->mDevType, &size);
CHECK_OPENCL( clStatus, "populateGPUEnv::getDeviceInfo(TYPE)");
// platform
clStatus =
clGetDeviceInfo(gpuInfo->mpDevID, CL_DEVICE_PLATFORM,
sizeof(cl_platform_id), &gpuInfo->mpPlatformID, &size);
CHECK_OPENCL( clStatus, "populateGPUEnv::getDeviceInfo(PLATFORM)");
// context
cl_context_properties props[3];
props[0] = CL_CONTEXT_PLATFORM;
props[1] = (cl_context_properties) gpuInfo->mpPlatformID;
props[2] = 0;
gpuInfo->mpContext = clCreateContext(props, 1, &gpuInfo->mpDevID, NULL,
NULL, &clStatus);
CHECK_OPENCL( clStatus, "populateGPUEnv::createContext");
// queue
cl_command_queue_properties queueProperties = 0;
gpuInfo->mpCmdQueue = clCreateCommandQueue( gpuInfo->mpContext, gpuInfo->mpDevID, queueProperties, &clStatus );
CHECK_OPENCL( clStatus, "populateGPUEnv::createCommandQueue");
}
int OpenclDevice::LoadOpencl()
{
#ifdef WIN32
HINSTANCE HOpenclDll = NULL;
void *OpenclDll = NULL;
// fprintf(stderr, " LoadOpenclDllxx... \n");
OpenclDll = static_cast<HINSTANCE>(HOpenclDll);
OpenclDll = LoadLibrary("openCL.dll");
if (!static_cast<HINSTANCE>(OpenclDll)) {
fprintf(stderr, "[OD] Load opencl.dll failed!\n");
FreeLibrary(static_cast<HINSTANCE>(OpenclDll));
return 0;
}
fprintf(stderr, "[OD] Load opencl.dll successful!\n");
#endif
return 1;
}
int OpenclDevice::SetKernelEnv( KernelEnv *envInfo )
{
envInfo->mpkContext = gpuEnv.mpContext;
envInfo->mpkCmdQueue = gpuEnv.mpCmdQueue;
envInfo->mpkProgram = gpuEnv.mpArryPrograms[0];
return 1;
}
static cl_mem allocateZeroCopyBuffer(KernelEnv rEnv, l_uint32 *hostbuffer,
size_t nElements, cl_mem_flags flags,
cl_int *pStatus)
{
cl_mem membuffer = clCreateBuffer( rEnv.mpkContext, (cl_mem_flags) (flags),
nElements * sizeof(l_uint32), hostbuffer, pStatus);
return membuffer;
}
static
Pix *mapOutputCLBuffer(KernelEnv rEnv, cl_mem clbuffer, Pix *pixd, Pix *pixs,
int elements, cl_mem_flags flags, bool memcopy = false,
bool sync = true) {
PROCNAME("mapOutputCLBuffer");
if (!pixd) {
if (memcopy) {
if ((pixd = pixCreateTemplate(pixs)) == NULL)
(Pix *)ERROR_PTR("pixd not made", procName, NULL);
} else {
if ((pixd = pixCreateHeader(pixGetWidth(pixs), pixGetHeight(pixs),
pixGetDepth(pixs))) == NULL)
(Pix *)ERROR_PTR("pixd not made", procName, NULL);
}
}
l_uint32 *pValues = (l_uint32 *)clEnqueueMapBuffer(
rEnv.mpkCmdQueue, clbuffer, CL_TRUE, flags, 0,
elements * sizeof(l_uint32), 0, NULL, NULL, NULL);
if (memcopy) {
memcpy(pixGetData(pixd), pValues, elements * sizeof(l_uint32));
} else {
pixSetData(pixd, pValues);
}
clEnqueueUnmapMemObject(rEnv.mpkCmdQueue, clbuffer, pValues, 0, NULL,
NULL);
if (sync) {
clFinish(rEnv.mpkCmdQueue);
}
return pixd;
}
void OpenclDevice::releaseMorphCLBuffers()
{
if (pixdCLIntermediate != NULL) clReleaseMemObject(pixdCLIntermediate);
if (pixsCLBuffer != NULL) clReleaseMemObject(pixsCLBuffer);
if (pixdCLBuffer != NULL) clReleaseMemObject(pixdCLBuffer);
if (pixThBuffer != NULL) clReleaseMemObject(pixThBuffer);
pixdCLIntermediate = pixsCLBuffer = pixdCLBuffer = pixThBuffer = NULL;
}
int OpenclDevice::initMorphCLAllocations(l_int32 wpl, l_int32 h, Pix* pixs)
{
SetKernelEnv( &rEnv );
if (pixThBuffer != NULL) {
pixsCLBuffer = allocateZeroCopyBuffer(rEnv, NULL, wpl * h,
CL_MEM_ALLOC_HOST_PTR, &clStatus);
// Get the output from ThresholdToPix operation
clStatus =
clEnqueueCopyBuffer(rEnv.mpkCmdQueue, pixThBuffer, pixsCLBuffer, 0, 0,
sizeof(l_uint32) * wpl * h, 0, NULL, NULL);
}
else
{
//Get data from the source image
l_uint32* srcdata = (l_uint32*) malloc(wpl*h*sizeof(l_uint32));
memcpy(srcdata, pixGetData(pixs), wpl*h*sizeof(l_uint32));
pixsCLBuffer = allocateZeroCopyBuffer(rEnv, srcdata, wpl*h, CL_MEM_USE_HOST_PTR, &clStatus);
}
pixdCLBuffer = allocateZeroCopyBuffer(rEnv, NULL, wpl * h,
CL_MEM_ALLOC_HOST_PTR, &clStatus);
pixdCLIntermediate = allocateZeroCopyBuffer(
rEnv, NULL, wpl * h, CL_MEM_ALLOC_HOST_PTR, &clStatus);
return (int)clStatus;
}
int OpenclDevice::InitEnv()
{
//PERF_COUNT_START("OD::InitEnv")
// printf("[OD] OpenclDevice::InitEnv()\n");
#ifdef SAL_WIN32
while( 1 )
{
if( 1 == LoadOpencl() )
break;
}
PERF_COUNT_SUB("LoadOpencl")
#endif
// sets up environment, compiles programs
InitOpenclRunEnv_DeviceSelection( 0 );
//PERF_COUNT_SUB("called InitOpenclRunEnv_DS")
//PERF_COUNT_END
return 1;
}
int OpenclDevice::ReleaseOpenclRunEnv()
{
ReleaseOpenclEnv( &gpuEnv );
#ifdef SAL_WIN32
FreeOpenclDll();
#endif
return 1;
}
inline int OpenclDevice::AddKernelConfig( int kCount, const char *kName )
{
if ( kCount < 1 )
fprintf(stderr,"Error: ( KCount < 1 ) AddKernelConfig\n" );
strcpy( gpuEnv.mArrykernelNames[kCount-1], kName );
gpuEnv.mnKernelCount++;
return 0;
}
int OpenclDevice::RegistOpenclKernel()
{
if ( !gpuEnv.mnIsUserCreated )
memset( &gpuEnv, 0, sizeof(gpuEnv) );
gpuEnv.mnFileCount = 0; //argc;
gpuEnv.mnKernelCount = 0UL;
AddKernelConfig( 1, (const char*) "oclAverageSub1" );
return 0;
}
int OpenclDevice::InitOpenclRunEnv_DeviceSelection( int argc ) {
//PERF_COUNT_START("InitOpenclRunEnv_DS")
if (!isInited) {
// after programs compiled, selects best device
ds_device bestDevice_DS = getDeviceSelection( );
//PERF_COUNT_SUB("called getDeviceSelection()")
cl_device_id bestDevice = bestDevice_DS.oclDeviceID;
// overwrite global static GPUEnv with new device
if (selectedDeviceIsOpenCL() ) {
//printf("[DS] InitOpenclRunEnv_DS::Calling populateGPUEnvFromDevice() for selected device\n");
populateGPUEnvFromDevice( &gpuEnv, bestDevice );
gpuEnv.mnFileCount = 0; //argc;
gpuEnv.mnKernelCount = 0UL;
//PERF_COUNT_SUB("populate gpuEnv")
CompileKernelFile(&gpuEnv, "");
//PERF_COUNT_SUB("CompileKernelFile")
} else {
//printf("[DS] InitOpenclRunEnv_DS::Skipping populateGPUEnvFromDevice() b/c native cpu selected\n");
}
isInited = 1;
}
//PERF_COUNT_END
return 0;
}
OpenclDevice::OpenclDevice()
{
//InitEnv();
}
OpenclDevice::~OpenclDevice()
{
//ReleaseOpenclRunEnv();
}
int OpenclDevice::ReleaseOpenclEnv( GPUEnv *gpuInfo )
{
int i = 0;
int clStatus = 0;
if ( !isInited )
{
return 1;
}
for ( i = 0; i < gpuEnv.mnFileCount; i++ )
{
if ( gpuEnv.mpArryPrograms[i] )
{
clStatus = clReleaseProgram( gpuEnv.mpArryPrograms[i] );
CHECK_OPENCL( clStatus, "clReleaseProgram" );
gpuEnv.mpArryPrograms[i] = NULL;
}
}
if ( gpuEnv.mpCmdQueue )
{
clReleaseCommandQueue( gpuEnv.mpCmdQueue );
gpuEnv.mpCmdQueue = NULL;
}
if ( gpuEnv.mpContext )
{
clReleaseContext( gpuEnv.mpContext );
gpuEnv.mpContext = NULL;
}
isInited = 0;
gpuInfo->mnIsUserCreated = 0;
delete[] gpuInfo->mpArryDevsID;
return 1;
}
int OpenclDevice::BinaryGenerated( const char * clFileName, FILE ** fhandle )
{
unsigned int i = 0;
cl_int clStatus;
int status = 0;
char *str = NULL;
FILE *fd = NULL;
char fileName[256] = {0}, cl_name[128] = {0};
char deviceName[1024];
clStatus = clGetDeviceInfo(gpuEnv.mpArryDevsID[i], CL_DEVICE_NAME,
sizeof(deviceName), deviceName, NULL);
CHECK_OPENCL(clStatus, "clGetDeviceInfo");
str = (char *)strstr(clFileName, (char *)".cl");
memcpy(cl_name, clFileName, str - clFileName);
cl_name[str - clFileName] = '\0';
sprintf(fileName, "%s-%s.bin", cl_name, deviceName);
legalizeFileName(fileName);
fd = fopen(fileName, "rb");
status = (fd != NULL) ? 1 : 0;
if (fd != NULL) {
*fhandle = fd;
}
return status;
}
int OpenclDevice::CachedOfKernerPrg( const GPUEnv *gpuEnvCached, const char * clFileName )
{
int i;
for ( i = 0; i < gpuEnvCached->mnFileCount; i++ )
{
if ( strcasecmp( gpuEnvCached->mArryKnelSrcFile[i], clFileName ) == 0 )
{
if (gpuEnvCached->mpArryPrograms[i] != NULL) {
return 1;
}
}
}
return 0;
}
int OpenclDevice::WriteBinaryToFile( const char* fileName, const char* birary, size_t numBytes )
{
FILE *output = NULL;
output = fopen(fileName, "wb");
if (output == NULL) {
return 0;
}
fwrite( birary, sizeof(char), numBytes, output );
fclose( output );
return 1;
}
int OpenclDevice::GeneratBinFromKernelSource( cl_program program, const char * clFileName )
{
unsigned int i = 0;
cl_int clStatus;
size_t *binarySizes;
cl_uint numDevices;
cl_device_id *mpArryDevsID;
char **binaries, *str = NULL;
clStatus = clGetProgramInfo(program, CL_PROGRAM_NUM_DEVICES,
sizeof(numDevices), &numDevices, NULL);
CHECK_OPENCL( clStatus, "clGetProgramInfo" );
mpArryDevsID = (cl_device_id*) malloc( sizeof(cl_device_id) * numDevices );
if (mpArryDevsID == NULL) {
return 0;
}
/* grab the handles to all of the devices in the program. */
clStatus = clGetProgramInfo(program, CL_PROGRAM_DEVICES,
sizeof(cl_device_id) * numDevices, mpArryDevsID,
NULL);
CHECK_OPENCL( clStatus, "clGetProgramInfo" );
/* figure out the sizes of each of the binaries. */
binarySizes = (size_t*) malloc( sizeof(size_t) * numDevices );
clStatus =
clGetProgramInfo(program, CL_PROGRAM_BINARY_SIZES,
sizeof(size_t) * numDevices, binarySizes, NULL);
CHECK_OPENCL( clStatus, "clGetProgramInfo" );
/* copy over all of the generated binaries. */
binaries = (char**) malloc( sizeof(char *) * numDevices );
if (binaries == NULL) {
return 0;
}
for ( i = 0; i < numDevices; i++ )
{
if ( binarySizes[i] != 0 )
{
binaries[i] = (char*) malloc( sizeof(char) * binarySizes[i] );
if (binaries[i] == NULL) {
return 0;
}
}
else
{
binaries[i] = NULL;
}
}
clStatus = clGetProgramInfo(program, CL_PROGRAM_BINARIES,
sizeof(char *) * numDevices, binaries, NULL);
CHECK_OPENCL(clStatus,"clGetProgramInfo");
/* dump out each binary into its own separate file. */
for ( i = 0; i < numDevices; i++ )
{
char fileName[256] = { 0 }, cl_name[128] = { 0 };
if ( binarySizes[i] != 0 )
{
char deviceName[1024];
clStatus = clGetDeviceInfo(mpArryDevsID[i], CL_DEVICE_NAME,
sizeof(deviceName), deviceName, NULL);
CHECK_OPENCL( clStatus, "clGetDeviceInfo" );
str = (char*) strstr( clFileName, (char*) ".cl" );
memcpy( cl_name, clFileName, str - clFileName );
cl_name[str - clFileName] = '\0';
sprintf( fileName, "%s-%s.bin", cl_name, deviceName );
legalizeFileName(fileName);
if ( !WriteBinaryToFile( fileName, binaries[i], binarySizes[i] ) )
{
printf("[OD] write binary[%s] failed\n", fileName);
return 0;
} //else
printf("[OD] write binary[%s] successfully\n", fileName);
}
}
// Release all resouces and memory
for ( i = 0; i < numDevices; i++ )
{
free(binaries[i]);
binaries[i] = NULL;
}
free(binaries);
binaries = NULL;
free(binarySizes);
binarySizes = NULL;
free(mpArryDevsID);
mpArryDevsID = NULL;
return 1;
}
int OpenclDevice::CompileKernelFile( GPUEnv *gpuInfo, const char *buildOption )
{
//PERF_COUNT_START("CompileKernelFile")
cl_int clStatus = 0;
size_t length;
char *buildLog = NULL, *binary;
const char *source;
size_t source_size[1];
int b_error, binary_status, binaryExisted, idx;
cl_uint numDevices;
cl_device_id *mpArryDevsID;
FILE *fd, *fd1;
const char* filename = "kernel.cl";
//fprintf(stderr, "[OD] CompileKernelFile ... \n");
if ( CachedOfKernerPrg(gpuInfo, filename) == 1 )
{
return 1;
}
idx = gpuInfo->mnFileCount;
source = kernel_src;
source_size[0] = strlen( source );
binaryExisted = 0;
binaryExisted = BinaryGenerated( filename, &fd ); // don't check for binary during microbenchmark
//PERF_COUNT_SUB("BinaryGenerated")
if ( binaryExisted == 1 )
{
clStatus = clGetContextInfo(gpuInfo->mpContext, CL_CONTEXT_NUM_DEVICES,
sizeof(numDevices), &numDevices, NULL);
CHECK_OPENCL(clStatus, "clGetContextInfo");
mpArryDevsID = (cl_device_id *)malloc(sizeof(cl_device_id) * numDevices);
if (mpArryDevsID == NULL) {
return 0;
}
//PERF_COUNT_SUB("get numDevices")
b_error = 0;
length = 0;
b_error |= fseek( fd, 0, SEEK_END ) < 0;
b_error |= ( length = ftell(fd) ) <= 0;
b_error |= fseek( fd, 0, SEEK_SET ) < 0;
if ( b_error )
{
return 0;
}
binary = (char*) malloc( length + 2 );
if ( !binary )
{
return 0;
}
memset( binary, 0, length + 2 );
b_error |= fread( binary, 1, length, fd ) != length;
fclose( fd );
//PERF_COUNT_SUB("read file")
fd = NULL;
// grab the handles to all of the devices in the context.
clStatus = clGetContextInfo(gpuInfo->mpContext, CL_CONTEXT_DEVICES,
sizeof(cl_device_id) * numDevices,
mpArryDevsID, NULL);
CHECK_OPENCL( clStatus, "clGetContextInfo" );
//PERF_COUNT_SUB("get devices")
//fprintf(stderr, "[OD] Create kernel from binary\n");
gpuInfo->mpArryPrograms[idx] = clCreateProgramWithBinary( gpuInfo->mpContext,numDevices,
mpArryDevsID, &length, (const unsigned char**) &binary,
&binary_status, &clStatus );
CHECK_OPENCL( clStatus, "clCreateProgramWithBinary" );
//PERF_COUNT_SUB("clCreateProgramWithBinary")
free( binary );
free( mpArryDevsID );
mpArryDevsID = NULL;
// PERF_COUNT_SUB("binaryExisted")
}
else
{
// create a CL program using the kernel source
//fprintf(stderr, "[OD] Create kernel from source\n");
gpuInfo->mpArryPrograms[idx] = clCreateProgramWithSource( gpuInfo->mpContext, 1, &source,
source_size, &clStatus);
CHECK_OPENCL( clStatus, "clCreateProgramWithSource" );
//PERF_COUNT_SUB("!binaryExisted")
}
if (gpuInfo->mpArryPrograms[idx] == (cl_program) NULL) {
return 0;
}
//char options[512];
// create a cl program executable for all the devices specified
//printf("[OD] BuildProgram.\n");
PERF_COUNT_START("OD::CompileKernel::clBuildProgram")
if (!gpuInfo->mnIsUserCreated)
{
clStatus =
clBuildProgram(gpuInfo->mpArryPrograms[idx], 1, gpuInfo->mpArryDevsID,
buildOption, NULL, NULL);
// PERF_COUNT_SUB("clBuildProgram notUserCreated")
}
else
{
clStatus =
clBuildProgram(gpuInfo->mpArryPrograms[idx], 1, &(gpuInfo->mpDevID),
buildOption, NULL, NULL);
// PERF_COUNT_SUB("clBuildProgram isUserCreated")
}
PERF_COUNT_END
if ( clStatus != CL_SUCCESS )
{
printf ("BuildProgram error!\n");
if ( !gpuInfo->mnIsUserCreated )
{
clStatus = clGetProgramBuildInfo(
gpuInfo->mpArryPrograms[idx], gpuInfo->mpArryDevsID[0],
CL_PROGRAM_BUILD_LOG, 0, NULL, &length);
}
else
{
clStatus = clGetProgramBuildInfo(
gpuInfo->mpArryPrograms[idx], gpuInfo->mpDevID,
CL_PROGRAM_BUILD_LOG, 0, NULL, &length);
}
if ( clStatus != CL_SUCCESS )
{
printf("opencl create build log fail\n");
return 0;
}
buildLog = (char*) malloc( length );
if (buildLog == (char *)NULL) {
return 0;
}
if ( !gpuInfo->mnIsUserCreated )
{
clStatus = clGetProgramBuildInfo( gpuInfo->mpArryPrograms[idx], gpuInfo->mpArryDevsID[0],
CL_PROGRAM_BUILD_LOG, length, buildLog, &length );
}
else
{
clStatus = clGetProgramBuildInfo( gpuInfo->mpArryPrograms[idx], gpuInfo->mpDevID,
CL_PROGRAM_BUILD_LOG, length, buildLog, &length );
}
if ( clStatus != CL_SUCCESS )
{
printf("opencl program build info fail\n");
return 0;
}
fd1 = fopen( "kernel-build.log", "w+" );
if (fd1 != NULL) {
fwrite(buildLog, sizeof(char), length, fd1);
fclose(fd1);
}
free( buildLog );
//PERF_COUNT_SUB("build error log")
return 0;
}
strcpy( gpuInfo->mArryKnelSrcFile[idx], filename );
//PERF_COUNT_SUB("strcpy")
if ( binaryExisted == 0 ) {
GeneratBinFromKernelSource( gpuInfo->mpArryPrograms[idx], filename );
PERF_COUNT_SUB("GenerateBinFromKernelSource")
}
gpuInfo->mnFileCount += 1;
//PERF_COUNT_END
return 1;
}
l_uint32* OpenclDevice::pixReadFromTiffKernel(l_uint32 *tiffdata,l_int32 w,l_int32 h,l_int32 wpl,l_uint32 *line)
{
PERF_COUNT_START("pixReadFromTiffKernel")
cl_int clStatus;
KernelEnv rEnv;
size_t globalThreads[2];
size_t localThreads[2];
int gsize;
cl_mem valuesCl;
cl_mem outputCl;
//global and local work dimensions for Horizontal pass
gsize = (w + GROUPSIZE_X - 1)/ GROUPSIZE_X * GROUPSIZE_X;
globalThreads[0] = gsize;
gsize = (h + GROUPSIZE_Y - 1)/ GROUPSIZE_Y * GROUPSIZE_Y;
globalThreads[1] = gsize;
localThreads[0] = GROUPSIZE_X;
localThreads[1] = GROUPSIZE_Y;
SetKernelEnv( &rEnv );
l_uint32 *pResult = (l_uint32 *)malloc(w*h * sizeof(l_uint32));
rEnv.mpkKernel = clCreateKernel( rEnv.mpkProgram, "composeRGBPixel", &clStatus );
CHECK_OPENCL(clStatus, "clCreateKernel composeRGBPixel");
//Allocate input and output OCL buffers
valuesCl = allocateZeroCopyBuffer(rEnv, tiffdata, w*h, CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR, &clStatus);
outputCl = allocateZeroCopyBuffer(rEnv, pResult, w*h, CL_MEM_WRITE_ONLY | CL_MEM_USE_HOST_PTR, &clStatus);
//Kernel arguments
clStatus = clSetKernelArg(rEnv.mpkKernel, 0, sizeof(cl_mem), &valuesCl);
CHECK_OPENCL( clStatus, "clSetKernelArg");
clStatus = clSetKernelArg(rEnv.mpkKernel, 1, sizeof(w), &w);
CHECK_OPENCL( clStatus, "clSetKernelArg" );
clStatus = clSetKernelArg(rEnv.mpkKernel, 2, sizeof(h), &h);
CHECK_OPENCL( clStatus, "clSetKernelArg" );
clStatus = clSetKernelArg(rEnv.mpkKernel, 3, sizeof(wpl), &wpl);
CHECK_OPENCL( clStatus, "clSetKernelArg" );
clStatus = clSetKernelArg(rEnv.mpkKernel, 4, sizeof(cl_mem), &outputCl);
CHECK_OPENCL( clStatus, "clSetKernelArg");
//Kernel enqueue
PERF_COUNT_SUB("before")
clStatus =
clEnqueueNDRangeKernel(rEnv.mpkCmdQueue, rEnv.mpkKernel, 2, NULL,
globalThreads, localThreads, 0, NULL, NULL);
CHECK_OPENCL(clStatus, "clEnqueueNDRangeKernel");
/* map results back from gpu */
void *ptr = clEnqueueMapBuffer(rEnv.mpkCmdQueue, outputCl, CL_TRUE, CL_MAP_READ,
0, w * h * sizeof(l_uint32), 0, NULL, NULL,
&clStatus);
CHECK_OPENCL(clStatus, "clEnqueueMapBuffer outputCl");
clEnqueueUnmapMemObject(rEnv.mpkCmdQueue, outputCl, ptr, 0, NULL, NULL);
// Sync
clFinish(rEnv.mpkCmdQueue);
PERF_COUNT_SUB("kernel & map")
PERF_COUNT_END
return pResult;
}
//Morphology Dilate operation for 5x5 structuring element. Invokes the relevant OpenCL kernels
static cl_int pixDilateCL_55(l_int32 wpl, l_int32 h)
{
size_t globalThreads[2];
cl_mem pixtemp;
cl_int status;
int gsize;
size_t localThreads[2];
//Horizontal pass
gsize = (wpl*h + GROUPSIZE_HMORX - 1)/ GROUPSIZE_HMORX * GROUPSIZE_HMORX;
globalThreads[0] = gsize;
globalThreads[1] = GROUPSIZE_HMORY;
localThreads[0] = GROUPSIZE_HMORX;
localThreads[1] = GROUPSIZE_HMORY;
rEnv.mpkKernel = clCreateKernel( rEnv.mpkProgram, "morphoDilateHor_5x5", &status );
CHECK_OPENCL(status, "clCreateKernel morphoDilateHor_5x5");
status = clSetKernelArg(rEnv.mpkKernel,
0,
sizeof(cl_mem),
&pixsCLBuffer);
status = clSetKernelArg(rEnv.mpkKernel,
1,
sizeof(cl_mem),
&pixdCLBuffer);
status = clSetKernelArg(rEnv.mpkKernel, 2, sizeof(wpl), &wpl);
status = clSetKernelArg(rEnv.mpkKernel, 3, sizeof(h), &h);
status = clEnqueueNDRangeKernel(rEnv.mpkCmdQueue, rEnv.mpkKernel, 2,
NULL, globalThreads, localThreads, 0,
NULL, NULL);
//Swap source and dest buffers
pixtemp = pixsCLBuffer;
pixsCLBuffer = pixdCLBuffer;
pixdCLBuffer = pixtemp;
//Vertical
gsize = (wpl + GROUPSIZE_X - 1)/ GROUPSIZE_X * GROUPSIZE_X;
globalThreads[0] = gsize;
gsize = (h + GROUPSIZE_Y - 1)/ GROUPSIZE_Y * GROUPSIZE_Y;
globalThreads[1] = gsize;
localThreads[0] = GROUPSIZE_X;
localThreads[1] = GROUPSIZE_Y;
rEnv.mpkKernel = clCreateKernel( rEnv.mpkProgram, "morphoDilateVer_5x5", &status );
CHECK_OPENCL(status, "clCreateKernel morphoDilateVer_5x5");
status = clSetKernelArg(rEnv.mpkKernel,
0,
sizeof(cl_mem),
&pixsCLBuffer);
status = clSetKernelArg(rEnv.mpkKernel,
1,
sizeof(cl_mem),
&pixdCLBuffer);
status = clSetKernelArg(rEnv.mpkKernel, 2, sizeof(wpl), &wpl);
status = clSetKernelArg(rEnv.mpkKernel, 3, sizeof(h), &h);
status = clEnqueueNDRangeKernel(rEnv.mpkCmdQueue, rEnv.mpkKernel, 2,
NULL, globalThreads, localThreads, 0,
NULL, NULL);
return status;
}
//Morphology Erode operation for 5x5 structuring element. Invokes the relevant OpenCL kernels
static cl_int pixErodeCL_55(l_int32 wpl, l_int32 h)
{
size_t globalThreads[2];
cl_mem pixtemp;
cl_int status;
int gsize;
l_uint32 fwmask, lwmask;
size_t localThreads[2];
lwmask = lmask32[31 - 2];
fwmask = rmask32[31 - 2];
//Horizontal pass
gsize = (wpl*h + GROUPSIZE_HMORX - 1)/ GROUPSIZE_HMORX * GROUPSIZE_HMORX;
globalThreads[0] = gsize;
globalThreads[1] = GROUPSIZE_HMORY;
localThreads[0] = GROUPSIZE_HMORX;
localThreads[1] = GROUPSIZE_HMORY;
rEnv.mpkKernel = clCreateKernel( rEnv.mpkProgram, "morphoErodeHor_5x5", &status );
CHECK_OPENCL(status, "clCreateKernel morphoErodeHor_5x5");
status = clSetKernelArg(rEnv.mpkKernel,
0,
sizeof(cl_mem),
&pixsCLBuffer);
status = clSetKernelArg(rEnv.mpkKernel,
1,
sizeof(cl_mem),
&pixdCLBuffer);
status = clSetKernelArg(rEnv.mpkKernel, 2, sizeof(wpl), &wpl);
status = clSetKernelArg(rEnv.mpkKernel, 3, sizeof(h), &h);
status = clEnqueueNDRangeKernel(rEnv.mpkCmdQueue, rEnv.mpkKernel, 2,
NULL, globalThreads, localThreads, 0,
NULL, NULL);
//Swap source and dest buffers
pixtemp = pixsCLBuffer;
pixsCLBuffer = pixdCLBuffer;
pixdCLBuffer = pixtemp;
//Vertical
gsize = (wpl + GROUPSIZE_X - 1)/ GROUPSIZE_X * GROUPSIZE_X;
globalThreads[0] = gsize;
gsize = (h + GROUPSIZE_Y - 1)/ GROUPSIZE_Y * GROUPSIZE_Y;
globalThreads[1] = gsize;
localThreads[0] = GROUPSIZE_X;
localThreads[1] = GROUPSIZE_Y;
rEnv.mpkKernel = clCreateKernel( rEnv.mpkProgram, "morphoErodeVer_5x5", &status );
CHECK_OPENCL(status, "clCreateKernel morphoErodeVer_5x5");
status = clSetKernelArg(rEnv.mpkKernel,
0,
sizeof(cl_mem),
&pixsCLBuffer);
status = clSetKernelArg(rEnv.mpkKernel,
1,
sizeof(cl_mem),
&pixdCLBuffer);
status = clSetKernelArg(rEnv.mpkKernel, 2, sizeof(wpl), &wpl);
status = clSetKernelArg(rEnv.mpkKernel, 3, sizeof(h), &h);
status = clSetKernelArg(rEnv.mpkKernel, 4, sizeof(fwmask), &fwmask);
status = clSetKernelArg(rEnv.mpkKernel, 5, sizeof(lwmask), &lwmask);
status = clEnqueueNDRangeKernel(rEnv.mpkCmdQueue, rEnv.mpkKernel, 2,
NULL, globalThreads, localThreads, 0,
NULL, NULL);
return status;
}
//Morphology Dilate operation. Invokes the relevant OpenCL kernels
static cl_int
pixDilateCL(l_int32 hsize, l_int32 vsize, l_int32 wpl, l_int32 h)
{
l_int32 xp, yp, xn, yn;
SEL* sel;
size_t globalThreads[2];
cl_mem pixtemp;
cl_int status;
int gsize;
size_t localThreads[2];
char isEven;
OpenclDevice::SetKernelEnv( &rEnv );
if (hsize == 5 && vsize == 5)
{
//Specific case for 5x5
status = pixDilateCL_55(wpl, h);
return status;
}
sel = selCreateBrick(vsize, hsize, vsize / 2, hsize / 2, SEL_HIT);
selFindMaxTranslations(sel, &xp, &yp, &xn, &yn);
selDestroy(&sel);
//global and local work dimensions for Horizontal pass
gsize = (wpl + GROUPSIZE_X - 1)/ GROUPSIZE_X * GROUPSIZE_X;
globalThreads[0] = gsize;
gsize = (h + GROUPSIZE_Y - 1)/ GROUPSIZE_Y * GROUPSIZE_Y;
globalThreads[1] = gsize;
localThreads[0] = GROUPSIZE_X;
localThreads[1] = GROUPSIZE_Y;
if (xp > 31 || xn > 31)
{
// Generic case.
rEnv.mpkKernel =
clCreateKernel(rEnv.mpkProgram, "morphoDilateHor", &status);
CHECK_OPENCL(status, "clCreateKernel morphoDilateHor");
status = clSetKernelArg(rEnv.mpkKernel, 0, sizeof(cl_mem), &pixsCLBuffer);
status = clSetKernelArg(rEnv.mpkKernel, 1, sizeof(cl_mem), &pixdCLBuffer);
status = clSetKernelArg(rEnv.mpkKernel, 2, sizeof(xp), &xp);
status = clSetKernelArg(rEnv.mpkKernel, 3, sizeof(xn), &xn);
status = clSetKernelArg(rEnv.mpkKernel, 4, sizeof(wpl), &wpl);
status = clSetKernelArg(rEnv.mpkKernel, 5, sizeof(h), &h);
status = clEnqueueNDRangeKernel(rEnv.mpkCmdQueue, rEnv.mpkKernel, 2,
NULL, globalThreads, localThreads, 0,
NULL, NULL);
if (yp > 0 || yn > 0) {
pixtemp = pixsCLBuffer;
pixsCLBuffer = pixdCLBuffer;
pixdCLBuffer = pixtemp;
}
}
else if (xp > 0 || xn > 0 )
{
// Specific Horizontal pass kernel for half width < 32
rEnv.mpkKernel =
clCreateKernel(rEnv.mpkProgram, "morphoDilateHor_32word", &status);
CHECK_OPENCL(status, "clCreateKernel morphoDilateHor_32word");
isEven = (xp != xn);
status = clSetKernelArg(rEnv.mpkKernel, 0, sizeof(cl_mem), &pixsCLBuffer);
status = clSetKernelArg(rEnv.mpkKernel, 1, sizeof(cl_mem), &pixdCLBuffer);
status = clSetKernelArg(rEnv.mpkKernel, 2, sizeof(xp), &xp);
status = clSetKernelArg(rEnv.mpkKernel, 3, sizeof(wpl), &wpl);
status = clSetKernelArg(rEnv.mpkKernel, 4, sizeof(h), &h);
status = clSetKernelArg(rEnv.mpkKernel, 5, sizeof(isEven), &isEven);
status = clEnqueueNDRangeKernel(rEnv.mpkCmdQueue, rEnv.mpkKernel, 2,
NULL, globalThreads, localThreads, 0,
NULL, NULL);
if (yp > 0 || yn > 0) {
pixtemp = pixsCLBuffer;
pixsCLBuffer = pixdCLBuffer;
pixdCLBuffer = pixtemp;
}
}
if (yp > 0 || yn > 0)
{
rEnv.mpkKernel = clCreateKernel( rEnv.mpkProgram, "morphoDilateVer", &status );
CHECK_OPENCL(status, "clCreateKernel morphoDilateVer");
status = clSetKernelArg(rEnv.mpkKernel,
0,
sizeof(cl_mem),
&pixsCLBuffer);
status = clSetKernelArg(rEnv.mpkKernel,
1,
sizeof(cl_mem),
&pixdCLBuffer);
status = clSetKernelArg(rEnv.mpkKernel, 2, sizeof(yp), &yp);
status = clSetKernelArg(rEnv.mpkKernel, 3, sizeof(wpl), &wpl);
status = clSetKernelArg(rEnv.mpkKernel, 4, sizeof(h), &h);
status = clSetKernelArg(rEnv.mpkKernel, 5, sizeof(yn), &yn);
status = clEnqueueNDRangeKernel(rEnv.mpkCmdQueue, rEnv.mpkKernel, 2,
NULL, globalThreads, localThreads, 0,
NULL, NULL);
}
return status;
}
//Morphology Erode operation. Invokes the relevant OpenCL kernels
static cl_int pixErodeCL(l_int32 hsize, l_int32 vsize, l_uint32 wpl, l_uint32 h) {
l_int32 xp, yp, xn, yn;
SEL *sel;
size_t globalThreads[2];
size_t localThreads[2];
cl_mem pixtemp;
cl_int status;
int gsize;
char isAsymmetric = (MORPH_BC == ASYMMETRIC_MORPH_BC);
l_uint32 rwmask, lwmask;
char isEven;
sel = selCreateBrick(vsize, hsize, vsize / 2, hsize / 2, SEL_HIT);
selFindMaxTranslations(sel, &xp, &yp, &xn, &yn);
selDestroy(&sel);
OpenclDevice::SetKernelEnv(&rEnv);
if (hsize == 5 && vsize == 5 && isAsymmetric) {
// Specific kernel for 5x5
status = pixErodeCL_55(wpl, h);
return status;
}
lwmask = lmask32[31 - (xn & 31)];
rwmask = rmask32[31 - (xp & 31)];
// global and local work dimensions for Horizontal pass
gsize = (wpl + GROUPSIZE_X - 1) / GROUPSIZE_X * GROUPSIZE_X;
globalThreads[0] = gsize;
gsize = (h + GROUPSIZE_Y - 1) / GROUPSIZE_Y * GROUPSIZE_Y;
globalThreads[1] = gsize;
localThreads[0] = GROUPSIZE_X;
localThreads[1] = GROUPSIZE_Y;
// Horizontal Pass
if (xp > 31 || xn > 31) {
// Generic case.
rEnv.mpkKernel = clCreateKernel(rEnv.mpkProgram, "morphoErodeHor", &status);
status = clSetKernelArg(rEnv.mpkKernel, 0, sizeof(cl_mem), &pixsCLBuffer);
status = clSetKernelArg(rEnv.mpkKernel, 1, sizeof(cl_mem), &pixdCLBuffer);
status = clSetKernelArg(rEnv.mpkKernel, 2, sizeof(xp), &xp);
status = clSetKernelArg(rEnv.mpkKernel, 3, sizeof(xn), &xn);
status = clSetKernelArg(rEnv.mpkKernel, 4, sizeof(wpl), &wpl);
status = clSetKernelArg(rEnv.mpkKernel, 5, sizeof(h), &h);
status =
clSetKernelArg(rEnv.mpkKernel, 6, sizeof(isAsymmetric), &isAsymmetric);
status = clSetKernelArg(rEnv.mpkKernel, 7, sizeof(rwmask), &rwmask);
status = clSetKernelArg(rEnv.mpkKernel, 8, sizeof(lwmask), &lwmask);
status = clEnqueueNDRangeKernel(rEnv.mpkCmdQueue, rEnv.mpkKernel, 2,
NULL, globalThreads, localThreads, 0,
NULL, NULL);
if (yp > 0 || yn > 0) {
pixtemp = pixsCLBuffer;
pixsCLBuffer = pixdCLBuffer;
pixdCLBuffer = pixtemp;
}
} else if (xp > 0 || xn > 0) {
rEnv.mpkKernel =
clCreateKernel(rEnv.mpkProgram, "morphoErodeHor_32word", &status);
isEven = (xp != xn);
status = clSetKernelArg(rEnv.mpkKernel, 0, sizeof(cl_mem), &pixsCLBuffer);
status = clSetKernelArg(rEnv.mpkKernel, 1, sizeof(cl_mem), &pixdCLBuffer);
status = clSetKernelArg(rEnv.mpkKernel, 2, sizeof(xp), &xp);
status = clSetKernelArg(rEnv.mpkKernel, 3, sizeof(wpl), &wpl);
status = clSetKernelArg(rEnv.mpkKernel, 4, sizeof(h), &h);
status =
clSetKernelArg(rEnv.mpkKernel, 5, sizeof(isAsymmetric), &isAsymmetric);
status = clSetKernelArg(rEnv.mpkKernel, 6, sizeof(rwmask), &rwmask);
status = clSetKernelArg(rEnv.mpkKernel, 7, sizeof(lwmask), &lwmask);
status = clSetKernelArg(rEnv.mpkKernel, 8, sizeof(isEven), &isEven);
status = clEnqueueNDRangeKernel(rEnv.mpkCmdQueue, rEnv.mpkKernel, 2,
NULL, globalThreads, localThreads, 0,
NULL, NULL);
if (yp > 0 || yn > 0) {
pixtemp = pixsCLBuffer;
pixsCLBuffer = pixdCLBuffer;
pixdCLBuffer = pixtemp;
}
}
// Vertical Pass
if (yp > 0 || yn > 0) {
rEnv.mpkKernel = clCreateKernel(rEnv.mpkProgram, "morphoErodeVer", &status);
CHECK_OPENCL(status, "clCreateKernel morphoErodeVer");
status = clSetKernelArg(rEnv.mpkKernel, 0, sizeof(cl_mem), &pixsCLBuffer);
status = clSetKernelArg(rEnv.mpkKernel, 1, sizeof(cl_mem), &pixdCLBuffer);
status = clSetKernelArg(rEnv.mpkKernel, 2, sizeof(yp), &yp);
status = clSetKernelArg(rEnv.mpkKernel, 3, sizeof(wpl), &wpl);
status = clSetKernelArg(rEnv.mpkKernel, 4, sizeof(h), &h);
status =
clSetKernelArg(rEnv.mpkKernel, 5, sizeof(isAsymmetric), &isAsymmetric);
status = clSetKernelArg(rEnv.mpkKernel, 6, sizeof(yn), &yn);
status = clEnqueueNDRangeKernel(rEnv.mpkCmdQueue, rEnv.mpkKernel, 2,
NULL, globalThreads, localThreads, 0,
NULL, NULL);
}
return status;
}
//Morphology Open operation. Invokes the relevant OpenCL kernels
static cl_int pixOpenCL(l_int32 hsize, l_int32 vsize, l_int32 wpl, l_int32 h)
{
cl_int status;
cl_mem pixtemp;
//Erode followed by Dilate
status = pixErodeCL(hsize, vsize, wpl, h);
pixtemp = pixsCLBuffer;
pixsCLBuffer = pixdCLBuffer;
pixdCLBuffer = pixtemp;
status = pixDilateCL(hsize, vsize, wpl, h);
return status;
}
//Morphology Close operation. Invokes the relevant OpenCL kernels
static cl_int pixCloseCL(l_int32 hsize, l_int32 vsize, l_int32 wpl, l_int32 h)
{
cl_int status;
cl_mem pixtemp;
//Dilate followed by Erode
status = pixDilateCL(hsize, vsize, wpl, h);
pixtemp = pixsCLBuffer;
pixsCLBuffer = pixdCLBuffer;
pixdCLBuffer = pixtemp;
status = pixErodeCL(hsize, vsize, wpl, h);
return status;
}
//output = buffer1 & ~(buffer2)
static
cl_int pixSubtractCL_work(l_uint32 wpl, l_uint32 h, cl_mem buffer1,
cl_mem buffer2, cl_mem outBuffer = NULL) {
cl_int status;
size_t globalThreads[2];
int gsize;
size_t localThreads[] = {GROUPSIZE_X, GROUPSIZE_Y};
gsize = (wpl + GROUPSIZE_X - 1) / GROUPSIZE_X * GROUPSIZE_X;
globalThreads[0] = gsize;
gsize = (h + GROUPSIZE_Y - 1) / GROUPSIZE_Y * GROUPSIZE_Y;
globalThreads[1] = gsize;
if (outBuffer != NULL) {
rEnv.mpkKernel = clCreateKernel(rEnv.mpkProgram, "pixSubtract", &status);
CHECK_OPENCL(status, "clCreateKernel pixSubtract");
} else {
rEnv.mpkKernel =
clCreateKernel(rEnv.mpkProgram, "pixSubtract_inplace", &status);
CHECK_OPENCL(status, "clCreateKernel pixSubtract_inplace");
}
// Enqueue a kernel run call.
status = clSetKernelArg(rEnv.mpkKernel, 0, sizeof(cl_mem), &buffer1);
status = clSetKernelArg(rEnv.mpkKernel, 1, sizeof(cl_mem), &buffer2);
status = clSetKernelArg(rEnv.mpkKernel, 2, sizeof(wpl), &wpl);
status = clSetKernelArg(rEnv.mpkKernel, 3, sizeof(h), &h);
if (outBuffer != NULL) {
status = clSetKernelArg(rEnv.mpkKernel, 4, sizeof(cl_mem), &outBuffer);
}
status =
clEnqueueNDRangeKernel(rEnv.mpkCmdQueue, rEnv.mpkKernel, 2, NULL,
globalThreads, localThreads, 0, NULL, NULL);
return status;
}
// OpenCL implementation of Get Lines from pix function
//Note: Assumes the source and dest opencl buffer are initialized. No check done
void OpenclDevice::pixGetLinesCL(Pix *pixd, Pix *pixs, Pix **pix_vline,
Pix **pix_hline, Pix **pixClosed,
bool getpixClosed, l_int32 close_hsize,
l_int32 close_vsize, l_int32 open_hsize,
l_int32 open_vsize, l_int32 line_hsize,
l_int32 line_vsize) {
l_uint32 wpl, h;
cl_mem pixtemp;
wpl = pixGetWpl(pixs);
h = pixGetHeight(pixs);
// First step : Close Morph operation: Dilate followed by Erode
clStatus = pixCloseCL(close_hsize, close_vsize, wpl, h);
// Copy the Close output to CPU buffer
if (getpixClosed) {
*pixClosed = mapOutputCLBuffer(rEnv, pixdCLBuffer, *pixClosed, pixs,
wpl * h, CL_MAP_READ, true, false);
}
// Store the output of close operation in an intermediate buffer
// this will be later used for pixsubtract
clStatus =
clEnqueueCopyBuffer(rEnv.mpkCmdQueue, pixdCLBuffer, pixdCLIntermediate, 0,
0, sizeof(int) * wpl * h, 0, NULL, NULL);
// Second step: Open Operation - Erode followed by Dilate
pixtemp = pixsCLBuffer;
pixsCLBuffer = pixdCLBuffer;
pixdCLBuffer = pixtemp;
clStatus = pixOpenCL(open_hsize, open_vsize, wpl, h);
// Third step: Subtract : (Close - Open)
pixtemp = pixsCLBuffer;
pixsCLBuffer = pixdCLBuffer;
pixdCLBuffer = pixdCLIntermediate;
pixdCLIntermediate = pixtemp;
clStatus = pixSubtractCL_work(wpl, h, pixdCLBuffer, pixsCLBuffer);
// Store the output of Hollow operation in an intermediate buffer
// this will be later used
clStatus =
clEnqueueCopyBuffer(rEnv.mpkCmdQueue, pixdCLBuffer, pixdCLIntermediate, 0,
0, sizeof(int) * wpl * h, 0, NULL, NULL);
pixtemp = pixsCLBuffer;
pixsCLBuffer = pixdCLBuffer;
pixdCLBuffer = pixtemp;
// Fourth step: Get vertical line
// pixOpenBrick(NULL, pix_hollow, 1, min_line_length);
clStatus = pixOpenCL(1, line_vsize, wpl, h);
// Copy the vertical line output to CPU buffer
*pix_vline = mapOutputCLBuffer(rEnv, pixdCLBuffer, *pix_vline, pixs, wpl * h,
CL_MAP_READ, true, false);
pixtemp = pixsCLBuffer;
pixsCLBuffer = pixdCLIntermediate;
pixdCLIntermediate = pixtemp;
// Fifth step: Get horizontal line
// pixOpenBrick(NULL, pix_hollow, min_line_length, 1);
clStatus = pixOpenCL(line_hsize, 1, wpl, h);
// Copy the horizontal line output to CPU buffer
*pix_hline = mapOutputCLBuffer(rEnv, pixdCLBuffer, *pix_hline, pixs, wpl * h,
CL_MAP_READ, true, true);
return;
}
/*************************************************************************
* HistogramRect
* Otsu Thresholding Operations
* histogramAllChannels is laid out as all channel 0, then all channel 1...
* only supports 1 or 4 channels (bytes_per_pixel)
************************************************************************/
int OpenclDevice::HistogramRectOCL(unsigned char *imageData,
int bytes_per_pixel, int bytes_per_line,
int left, // always 0
int top, // always 0
int width, int height, int kHistogramSize,
int *histogramAllChannels) {
PERF_COUNT_START("HistogramRectOCL")
cl_int clStatus;
int retVal = 0;
KernelEnv histKern;
SetKernelEnv(&histKern);
KernelEnv histRedKern;
SetKernelEnv(&histRedKern);
/* map imagedata to device as read only */
// USE_HOST_PTR uses onion+ bus which is slowest option; also happens to be
// coherent which we don't need.
// faster option would be to allocate initial image buffer
// using a garlic bus memory type
cl_mem imageBuffer = clCreateBuffer(
histKern.mpkContext, CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR,
width * height * bytes_per_pixel * sizeof(char), imageData, &clStatus);
CHECK_OPENCL(clStatus, "clCreateBuffer imageBuffer");
/* setup work group size parameters */
int block_size = 256;
cl_uint numCUs;
clStatus = clGetDeviceInfo(gpuEnv.mpDevID, CL_DEVICE_MAX_COMPUTE_UNITS,
sizeof(numCUs), &numCUs, NULL);
CHECK_OPENCL(clStatus, "clCreateBuffer imageBuffer");
int requestedOccupancy = 10;
int numWorkGroups = numCUs * requestedOccupancy;
int numThreads = block_size * numWorkGroups;
size_t local_work_size[] = {static_cast<size_t>(block_size)};
size_t global_work_size[] = {static_cast<size_t>(numThreads)};
size_t red_global_work_size[] = {
static_cast<size_t>(block_size * kHistogramSize * bytes_per_pixel)};
/* map histogramAllChannels as write only */
cl_mem histogramBuffer = clCreateBuffer(
histKern.mpkContext, CL_MEM_READ_WRITE | CL_MEM_USE_HOST_PTR,
kHistogramSize * bytes_per_pixel * sizeof(int), histogramAllChannels,
&clStatus);
CHECK_OPENCL(clStatus, "clCreateBuffer histogramBuffer");
/* intermediate histogram buffer */
int histRed = 256;
int tmpHistogramBins = kHistogramSize * bytes_per_pixel * histRed;
cl_mem tmpHistogramBuffer =
clCreateBuffer(histKern.mpkContext, CL_MEM_READ_WRITE,
tmpHistogramBins * sizeof(cl_uint), NULL, &clStatus);
CHECK_OPENCL(clStatus, "clCreateBuffer tmpHistogramBuffer");
/* atomic sync buffer */
int *zeroBuffer = new int[1];
zeroBuffer[0] = 0;
cl_mem atomicSyncBuffer = clCreateBuffer(
histKern.mpkContext, CL_MEM_READ_WRITE | CL_MEM_COPY_HOST_PTR,
sizeof(cl_int), zeroBuffer, &clStatus);
CHECK_OPENCL(clStatus, "clCreateBuffer atomicSyncBuffer");
delete[] zeroBuffer;
// Create kernel objects based on bytes_per_pixel
if (bytes_per_pixel == 1) {
histKern.mpkKernel = clCreateKernel(
histKern.mpkProgram, "kernel_HistogramRectOneChannel", &clStatus);
CHECK_OPENCL(clStatus, "clCreateKernel kernel_HistogramRectOneChannel");
histRedKern.mpkKernel =
clCreateKernel(histRedKern.mpkProgram,
"kernel_HistogramRectOneChannelReduction", &clStatus);
CHECK_OPENCL(clStatus,
"clCreateKernel kernel_HistogramRectOneChannelReduction");
} else {
histKern.mpkKernel = clCreateKernel( histKern.mpkProgram, "kernel_HistogramRectAllChannels", &clStatus );
CHECK_OPENCL( clStatus, "clCreateKernel kernel_HistogramRectAllChannels");
histRedKern.mpkKernel = clCreateKernel( histRedKern.mpkProgram, "kernel_HistogramRectAllChannelsReduction", &clStatus );
CHECK_OPENCL( clStatus, "clCreateKernel kernel_HistogramRectAllChannelsReduction");
}
void *ptr;
//Initialize tmpHistogramBuffer buffer
ptr = clEnqueueMapBuffer(
histKern.mpkCmdQueue, tmpHistogramBuffer, CL_TRUE, CL_MAP_WRITE, 0,
tmpHistogramBins * sizeof(cl_uint), 0, NULL, NULL, &clStatus);
CHECK_OPENCL( clStatus, "clEnqueueMapBuffer tmpHistogramBuffer");
memset(ptr, 0, tmpHistogramBins*sizeof(cl_uint));
clEnqueueUnmapMemObject(histKern.mpkCmdQueue, tmpHistogramBuffer, ptr, 0,
NULL, NULL);
/* set kernel 1 arguments */
clStatus =
clSetKernelArg(histKern.mpkKernel, 0, sizeof(cl_mem), &imageBuffer);
CHECK_OPENCL( clStatus, "clSetKernelArg imageBuffer");
cl_uint numPixels = width*height;
clStatus =
clSetKernelArg(histKern.mpkKernel, 1, sizeof(cl_uint), &numPixels);
CHECK_OPENCL( clStatus, "clSetKernelArg numPixels" );
clStatus = clSetKernelArg(histKern.mpkKernel, 2, sizeof(cl_mem),
&tmpHistogramBuffer);
CHECK_OPENCL( clStatus, "clSetKernelArg tmpHistogramBuffer");
/* set kernel 2 arguments */
int n = numThreads/bytes_per_pixel;
clStatus = clSetKernelArg(histRedKern.mpkKernel, 0, sizeof(cl_int), &n);
CHECK_OPENCL( clStatus, "clSetKernelArg imageBuffer");
clStatus = clSetKernelArg(histRedKern.mpkKernel, 1, sizeof(cl_mem),
&tmpHistogramBuffer);
CHECK_OPENCL( clStatus, "clSetKernelArg tmpHistogramBuffer");
clStatus = clSetKernelArg(histRedKern.mpkKernel, 2, sizeof(cl_mem),
&histogramBuffer);
CHECK_OPENCL( clStatus, "clSetKernelArg histogramBuffer");
/* launch histogram */
PERF_COUNT_SUB("before")
clStatus = clEnqueueNDRangeKernel(histKern.mpkCmdQueue, histKern.mpkKernel, 1,
NULL, global_work_size, local_work_size, 0,
NULL, NULL);
CHECK_OPENCL(clStatus,
"clEnqueueNDRangeKernel kernel_HistogramRectAllChannels");
clFinish(histKern.mpkCmdQueue);
if (clStatus != 0) {
retVal = -1;
}
/* launch histogram */
clStatus = clEnqueueNDRangeKernel(
histRedKern.mpkCmdQueue, histRedKern.mpkKernel, 1, NULL,
red_global_work_size, local_work_size, 0, NULL, NULL);
CHECK_OPENCL( clStatus, "clEnqueueNDRangeKernel kernel_HistogramRectAllChannelsReduction" );
clFinish( histRedKern.mpkCmdQueue );
if (clStatus != 0) {
retVal = -1;
}
PERF_COUNT_SUB("redKernel")
/* map results back from gpu */
ptr = clEnqueueMapBuffer(histRedKern.mpkCmdQueue, histogramBuffer, CL_TRUE,
CL_MAP_READ, 0,
kHistogramSize * bytes_per_pixel * sizeof(int), 0,
NULL, NULL, &clStatus);
CHECK_OPENCL( clStatus, "clEnqueueMapBuffer histogramBuffer");
if (clStatus != 0) {
retVal = -1;
}
clEnqueueUnmapMemObject(histRedKern.mpkCmdQueue, histogramBuffer, ptr, 0,
NULL, NULL);
clReleaseMemObject(histogramBuffer);
clReleaseMemObject(imageBuffer);
PERF_COUNT_SUB("after")
PERF_COUNT_END
return retVal;
}
/*************************************************************************
* Threshold the rectangle, taking everything except the image buffer pointer
* from the class, using thresholds/hi_values to the output IMAGE.
* only supports 1 or 4 channels
************************************************************************/
int OpenclDevice::ThresholdRectToPixOCL(unsigned char *imageData,
int bytes_per_pixel, int bytes_per_line,
int *thresholds, int *hi_values,
Pix **pix, int height, int width,
int top, int left) {
PERF_COUNT_START("ThresholdRectToPixOCL")
int retVal = 0;
/* create pix result buffer */
*pix = pixCreate(width, height, 1);
uint32_t *pixData = pixGetData(*pix);
int wpl = pixGetWpl(*pix);
int pixSize = wpl * height * sizeof(uint32_t); // number of pixels
cl_int clStatus;
KernelEnv rEnv;
SetKernelEnv(&rEnv);
/* setup work group size parameters */
int block_size = 256;
cl_uint numCUs = 6;
clStatus = clGetDeviceInfo(gpuEnv.mpDevID, CL_DEVICE_MAX_COMPUTE_UNITS,
sizeof(numCUs), &numCUs, NULL);
CHECK_OPENCL(clStatus, "clCreateBuffer imageBuffer");
int requestedOccupancy = 10;
int numWorkGroups = numCUs * requestedOccupancy;
int numThreads = block_size * numWorkGroups;
size_t local_work_size[] = {(size_t)block_size};
size_t global_work_size[] = {(size_t)numThreads};
/* map imagedata to device as read only */
// USE_HOST_PTR uses onion+ bus which is slowest option; also happens to be
// coherent which we don't need.
// faster option would be to allocate initial image buffer
// using a garlic bus memory type
cl_mem imageBuffer = clCreateBuffer(
rEnv.mpkContext, CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR,
width * height * bytes_per_pixel * sizeof(char), imageData, &clStatus);
CHECK_OPENCL(clStatus, "clCreateBuffer imageBuffer");
/* map pix as write only */
pixThBuffer =
clCreateBuffer(rEnv.mpkContext, CL_MEM_READ_WRITE | CL_MEM_USE_HOST_PTR,
pixSize, pixData, &clStatus);
CHECK_OPENCL(clStatus, "clCreateBuffer pix");
/* map thresholds and hi_values */
cl_mem thresholdsBuffer =
clCreateBuffer(rEnv.mpkContext, CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR,
bytes_per_pixel * sizeof(int), thresholds, &clStatus);
CHECK_OPENCL(clStatus, "clCreateBuffer thresholdBuffer");
cl_mem hiValuesBuffer =
clCreateBuffer(rEnv.mpkContext, CL_MEM_READ_ONLY | CL_MEM_USE_HOST_PTR,
bytes_per_pixel * sizeof(int), hi_values, &clStatus);
CHECK_OPENCL(clStatus, "clCreateBuffer hiValuesBuffer");
/* compile kernel */
if (bytes_per_pixel == 4) {
rEnv.mpkKernel =
clCreateKernel(rEnv.mpkProgram, "kernel_ThresholdRectToPix", &clStatus);
CHECK_OPENCL(clStatus, "clCreateKernel kernel_ThresholdRectToPix");
} else {
rEnv.mpkKernel = clCreateKernel(
rEnv.mpkProgram, "kernel_ThresholdRectToPix_OneChan", &clStatus);
CHECK_OPENCL(clStatus, "clCreateKernel kernel_ThresholdRectToPix_OneChan");
}
/* set kernel arguments */
clStatus = clSetKernelArg(rEnv.mpkKernel, 0, sizeof(cl_mem), &imageBuffer);
CHECK_OPENCL(clStatus, "clSetKernelArg imageBuffer");
clStatus = clSetKernelArg(rEnv.mpkKernel, 1, sizeof(int), &height);
CHECK_OPENCL(clStatus, "clSetKernelArg height");
clStatus = clSetKernelArg(rEnv.mpkKernel, 2, sizeof(int), &width);
CHECK_OPENCL(clStatus, "clSetKernelArg width");
clStatus = clSetKernelArg(rEnv.mpkKernel, 3, sizeof(int), &wpl);
CHECK_OPENCL(clStatus, "clSetKernelArg wpl");
clStatus =
clSetKernelArg(rEnv.mpkKernel, 4, sizeof(cl_mem), &thresholdsBuffer);
CHECK_OPENCL(clStatus, "clSetKernelArg thresholdsBuffer");
clStatus = clSetKernelArg(rEnv.mpkKernel, 5, sizeof(cl_mem), &hiValuesBuffer);
CHECK_OPENCL(clStatus, "clSetKernelArg hiValuesBuffer");
clStatus = clSetKernelArg(rEnv.mpkKernel, 6, sizeof(cl_mem), &pixThBuffer);
CHECK_OPENCL(clStatus, "clSetKernelArg pixThBuffer");
/* launch kernel & wait */
PERF_COUNT_SUB("before")
clStatus = clEnqueueNDRangeKernel(rEnv.mpkCmdQueue, rEnv.mpkKernel, 1,
NULL, global_work_size, local_work_size,
0, NULL, NULL);
CHECK_OPENCL(clStatus, "clEnqueueNDRangeKernel kernel_ThresholdRectToPix");
clFinish(rEnv.mpkCmdQueue);
PERF_COUNT_SUB("kernel")
if (clStatus != 0) {
printf("Setting return value to -1\n");
retVal = -1;
}
/* map results back from gpu */
void *ptr =
clEnqueueMapBuffer(rEnv.mpkCmdQueue, pixThBuffer, CL_TRUE, CL_MAP_READ, 0,
pixSize, 0, NULL, NULL, &clStatus);
CHECK_OPENCL(clStatus, "clEnqueueMapBuffer histogramBuffer");
clEnqueueUnmapMemObject(rEnv.mpkCmdQueue, pixThBuffer, ptr, 0, NULL,
NULL);
clReleaseMemObject(imageBuffer);
clReleaseMemObject(thresholdsBuffer);
clReleaseMemObject(hiValuesBuffer);
PERF_COUNT_SUB("after")
PERF_COUNT_END
return retVal;
}
/******************************************************************************
* Data Types for Device Selection
*****************************************************************************/
typedef struct _TessScoreEvaluationInputData {
int height;
int width;
int numChannels;
unsigned char *imageData;
Pix *pix;
} TessScoreEvaluationInputData;
static void populateTessScoreEvaluationInputData(TessScoreEvaluationInputData *input) {
srand(1);
// 8.5x11 inches @ 300dpi rounded to clean multiples
int height = 3328; // %256
int width = 2560; // %512
int numChannels = 4;
input->height = height;
input->width = width;
input->numChannels = numChannels;
unsigned char (*imageData4)[4] = (unsigned char (*)[4]) malloc(height*width*numChannels*sizeof(unsigned char)); // new unsigned char[4][height*width];
input->imageData = (unsigned char *) &imageData4[0];
// zero out image
unsigned char pixelWhite[4] = { 0, 0, 0, 255};
unsigned char pixelBlack[4] = {255, 255, 255, 255};
for (int p = 0; p < height*width; p++) {
//unsigned char tmp[4] = imageData4[0];
imageData4[p][0] = pixelWhite[0];
imageData4[p][1] = pixelWhite[1];
imageData4[p][2] = pixelWhite[2];
imageData4[p][3] = pixelWhite[3];
}
// random lines to be eliminated
int maxLineWidth = 64; // pixels wide
int numLines = 10;
// vertical lines
for (int i = 0; i < numLines; i++) {
int lineWidth = rand()%maxLineWidth;
int vertLinePos = lineWidth + rand()%(width-2*lineWidth);
//printf("[PI] VerticalLine @ %i (w=%i)\n", vertLinePos, lineWidth);
for (int row = vertLinePos-lineWidth/2; row < vertLinePos+lineWidth/2; row++) {
for (int col = 0; col < height; col++) {
//imageData4[row*width+col] = pixelBlack;
imageData4[row*width+col][0] = pixelBlack[0];
imageData4[row*width+col][1] = pixelBlack[1];
imageData4[row*width+col][2] = pixelBlack[2];
imageData4[row*width+col][3] = pixelBlack[3];
}
}
}
// horizontal lines
for (int i = 0; i < numLines; i++) {
int lineWidth = rand()%maxLineWidth;
int horLinePos = lineWidth + rand()%(height-2*lineWidth);
//printf("[PI] HorizontalLine @ %i (w=%i)\n", horLinePos, lineWidth);
for (int row = 0; row < width; row++) {
for (int col = horLinePos-lineWidth/2; col < horLinePos+lineWidth/2; col++) { // for (int row = vertLinePos-lineWidth/2; row < vertLinePos+lineWidth/2; row++) {
//printf("[PI] HoizLine pix @ (%3i, %3i)\n", row, col);
//imageData4[row*width+col] = pixelBlack;
imageData4[row*width+col][0] = pixelBlack[0];
imageData4[row*width+col][1] = pixelBlack[1];
imageData4[row*width+col][2] = pixelBlack[2];
imageData4[row*width+col][3] = pixelBlack[3];
}
}
}
// spots (noise, squares)
float fractionBlack = 0.1; // how much of the image should be blackened
int numSpots = (height*width)*fractionBlack/(maxLineWidth*maxLineWidth/2/2);
for (int i = 0; i < numSpots; i++) {
int lineWidth = rand()%maxLineWidth;
int col = lineWidth + rand()%(width-2*lineWidth);
int row = lineWidth + rand()%(height-2*lineWidth);
//printf("[PI] Spot[%i/%i] @ (%3i, %3i)\n", i, numSpots, row, col );
for (int r = row-lineWidth/2; r < row+lineWidth/2; r++) {
for (int c = col-lineWidth/2; c < col+lineWidth/2; c++) {
//printf("[PI] \tSpot[%i/%i] @ (%3i, %3i)\n", i, numSpots, r, c );
//imageData4[row*width+col] = pixelBlack;
imageData4[r*width+c][0] = pixelBlack[0];
imageData4[r*width+c][1] = pixelBlack[1];
imageData4[r*width+c][2] = pixelBlack[2];
imageData4[r*width+c][3] = pixelBlack[3];
}
}
}
input->pix = pixCreate(input->width, input->height, 1);
}
typedef struct _TessDeviceScore {
float time; // small time means faster device
bool clError; // were there any opencl errors
bool valid; // was the correct response generated
} TessDeviceScore;
/******************************************************************************
* Micro Benchmarks for Device Selection
*****************************************************************************/
static double composeRGBPixelMicroBench(GPUEnv *env, TessScoreEvaluationInputData input, ds_device_type type) {
double time = 0;
#if ON_WINDOWS
LARGE_INTEGER freq, time_funct_start, time_funct_end;
QueryPerformanceFrequency(&freq);
#elif ON_APPLE
mach_timebase_info_data_t info = {0, 0};
mach_timebase_info(&info);
long long start, stop;
#else
timespec time_funct_start, time_funct_end;
#endif
// input data
l_uint32 *tiffdata = (l_uint32 *)input.imageData;// same size and random data; data doesn't change workload
// function call
if (type == DS_DEVICE_OPENCL_DEVICE) {
#if ON_WINDOWS
QueryPerformanceCounter(&time_funct_start);
#elif ON_APPLE
start = mach_absolute_time();
#else
clock_gettime( CLOCK_MONOTONIC, &time_funct_start );
#endif
OpenclDevice::gpuEnv = *env;
int wpl = pixGetWpl(input.pix);
OpenclDevice::pixReadFromTiffKernel(tiffdata, input.width, input.height,
wpl, NULL);
#if ON_WINDOWS
QueryPerformanceCounter(&time_funct_end);
time = (time_funct_end.QuadPart-time_funct_start.QuadPart)/(double)(freq.QuadPart);
#elif ON_APPLE
stop = mach_absolute_time();
time = ((stop - start) * (double)info.numer / info.denom) / 1.0E9;
#else
clock_gettime( CLOCK_MONOTONIC, &time_funct_end );
time = (time_funct_end.tv_sec - time_funct_start.tv_sec)*1.0 + (time_funct_end.tv_nsec - time_funct_start.tv_nsec)/1000000000.0;
#endif
} else {
#if ON_WINDOWS
QueryPerformanceCounter(&time_funct_start);
#elif ON_APPLE
start = mach_absolute_time();
#else
clock_gettime( CLOCK_MONOTONIC, &time_funct_start );
#endif
Pix *pix = pixCreate(input.width, input.height, 32);
l_uint32 *pixData = pixGetData(pix);
int i, j;
int idx = 0;
for (i = 0; i < input.height ; i++) {
for (j = 0; j < input.width; j++) {
l_uint32 tiffword = tiffdata[i * input.width + j];
l_int32 rval = ((tiffword) & 0xff);
l_int32 gval = (((tiffword) >> 8) & 0xff);
l_int32 bval = (((tiffword) >> 16) & 0xff);
l_uint32 value = (rval << 24) | (gval << 16) | (bval << 8);
pixData[idx] = value;
idx++;
}
}
#if ON_WINDOWS
QueryPerformanceCounter(&time_funct_end);
time = (time_funct_end.QuadPart-time_funct_start.QuadPart)/(double)(freq.QuadPart);
#elif ON_APPLE
stop = mach_absolute_time();
time = ((stop - start) * (double)info.numer / info.denom) / 1.0E9;
#else
clock_gettime( CLOCK_MONOTONIC, &time_funct_end );
time = (time_funct_end.tv_sec - time_funct_start.tv_sec)*1.0 + (time_funct_end.tv_nsec - time_funct_start.tv_nsec)/1000000000.0;
#endif
pixDestroy(&pix);
}
// cleanup
return time;
}
static double histogramRectMicroBench( GPUEnv *env, TessScoreEvaluationInputData input, ds_device_type type ) {
double time;
#if ON_WINDOWS
LARGE_INTEGER freq, time_funct_start, time_funct_end;
QueryPerformanceFrequency(&freq);
#elif ON_APPLE
mach_timebase_info_data_t info = {0, 0};
mach_timebase_info(&info);
long long start, stop;
#else
timespec time_funct_start, time_funct_end;
#endif
int left = 0;
int top = 0;
int kHistogramSize = 256;
int bytes_per_line = input.width*input.numChannels;
int *histogramAllChannels = new int[kHistogramSize*input.numChannels];
// function call
if (type == DS_DEVICE_OPENCL_DEVICE) {
#if ON_WINDOWS
QueryPerformanceCounter(&time_funct_start);
#elif ON_APPLE
start = mach_absolute_time();
#else
clock_gettime( CLOCK_MONOTONIC, &time_funct_start );
#endif
OpenclDevice::gpuEnv = *env;
int retVal = OpenclDevice::HistogramRectOCL(
input.imageData, input.numChannels, bytes_per_line, top, left,
input.width, input.height, kHistogramSize, histogramAllChannels);
#if ON_WINDOWS
QueryPerformanceCounter(&time_funct_end);
time = (time_funct_end.QuadPart-time_funct_start.QuadPart)/(double)(freq.QuadPart);
#elif ON_APPLE
stop = mach_absolute_time();
if (retVal == 0) {
time = ((stop - start) * (double)info.numer / info.denom) / 1.0E9;
} else {
time = FLT_MAX;
}
#else
clock_gettime( CLOCK_MONOTONIC, &time_funct_end );
time = (time_funct_end.tv_sec - time_funct_start.tv_sec)*1.0 + (time_funct_end.tv_nsec - time_funct_start.tv_nsec)/1000000000.0;
#endif
} else {
int *histogram = new int[kHistogramSize];
#if ON_WINDOWS
QueryPerformanceCounter(&time_funct_start);
#elif ON_APPLE
start = mach_absolute_time();
#else
clock_gettime( CLOCK_MONOTONIC, &time_funct_start );
#endif
for (int ch = 0; ch < input.numChannels; ++ch) {
tesseract::HistogramRect(input.pix, input.numChannels, left, top,
input.width, input.height, histogram);
}
#if ON_WINDOWS
QueryPerformanceCounter(&time_funct_end);
time = (time_funct_end.QuadPart-time_funct_start.QuadPart)/(double)(freq.QuadPart);
#elif ON_APPLE
stop = mach_absolute_time();
time = ((stop - start) * (double)info.numer / info.denom) / 1.0E9;
#else
clock_gettime( CLOCK_MONOTONIC, &time_funct_end );
time = (time_funct_end.tv_sec - time_funct_start.tv_sec)*1.0 + (time_funct_end.tv_nsec - time_funct_start.tv_nsec)/1000000000.0;
#endif
delete[] histogram;
}
// cleanup
delete[] histogramAllChannels;
return time;
}
//Reproducing the ThresholdRectToPix native version
static void ThresholdRectToPix_Native(const unsigned char* imagedata,
int bytes_per_pixel,
int bytes_per_line,
const int* thresholds,
const int* hi_values,
Pix** pix) {
int top = 0;
int left = 0;
int width = pixGetWidth(*pix);
int height = pixGetHeight(*pix);
*pix = pixCreate(width, height, 1);
uint32_t *pixdata = pixGetData(*pix);
int wpl = pixGetWpl(*pix);
const unsigned char* srcdata = imagedata + top * bytes_per_line +
left * bytes_per_pixel;
for (int y = 0; y < height; ++y) {
const uint8_t *linedata = srcdata;
uint32_t *pixline = pixdata + y * wpl;
for (int x = 0; x < width; ++x, linedata += bytes_per_pixel) {
bool white_result = true;
for (int ch = 0; ch < bytes_per_pixel; ++ch) {
if (hi_values[ch] >= 0 &&
(linedata[ch] > thresholds[ch]) == (hi_values[ch] == 0)) {
white_result = false;
break;
}
}
if (white_result)
CLEAR_DATA_BIT(pixline, x);
else
SET_DATA_BIT(pixline, x);
}
srcdata += bytes_per_line;
}
}
static double thresholdRectToPixMicroBench(GPUEnv *env, TessScoreEvaluationInputData input, ds_device_type type) {
double time;
#if ON_WINDOWS
LARGE_INTEGER freq, time_funct_start, time_funct_end;
QueryPerformanceFrequency(&freq);
#elif ON_APPLE
mach_timebase_info_data_t info = {0, 0};
mach_timebase_info(&info);
long long start, stop;
#else
timespec time_funct_start, time_funct_end;
#endif
// input data
unsigned char pixelHi = (unsigned char)255;
int* thresholds = new int[4];
thresholds[0] = pixelHi/2;
thresholds[1] = pixelHi/2;
thresholds[2] = pixelHi/2;
thresholds[3] = pixelHi/2;
int *hi_values = new int[4];
thresholds[0] = pixelHi;
thresholds[1] = pixelHi;
thresholds[2] = pixelHi;
thresholds[3] = pixelHi;
//Pix* pix = pixCreate(width, height, 1);
int top = 0;
int left = 0;
int bytes_per_line = input.width*input.numChannels;
// function call
if (type == DS_DEVICE_OPENCL_DEVICE) {
#if ON_WINDOWS
QueryPerformanceCounter(&time_funct_start);
#elif ON_APPLE
start = mach_absolute_time();
#else
clock_gettime( CLOCK_MONOTONIC, &time_funct_start );
#endif
OpenclDevice::gpuEnv = *env;
int retVal = OpenclDevice::ThresholdRectToPixOCL(
input.imageData, input.numChannels, bytes_per_line, thresholds,
hi_values, &input.pix, input.height, input.width, top, left);
#if ON_WINDOWS
QueryPerformanceCounter(&time_funct_end);
time = (time_funct_end.QuadPart-time_funct_start.QuadPart)/(double)(freq.QuadPart);
#elif ON_APPLE
stop = mach_absolute_time();
if (retVal == 0) {
time = ((stop - start) * (double)info.numer / info.denom) / 1.0E9;
;
} else {
time = FLT_MAX;
}
#else
clock_gettime( CLOCK_MONOTONIC, &time_funct_end );
time = (time_funct_end.tv_sec - time_funct_start.tv_sec)*1.0 + (time_funct_end.tv_nsec - time_funct_start.tv_nsec)/1000000000.0;
#endif
} else {
tesseract::ImageThresholder thresholder;
thresholder.SetImage( input.pix );
#if ON_WINDOWS
QueryPerformanceCounter(&time_funct_start);
#elif ON_APPLE
start = mach_absolute_time();
#else
clock_gettime( CLOCK_MONOTONIC, &time_funct_start );
#endif
ThresholdRectToPix_Native( input.imageData, input.numChannels, bytes_per_line,
thresholds, hi_values, &input.pix );
#if ON_WINDOWS
QueryPerformanceCounter(&time_funct_end);
time = (time_funct_end.QuadPart-time_funct_start.QuadPart)/(double)(freq.QuadPart);
#elif ON_APPLE
stop = mach_absolute_time();
time = ((stop - start) * (double)info.numer / info.denom) / 1.0E9;
#else
clock_gettime( CLOCK_MONOTONIC, &time_funct_end );
time = (time_funct_end.tv_sec - time_funct_start.tv_sec)*1.0 + (time_funct_end.tv_nsec - time_funct_start.tv_nsec)/1000000000.0;
#endif
}
// cleanup
delete[] thresholds;
delete[] hi_values;
return time;
}
static double getLineMasksMorphMicroBench(GPUEnv *env, TessScoreEvaluationInputData input, ds_device_type type) {
double time = 0;
#if ON_WINDOWS
LARGE_INTEGER freq, time_funct_start, time_funct_end;
QueryPerformanceFrequency(&freq);
#elif ON_APPLE
mach_timebase_info_data_t info = {0, 0};
mach_timebase_info(&info);
long long start, stop;
#else
timespec time_funct_start, time_funct_end;
#endif
// input data
int resolution = 300;
int wpl = pixGetWpl(input.pix);
int kThinLineFraction = 20; // tess constant
int kMinLineLengthFraction = 4; // tess constant
int max_line_width = resolution / kThinLineFraction;
int min_line_length = resolution / kMinLineLengthFraction;
int closing_brick = max_line_width / 3;
// function call
if (type == DS_DEVICE_OPENCL_DEVICE) {
#if ON_WINDOWS
QueryPerformanceCounter(&time_funct_start);
#elif ON_APPLE
start = mach_absolute_time();
#else
clock_gettime( CLOCK_MONOTONIC, &time_funct_start );
#endif
OpenclDevice::gpuEnv = *env;
OpenclDevice::initMorphCLAllocations(wpl, input.height, input.pix);
Pix *pix_vline = NULL, *pix_hline = NULL, *pix_closed = NULL;
OpenclDevice::pixGetLinesCL(
NULL, input.pix, &pix_vline, &pix_hline, &pix_closed, true,
closing_brick, closing_brick, max_line_width, max_line_width,
min_line_length, min_line_length);
OpenclDevice::releaseMorphCLBuffers();
#if ON_WINDOWS
QueryPerformanceCounter(&time_funct_end);
time = (time_funct_end.QuadPart-time_funct_start.QuadPart)/(double)(freq.QuadPart);
#elif ON_APPLE
stop = mach_absolute_time();
time = ((stop - start) * (double)info.numer / info.denom) / 1.0E9;
#else
clock_gettime( CLOCK_MONOTONIC, &time_funct_end );
time = (time_funct_end.tv_sec - time_funct_start.tv_sec)*1.0 + (time_funct_end.tv_nsec - time_funct_start.tv_nsec)/1000000000.0;
#endif
} else {
#if ON_WINDOWS
QueryPerformanceCounter(&time_funct_start);
#elif ON_APPLE
start = mach_absolute_time();
#else
clock_gettime( CLOCK_MONOTONIC, &time_funct_start );
#endif
// native serial code
Pix *src_pix = input.pix;
Pix *pix_closed =
pixCloseBrick(NULL, src_pix, closing_brick, closing_brick);
Pix *pix_solid =
pixOpenBrick(NULL, pix_closed, max_line_width, max_line_width);
Pix *pix_hollow = pixSubtract(NULL, pix_closed, pix_solid);
pixDestroy(&pix_solid);
Pix *pix_vline = pixOpenBrick(NULL, pix_hollow, 1, min_line_length);
Pix *pix_hline = pixOpenBrick(NULL, pix_hollow, min_line_length, 1);
pixDestroy(&pix_hollow);
#if ON_WINDOWS
QueryPerformanceCounter(&time_funct_end);
time = (time_funct_end.QuadPart-time_funct_start.QuadPart)/(double)(freq.QuadPart);
#elif ON_APPLE
stop = mach_absolute_time();
time = ((stop - start) * (double)info.numer / info.denom) / 1.0E9;
#else
clock_gettime( CLOCK_MONOTONIC, &time_funct_end );
time = (time_funct_end.tv_sec - time_funct_start.tv_sec)*1.0 + (time_funct_end.tv_nsec - time_funct_start.tv_nsec)/1000000000.0;
#endif
}
return time;
}
/******************************************************************************
* Device Selection
*****************************************************************************/
#include "stdlib.h"
// encode score object as byte string
static ds_status serializeScore( ds_device* device, void **serializedScore, unsigned int* serializedScoreSize ) {
*serializedScoreSize = sizeof(TessDeviceScore);
*serializedScore = new unsigned char[*serializedScoreSize];
memcpy(*serializedScore, device->score, *serializedScoreSize);
return DS_SUCCESS;
}
// parses byte string and stores in score object
static ds_status deserializeScore( ds_device* device, const unsigned char* serializedScore, unsigned int serializedScoreSize ) {
// check that serializedScoreSize == sizeof(TessDeviceScore);
device->score = new TessDeviceScore;
memcpy(device->score, serializedScore, serializedScoreSize);
return DS_SUCCESS;
}
static ds_status releaseScore(void *score) {
delete (TessDeviceScore *)score;
return DS_SUCCESS;
}
// evaluate devices
static ds_status evaluateScoreForDevice( ds_device *device, void *inputData) {
// overwrite statuc gpuEnv w/ current device
// so native opencl calls can be used; they use static gpuEnv
printf("\n[DS] Device: \"%s\" (%s) evaluation...\n", device->oclDeviceName, device->type==DS_DEVICE_OPENCL_DEVICE ? "OpenCL" : "Native" );
GPUEnv *env = NULL;
if (device->type == DS_DEVICE_OPENCL_DEVICE) {
env = new GPUEnv;
//printf("[DS] populating tmp GPUEnv from device\n");
populateGPUEnvFromDevice( env, device->oclDeviceID);
env->mnFileCount = 0; //argc;
env->mnKernelCount = 0UL;
//printf("[DS] compiling kernels for tmp GPUEnv\n");
OpenclDevice::gpuEnv = *env;
OpenclDevice::CompileKernelFile(env, "");
}
TessScoreEvaluationInputData *input = (TessScoreEvaluationInputData *)inputData;
// pixReadTiff
double composeRGBPixelTime = composeRGBPixelMicroBench( env, *input, device->type );
// HistogramRect
double histogramRectTime = histogramRectMicroBench( env, *input, device->type );
// ThresholdRectToPix
double thresholdRectToPixTime = thresholdRectToPixMicroBench( env, *input, device->type );
// getLineMasks
double getLineMasksMorphTime = getLineMasksMorphMicroBench( env, *input, device->type );
// weigh times (% of cpu time)
// these weights should be the % execution time that the native cpu code took
float composeRGBPixelWeight = 1.2f;
float histogramRectWeight = 2.4f;
float thresholdRectToPixWeight = 4.5f;
float getLineMasksMorphWeight = 5.0f;
float weightedTime = composeRGBPixelWeight * composeRGBPixelTime +
histogramRectWeight * histogramRectTime +
thresholdRectToPixWeight * thresholdRectToPixTime +
getLineMasksMorphWeight * getLineMasksMorphTime;
device->score = new TessDeviceScore;
((TessDeviceScore *)device->score)->time = weightedTime;
printf("[DS] Device: \"%s\" (%s) evaluated\n", device->oclDeviceName, device->type==DS_DEVICE_OPENCL_DEVICE ? "OpenCL" : "Native" );
printf("[DS]%25s: %f (w=%.1f)\n", "composeRGBPixel", composeRGBPixelTime, composeRGBPixelWeight );
printf("[DS]%25s: %f (w=%.1f)\n", "HistogramRect", histogramRectTime, histogramRectWeight );
printf("[DS]%25s: %f (w=%.1f)\n", "ThresholdRectToPix", thresholdRectToPixTime, thresholdRectToPixWeight );
printf("[DS]%25s: %f (w=%.1f)\n", "getLineMasksMorph", getLineMasksMorphTime, getLineMasksMorphWeight );
printf("[DS]%25s: %f\n", "Score", ((TessDeviceScore *)device->score)->time );
return DS_SUCCESS;
}
// initial call to select device
ds_device OpenclDevice::getDeviceSelection( ) {
if (!deviceIsSelected) {
PERF_COUNT_START("getDeviceSelection")
// check if opencl is available at runtime
if (1 == LoadOpencl()) {
// opencl is available
// PERF_COUNT_SUB("LoadOpencl")
// setup devices
ds_status status;
ds_profile *profile;
status = initDSProfile(&profile, "v0.1");
PERF_COUNT_SUB("initDSProfile")
// try reading scores from file
const char *fileName = "tesseract_opencl_profile_devices.dat";
status = readProfileFromFile(profile, deserializeScore, fileName);
if (status != DS_SUCCESS) {
// need to run evaluation
printf("[DS] Profile file not available (%s); performing profiling.\n",
fileName);
// create input data
TessScoreEvaluationInputData input;
populateTessScoreEvaluationInputData(&input);
// PERF_COUNT_SUB("populateTessScoreEvaluationInputData")
// perform evaluations
unsigned int numUpdates;
status = profileDevices(profile, DS_EVALUATE_ALL,
evaluateScoreForDevice, &input, &numUpdates);
PERF_COUNT_SUB("profileDevices")
// write scores to file
if (status == DS_SUCCESS) {
status = writeProfileToFile(profile, serializeScore, fileName);
PERF_COUNT_SUB("writeProfileToFile")
if (status == DS_SUCCESS) {
printf("[DS] Scores written to file (%s).\n", fileName);
} else {
printf(
"[DS] Error saving scores to file (%s); scores not written to "
"file.\n",
fileName);
}
} else {
printf(
"[DS] Unable to evaluate performance; scores not written to "
"file.\n");
}
} else {
PERF_COUNT_SUB("readProfileFromFile")
printf("[DS] Profile read from file (%s).\n", fileName);
}
// we now have device scores either from file or evaluation
// select fastest using custom Tesseract selection algorithm
float bestTime = FLT_MAX; // begin search with worst possible time
int bestDeviceIdx = -1;
for (unsigned d = 0; d < profile->numDevices; d++) {
ds_device device = profile->devices[d];
TessDeviceScore score = *(TessDeviceScore *)device.score;
float time = score.time;
printf("[DS] Device[%u] %i:%s score is %f\n", d + 1, device.type,
device.oclDeviceName, time);
if (time < bestTime) {
bestTime = time;
bestDeviceIdx = d;
}
}
printf("[DS] Selected Device[%i]: \"%s\" (%s)\n", bestDeviceIdx + 1,
profile->devices[bestDeviceIdx].oclDeviceName,
profile->devices[bestDeviceIdx].type == DS_DEVICE_OPENCL_DEVICE
? "OpenCL"
: "Native");
// cleanup
// TODO: call destructor for profile object?
bool overridden = false;
char *overrideDeviceStr = getenv("TESSERACT_OPENCL_DEVICE");
if (overrideDeviceStr != NULL) {
int overrideDeviceIdx = atoi(overrideDeviceStr);
if (overrideDeviceIdx > 0 && overrideDeviceIdx <= profile->numDevices) {
printf(
"[DS] Overriding Device Selection (TESSERACT_OPENCL_DEVICE=%s, "
"%i)\n",
overrideDeviceStr, overrideDeviceIdx);
bestDeviceIdx = overrideDeviceIdx - 1;
overridden = true;
} else {
printf(
"[DS] Ignoring invalid TESSERACT_OPENCL_DEVICE=%s ([1,%i] are "
"valid devices).\n",
overrideDeviceStr, profile->numDevices);
}
}
if (overridden) {
printf("[DS] Overridden Device[%i]: \"%s\" (%s)\n", bestDeviceIdx + 1,
profile->devices[bestDeviceIdx].oclDeviceName,
profile->devices[bestDeviceIdx].type == DS_DEVICE_OPENCL_DEVICE
? "OpenCL"
: "Native");
}
selectedDevice = profile->devices[bestDeviceIdx];
// cleanup
releaseDSProfile(profile, releaseScore);
} else {
// opencl isn't available at runtime, select native cpu device
printf("[DS] OpenCL runtime not available.\n");
selectedDevice.type = DS_DEVICE_NATIVE_CPU;
selectedDevice.oclDeviceName = "(null)";
selectedDevice.score = NULL;
selectedDevice.oclDeviceID = NULL;
selectedDevice.oclDriverVersion = NULL;
}
deviceIsSelected = true;
PERF_COUNT_SUB("select from Profile")
PERF_COUNT_END
}
// PERF_COUNT_END
return selectedDevice;
}
bool OpenclDevice::selectedDeviceIsOpenCL() {
ds_device device = getDeviceSelection();
return (device.type == DS_DEVICE_OPENCL_DEVICE);
}
#endif